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Abstract: In order to effectively analyse the multivariate time series data of complex process, a generic reconstruction technology 
based on reduction theory of rough sets was proposed. Firstly, the phase space of multivariate time series was originally 
reconstructed by a classical reconstruction technology. Then, the original decision-table of rough set theory was set up according to 
the embedding dimensions and time-delays of the original reconstruction phase space, and the rough set reduction was used to delete 
the redundant dimensions and irrelevant variables and to reconstruct the generic phase space. Finally, the input vectors for the 
prediction of multivariate time series were extracted according to generic reconstruction results to identify the parameters of 
prediction model. Verification results show that the developed reconstruction method leads to better generalization ability for the 
prediction model and it is feasible and worthwhile for application. 
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1 Introduction 
 

Time series data are pervasive in complex process 
industries such as metallurgy, power, steel, and 
petrochemical engineering. Therefore, analysis of time 
series data from these complex systems is very important 
for modelling, predicting, control and other purposes [1]. 
It is a routine in the analysis of time series data from a 
nonlinear system to make a phase space reconstruction 
based on Taken’s embedding theorem [2]. The basic idea 
of the analysis is that the original series is decomposed 
into multi- subseries with the same dimension to review 
the dynamics of the underlying system. From the 
modelling point of view, to reconstruct the phase space 
of time series data is equivalent to extract the effective 
input vector of the prediction model to generate more 
accurate forecasts [3−4]. In the published literatures, 
there have been many discussions on how to reconstruct 
the phase space of time series based on Taken’s theorem 
and its extensions. The basic methods which are usually 
used to choose the embedding dimension and the 
time-delay parameter include false nearest neighbors 
(FNN) [5], singular value decomposition (SVD) [6], 

mutual information and autocorrelation [7] etc. As CAO 
et al [8] pointed out, these methods are more or less 
subjective in determining the embedding parameters. In 
order to calculate the optimal embedding parameters, 
there are other methods and some modified methods 
developed based on the above methods, such as 
minimum mean one-step prediction error method [9], 
FMMI/FNN method [10], and fill factor method [11]. 

Unfortunately, so far, there does not exist one 
uniform construction method especially for multivariate 
time series. In fact, multivariate time series data contain 
more information than univariate time series data and are 
available in many process industries. However, due to 
the complexity of process itself and the subjectivity of 
human operation, multivariate time series from complex 
process industries is usually noisy, fuzzy and incomplete, 
even contains redundant and wrong information, which 
are called the uncertainty in this work. The uncertainty of 
data makes it difficult to reconstruct the phase space of 
multivariate time series from complex process industries 
by utilizing the existing methods. 

Rough set theory (RST), which was introduced by 
PAWLAK in the early 1980s, is an effective 
mathematical tool to handle uncertainty and vagueness. 
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It focuses on the discovery of pattern in inconsistent data 
and can be used as the basis to perform formal reasoning 
under uncertainty, machine learning, and rule discovery. 
In the past decades, the rough set theory has been 
successfully applied to many real-world problems in 
medicine, pharmacology, engineering and financial 
analysis [12]. In this work, the rough set theory was 
applied to the reconstruction procedure of multivariate 
time series data from complex process industries. By 
combining the reduction technology of rough set theory 
with the classical reconstruction technology, a generic 
reconstruction technology was proposed to extract the 
simplified input vector of prediction model from 
multivariate time data. The developed method is applied 
to reconstructing and predicting the time series of 
returned material in blending process of alumina 
production. 

 
2 Original reconstruction of multivariate 

time series 
 

Suppose that there are M variables measured at the 
same time in a process industry, and the time series of 
the i-th variable xi is {xi,j}, i=1, 2,…, M, j=1, 2,…, N. 
Firstly, the multivariate time series consisting of M 
univariate time series is transformed into an univariate 
time series Y, i.e., 
 

1,1 1,2 1, 2,1 2,2( ,  ,  , ,  ,  ,  ,Nx x x x x =Y  

2, ,1 ,2 ,,  , ,  ,  ,  )N M M M Nx x x x               (1) 
 

Then, based on Taken’s embedding theorem, a 
time-delay vector can be reconstructed as follows: 
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where τi and di, i=1, 2, …, M, are the time-delays and 
the embedding dimensions, respectively. Following the 
embedding theorem, if each di is sufficiently large, there 
exists the function Fi(·) such that 
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The key problem is how to choose the time-delay τi 
and embedding dimensions di, i=1, 2, …, M, so that Eq. 

(3) holds. Considering that recent delays are more 
important than the old delays in practical industries, set 
τi=1 for each of univariate time series x1,j, x2,j,…, xM,j. 
And the embedding dimensions are found by minimizing 
the mean one-step prediction error [8] that is one of the 
existing methods. However, it is very difficult to obtain 
the optimal di due to the uncertainty of time series data 
from complex process industries. That is to say, the 
embedding dimensions obtained by the above method 
can be larger or less than the optimal ones. The larger 
embedding dimension increases the computing time and 
space, and the less one cannot contain the full 
information of original time series data. To overcome the 
problem, the embedding margins Δdi are considered: 
 

,i i id d d   1,2, ,i M                      (4) 
 
where id  is the embedding dimension of the i-th 
univariate time series obtained by minimizing the mean 
one-step prediction error, and Δdi is the compensated 
margin which is determined according to the production 
experience. Then, the decision-table of time series data is 
constructed by utilizing the reconstruction vector in   
Eq. (2) and the redundant and uncertain information is 
handled by the reduction theory of rough set to obtain the 
optimal reconstruction of multivariate time series data 
with uncertainty. 
 
3 RST-based generic reconstruction of 

multivariate time series 
 

The core of RST is the attribute reduction based on 
the decision-table. So, the original attribute 
decision-table of time series data has to be built for the 
reduction of the reconstruction vector in Eq. (2). 
 
3.1 Decision-table construction of multivariate time 

series 
Suppose that the i-th variable is the predicted 

variable (key variable), the decision-table in Table 1 is 
constructed by taking xi,n+1 as the decision attribute and 
Vn as the condition attribute. Thus, the number of the 
condition attribute is z according to Eq. (2). RST can 
only handle the discrete attribute, so the natural discrete 
method [13], which divides the interval of continuous 
data into many uniform subintervals, is adopted to realize 
the discrimination of the continuous time series data 
from the production field. If the i-th variable is discrete 
as k subintervals and ci,k denotes the k-th subinterval of 
the i-th variable, the continuous decision-table is 
converted into the original decision-table S in Table 1. 
Here, , , , fS U C D V , where U is the universe, C 
is the condition attribute, D is the decision attribute, V is 
the set of attribute values, and f is a information function 
which defines a attribute value for each object of U. 
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Table 1 Original decision-table of multivariate time series 

Condition attributes Decision attribute

U x1,n x1,n−τ1 … x1,n−(d1−1)τ1 … xM,n xM,n−τ1 … xM,n−(d1−1)τ1 xi,n+1 

1 c11 c15 … c12 … cM3 cM2 … cM1 ci2 

2 c1k1 c14 … c15 … cM2 cMkM … cM2 ci3 

                      

N−N1+1 c13 c1k1 … c11 … cM1 cM2 … cMkM ci3 

 

3.2 RST reduction and generic reconstruction 
The common method of the reducing attributes of 

decision-table is to generate discernibly function, then 
reducing discernibly function and achieving the 
attributes reduction of the decision-table. But, the 
reduction method has high time and space complexity, 
which leads to its incompetence in many practical 
situations. The genetic algorithm (GA) is a global search 
algorithm based on the mechanisms of natural selection 
and “survival of the fittest” from natural evolution, and it 
has the advantages of simplicity, robustness and high 
efficiency [14−15]. On the other hand, it is convenient to 
represent the reducing attribute problem by 0/1 binary 
encoded strings. Therefore, GA is used to solve the 
reduction problem of the attributes of decision-table. 

1) Optimization variable and chromosome encoding 
Set pk as the k-th condition attribute in the 

decision-table, and the optimization variable is P in   
Eq. (5): 
 

1 2( , , , ),mp p pP 
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                  (5) 

 
P is also the chromosome encoded by 0/1 binary, 

where 1 represents “selected” and 0 represents “not”. 
2) Two-stage optimization model 
In order to find the reduction with minimum 

condition attributes, the optimization model is 
constructed as follows: 
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Equation (6) is the optimization objective in which 

F(P) is the objective function, i.e., the number of 
condition attribute of chromosome; Eq. (7) is the 
constraints in which γ(P, D) is the constraint function, 
i.e., the dependence degree of the decision attribute D to 
the condition attribute set P, and card · is the number of 
elements in the attribute set. 

3) Fitness function 
Based on the penalty strategy of the optimization 

problem with constraints, the fitness function f(P) is built 
by introducing the constraints into the optimization 
objective: 
 
f(P)=1−F(P)+γ(P, D)               
 

By this fitness function, the two-stage optimization 
problem is turned into the single objective problem 
without constraints. 

4) Evolution strategy 
In the evolution progress, the elite selection strategy 

is adopted and the probabilities of crossover and 
mutation are calculated by the improved algorithm 
presented in Ref. [14]. If the fitness function value of the 
optimal individual is unchanged in continuous 
generations or the evolving process reaches the 
maximum generation predetermined, the evolution 
terminates and returns the best solution in current 
population as the reduced condition attribute set C′. Thus, 
Eq. (2) is reformulated as 
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where i   is the time-delay of the i-th variable and 

iijanix  ,  is the value of the i-th variable at time iijan   . 

Thus, Eq.(3) is rewritten as follows: 
 

)(1, nini Fx V                                  (9) 
 

Compared with the original reconstruction space in 
Eq. (2), the dimension of the vector space obtained by 
the reduction of RST is reduced and the time series is no 
longer embedded with the equal time interval. To 
distinguish the method of reconstruction, the phase space 
denoted by Eq. (8) is called the generic reconstruction 
phase space. By the generic reconstruction, not only the 
redundant embedding attributes are deleted, but also the 
variables irrelevant with the key variable can be removed 
from the original reconstruction space, which avoids the 
relation analysis of multivariate time series. According to 
the generic reconstruction result, the sample set for 
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modeling and forecasting multivariate time series can be 
extracted by taking the reduced condition attribute sets 
C′ as the input vector Xn and the decision attribute as the 
output yn. 

Let  
m

nn RVX , 1
1, R nin xy                (10) 

 
The sample set is denoted by (Xn, yn), n=1, 2, …, L, 

and L is the number of samples. 
 
4 Verification of industrial case 

 
In order to demonstrate the efficiency and 

superiority of the proposed reconstruction technology, 
the time series data from the blending process of alumina 
production are used to build the prediction model for the 
composition of returned material, in which the prediction 
model )(iF  is learned by the Least Squares Support 
Vector Machines (LS_SVM) [16] and its training sample 
sets are extracted by the proposed reconstruction 
technology. 

The returned material is composed of six oxides 
which are CaO (x1), Na2O (x2), SiO2 (x3), Fe2O3 (x4), 
Al2O3 (x5), and H2O (x6). The concentrations of five 
oxides are offline measured in the laboratory and the 
interval of sampling is 1 h, so the measured results 
constitute a multivariate time series with uniform time 
interval. Two hundred and forty sample data were 
continuously colleted in ten days, the first 120 samples 
were used to extract the input vector and to train the 
LS_SVM and the rest were used to test. 

Without loss of generality, the content of CaO is 
selected to be the predicted variable. The embedding 
dimension calculated by minimizing the mean one-step 
prediction error is five, i.e., 5id (i=1, 2,…, 6). If set 
∆di=3, so di=8 according to Eq. (4), that is, the 
dimension of the original reconstruction space is 48. 
After reducing the original reconstruction space by RST, 
the dimension of the phase space is 14, i.e., 
 

,,,,,,,( 1,31,25,14,13,12,11,1   nnnnnnnn xxxxxxxV  
 

  ),,,,,, 1,52,41,45,34,33,32,3   nnnnnnn xxxxxxx  
 

According to the original reconstruction result and 
the generic reconstruction result, 100 input−output 
samples were extracted to train the LS_SVM, in which 
the kernel function is radial basis function (RBF), kernel 
function parameter is 10 and error warning factor is 200. 
The simulation results of LS_SVM based on the original 
reconstruction space (ORS) and those based on the 
generic reconstruction space (GRS) are shown in Fig. 1 
and Fig. 2, respectively. It can be obviously seen that the 
LS_SVM based on GRS has less prediction error and the 
better fitting degree of prediction result and real result, 
which means that the proposed reconstruction 
technology has the better recognition ability of model. 

To further demonstrate the validity of the generic 
reconstruction technology, the contents of other oxides 
were also predicted and the results are shown in Table 2 
where the maximum relative estimated error (Emax) in  
Eq. (11) and the relative root mean square error (ERMS) in 
Eq. (12) are used as the criteria: 

 

 
Fig.1 Simulation results of LS_SVM based on ORS 
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Fig.2 Simulation results of LS_SVM based on GRS 
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where yi and iŷ  are the measurement values obtained 
from the laboratory and the corresponding model output, 
respectively. 

From Table 2, it can be seen that the relative root 
mean square error of LS_SVM model based on GRS is 
less than 13%, which means that the prediction can well 
track the trend of time series data. The less maximum 
prediction error indicates that the model has better 
precision. 
 

Table 2 Performance comparison of two methods 

LS_SVM 

based on ORS 
 

LS_SVM 

based on GRS Oxide 

Emax/% ERMS/%  Emax/% ERMS/%

Na2O 35.41 22.65  14.79 8.72 

SiO2 32.59 17.99  17.42 11.01 

Fe2O3 25.95 16.89  12.85 8.93 

Al2O3 38.01 28.26  16.01 12.12 

H2O 26.72 18.18  10.74 7.61 

 
5 Conclusions 
 

1) Based on the uncertainty of multivariate time 
series data from complex process industries, a generic 

phase space reconstruction technology is proposed by 
combining the classical reconstruction method with the 
reduction technology of rough set theory. 

2) The proposed generic reconstruction technology 
can be used to extract the input vector for the prediction 
of time series and to identify the predictive and 
non-predictive functional relationships between different 
time series, so it is an effective way to analyze the 
multivariate time series data. 

3) Utilizing the proposed reconstruction technology, 
the LS_SVM is built to predict the dynamics using 
multivariate time series for a blending process. The 
simulation results show that the model has high 
prediction accuracy and good generalization ability, and 
can well track the trend of time series, which has high 
potential for optimization and control of process 
industries. 
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