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Abstract: The response surface method (RSM) is one of the main approaches for analyzing reliability problems with implicit 
performance functions. An improved adaptive RSM based on uniform design (UD) and double weighted regression (DWR) was 
presented. In the proposed method, the basic principle of the iteratively adaptive response surface method is applied. Uniform design 
is used to sample the fitting points. And a double weighted regression system considering the distances from the fitting points to the 
limit state surface and to the estimated design points is set to determine the coefficients of the response surface model. Compared 
with the conventional approaches, the fitting points selected by UD are more representative, and a better approximation in the key 
region is also observed with DWR. Numerical examples show that the proposed method has good convergent capability and 
computational accuracy. 
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1 Introduction 
 

Structural reliability analysis is a logical extension 
of conventional deterministic analysis, in which the 
inherent stochastic uncertainties of input parameters 
(such as loads, geometries and material properties) 
and/or computational modes are taken into account.  
Thus, it is regarded as a more rational safety evaluation 
and design theory for structures. In general, the 
fundamental issue of structural reliability involves the 
calculation of the failure probability, which could be 
defined as [1] 
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where x  is the vector of basic random variables; )(xxf  

is the joint probability density function of the basic 
random variables; and )(xg  is the limit state function 
which divides the space of basic variables into a safe 
domain }0)(:{  xx gS  and a failure domain F= 

}.0)(:{ xx g  The computational challenge of Pf lies in 
the determination of the limit state function ),(xg  which 
is usually highly nonlinear and very hard to obtain 
explicitly, especially in complex structural problems like 

complicated structure system or time-variant system 
reliability analysis. In order to solve this kind of 
problems, several strategies including implicit first order 
reliability method (IFORM), Monte Carlo simulation 
(MCS) and response surface method (RSM) have been 
presented. 

Generally, response surface method is a useful 
collection of mathematical and statistical technique for 
modeling and analyzing problems in which an interesting 
response is influenced by several variables and the 
objective is to optimize this response [2−3]. In the stage 
of RSM formation, its application is mainly focused on 
the fields of chemical and industrial engineering [4]. In 
the early stage of 1980s, the principle of RSM was 
introduced into the evaluation of structural reliability. 
The early literatures include HUANG and KOU [5] and 
GAYTON et al [6−7]. Then, the basic framework of the 
iteratively adaptive procedure was established by 
BUCHER and BOURGRUND [8], RAJASHEKHAR 
and ELLINGWOOD [9]. Based on this framework, a lot 
of researches and improvements have been performed on 
the selection of approximated response surface model, 
design of experiments (DOE) and estimation of 
undermined parameters. The first order polynomial 
[10−11], the second order polynomial [8−9, 12], the high  
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order polynomial [13], the rational polynomial [14], the 
artificial neural network (ANN) [15−16], the radial basis 
function (RBF) [17] and the kriging [18] are selected as 
the approximated models. The 2k factorial design [19], 
the central composite design [19], the spherical 3k design 
[13] and the adaptive experimental design [20] are used 
to sample the fitting points. The interpolation technique 
[8, 12], the regression analysis [19], the weighted 
regression analysis [11, 20] and the moving least square 
[4] are utilized to evaluate the undetermined parameters. 

The above-mentioned framework of adaptive 
response surface method was improved by using uniform 
design and double weighted regression. In the proposed 
method, the quadratic polynomial without cross terms is 
chosen as approximated function, and the uniform design 
is used to sample the fitting points. Then, a double 
weighted regression system considering the distances 
from the fitting points to the limit state surface and to the 
estimated design points is set to determine the 
coefficients of the approximated function. 
 
2 Method 
 

The basic principle of the RSM for structural 
reliability analysis is to use a simple function to 
approximate the performance function of structures. 
Based on this simple approximate function, the reliability 
index and failure probability can be evaluated easily 
using general reliability method like FORM. But the 
performance functions are usually very complex and 
every approximate function has its own rigidity. Thus, it 
is impossible to assure the accuracy of the approximation 
in the entire space of design variables. Therefore, if we 
simply follow the basic principle, it is impossible to gain 
accurate result. To overcome this issue, an iteratively 
adaptive procedure is suggested [8−13, 20]. As we know, 
the R-F reliability index β is defined as the distance from 
the origin to the design point in the standard design space. 
β would be obtained as soon as the design point is found. 
Therefore, instead of trying to approximate in the entire 
design space, the adaptive procedure seeks for the design 
point and manages to approximate exactly in the region 
by iteratively reconstructing the response model. The 
adaptive RSM involves the selection of approximate 
model, the choice of DOE, and the approach to 
determine the coefficients. The uniform design would be 
used to sample the design points and a double weighted 
system would be set to estimate the coefficients. 
 
2.1 Uniform design 

The uniform design is a new experimental design 
method developed by FANG [21]. It only considers the 

uniform distribution of experimental points in the design 
space. In the case that the factors and levels are the same, 
the number of experiments would be the least, equal to 
the maximum level of the factors. Taking the experiment 
with x factors and n levels for example, the number of 
experimental points is only equals to n, so that the 
experimental expense is sharply reduced. Furthermore, 
uniform design aims at arranging the experimental points 
in the design space uniformly. Any combinations of 
experiments would be controlled effectively. 
Consequently, the uniform design is extremely suitable 
for experiments with huge number of factors and levels, 
and the number of it is also constrained. 

For convenient use of uniform design (UD), the 
uniform design tables (UDT), )(* m

n nU  or Un(n
m), are 

developed to arrange the experimental points, where U 
stands for the uniform design, n is the number of levels 
which is equal to the number of experiments and m is the 
maximum number of factors arranged using tables. The 
UDT with a “*” in the top right corner has better 
uniformity and should be chosen for design as a priority. 
The discrepancy is used to weight the uniformity of UD. 
The less the discrepancy is, the more uniform the UD 
would be. So, the UDT with “*” is more uniform. The 
columns of UDT are not equal, and the columns to be 
chosen for a design are closely relevant to the number of 
the factors. Thus, every UDT has an accessory table for 
the selection of columns. In general, there are more than 
one UDT for experiments with determinated number of 
factors. As a result, a UDT which can meet the 
requirements of the experimental factors with small 
discrepancy and less experiments should be chosen. 
Table 1 gives the UDT )9( 4*

9U  and Table 2 gives its 
accessory table. They will be used in the numerical cases 
in the following section. 

In the RSM, approximate models were fitted based 
on the experimental points sampled by a certain sort of 
DOE. The quality of DOE intensively affects the quality 
 
Table 1 UDT )9( 4*

9U   
Level Factor 1 Factor 2 Factor 3 Factor 4

1 1 3 7 9 

2 2 6 4 8 

3 3 9 1 7 

4 4 2 8 6 

5 5 5 5 5 

6 6 8 2 4 

7 7 1 9 3 

8 8 4 6 2 

9 9 7 3 1 
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Table 2 Accessory table of UDT )9( 4*
9U   

Number of factors Column to be chosen Discrepancy

2 1 2 2 0.157 4 

3 2 3 4 0.198 0 

 
of the approximation, and then further affects the search 
of the design point and the evaluation of the reliability 
index. In the case of same number of experimental  
points, the UD could make the experimental points 
distribute in the design space as uniformly as possible. 
This would thoroughly benefit the construction of the 
approximate model. Thus, UD was chosen as the 
sampling method in this work. The steps to utilize the 
UD in the proposed method are as follows: 

1) Determine the sampling center of UD. Usually, 
the mean point is selected for the first step of iteration 
and for other steps, the sampling centers are determined 
according to Eq. (9). 

2) Determine the radius of sampling by fiσi (i=1, …, 
n), where σi is the standard deviation of basic random 
variables, fi are assigned to be 2−3 for the first step, and 
0.1−0.2 for other steps. 

3) Determine the number of experimental points 
according to the number of coefficients to be determined 
in the approximate model. 

4) Divide the sampling region into several levels 
according to the number of experimental points. 

5) Select the UDT with the least discrepancy to 
arrange the experiments according to the number of 
factors and levels. 
 
2.2 Double weighted regression 

Conventionally, the coefficients of the approximate 
response functions are estimated by the least square 
method. That is, the coefficient vector A is gained by 
resolving the following linear system: 

 
gMMMA T1T )(                            (2) 

 
where g  is the vector of the values of performance 
function at the p different experimental points and M is 
the design matrix which is given by the p points of DOE: 

In the case of a linear response model,  
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In the case of a quadratic response model without 

cross terms, with i, j={i, …, n} and i≠j,  
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In fact, equal weights are imposed on the p different 
sampling points in the above procedure. But it is not 
absolutely rational, because the objective of constructing 
the approximate function in the adaptive RSM is to seek 
for the design point. The sampling points which are 
closer to the limit state surface and design points should 
be given greater weights, so that the key region around 
this place would be better approximated. Therefore, a 
double weighted system is set as follows [20]: 

 
gWMMWMA kk

T1T )(                       (5) 
 
where Wk is the diagonal matrix of weight factors, of 
which the elements in the diagonal is the weight factors 
wk=wgkwdk imposed on different experimental points, and 
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where g(xk) is the value of performance function at the 
k-th sampling point and g(x0) is the value of performance 
function at the mean point. 
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where dk is the distance between the k-th point and the 
approximate design point obtained by the previous step 
of iteration in the standard space. 

As shown in Eq. (6), greater weights are assigned to 
the sampling points at which the values of performance 
function are larger so that the region closer to limit state 
function will be fitted better. And the weight factors 
defined by Eq. (7) penalize the sampling points far from 
design point and make the region closer to the design 
point fitted better. By setting the double weighted system 
using wgk and wdk, the response will be approximated 
better in the key region and the accuracy and 
convergence capability of the proposed method will be 
improved as well. 
 
2.3 Procedures of proposed method 

The proposed method follows the framework of the 
adaptive RSM and uses the most popular pure quadratic 
polynomial without cross terms as the approximate 
function:  
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The UD is used to sample the experimental points. 

The interpolation technique proposed by BUCHER and 
BOURGRUND [9] is used to determine the sampling 
center: 
 

)()(

)(
)(

)(*)(

)(
)()(*)()(

KK

K
KKKK

gg

g

xx

x
xxxxM 

     (9) 



J. Cent. South Univ. (2012) 19: 1148−1154 

 

1151

 

The double weighted regression technique described 
in Section 2.2 is used to estimate the coefficients. And 
after an approximate model is built, the R-F method or 
an optimization method will be applied to obtain the 
reliability index and design point. The specific algorithm 
is as follows: 

1) Postulate an initial iterative point ,,( )1(
1

)1( xx  

),, )1()1(
ni xx   (usually select mean point). 

2) Apply the UD to sample the fitting points 
according to the steps given in Section 2.1 and form a 
design matrix MK like Eq. (4), in which the subscript K 
denotes the time of iteration. 

3) Compute the value of the performance function 
at the fitting points using FEM and generate the column 
vector .)(Kg  

4) Compute the weight factors wgk and wdk according 
to Eqs. (6) and (7). Then, estimate the coefficients a, bi, 
ci (i=1, 2, …, n) of Eq. (8) using Eq. (5). 

5) Utilize the R-F method or the optimization 
method to resolve the design point and the reliability 
index, after the approximate model is gained by Step 4). 

6) Check the convergence criterion |β(K)−β(K−1)|<ε, 
where ε is the accuracy specified by the user. If the 
criterion is satisfied, calculate the failure probability 
using Pf=Φ(−β(K)). Otherwise, return to Step 2) and begin 
the next step of iteration. 
 
3 Numerical examples 
 
3.1 Example 1 

A simple example with two normally distributed 
random variables is used. The limit state function of the 
serviceability of a cantilever beam is: )(xg           

0.018 461 54−74.769 23x1/ ,3
2x  and the random variables 

are independent, x1~N(1 000, 200) kN and x2~N(250, 
37.5) mm. 

This problem has an explicit limit state function and 
can be resolved by directly using R-F method. The 
results obtained by the R-F method, the method in    
Ref. [12] and the proposed method are lsited in Table 3. 
The UDT )7( 4*

7U  and )9( 4*
9U  were separately used to 

arrange experiments in the proposed method (7p) and 
proposed method (9p). As given in Table 3, the reliability 
index from Ref. [12] converges to 2.332 8 after five 
iterations. A total of 29 evalutions-)(xg were performed. 
The reliability index by the proposed method (7p) 
converges to 2.330 6 through four iterations. A total of 
31 evalutions-)(xg  were performed. As the experiment 
arranged by )9( 4*

9U  is more uniform than the one 
arranged by ),7( 4*

7U  the result by the proposed method 
(9p) converges more accurately to 2.330 9. In contrast to 
the method from Ref. [12], the proposed method 
converges faster and obtains more precise result. Figure 
1 shows the convergence process of the proposed method 
(9p). As can be seen in Fig. 1, the proposed method 
converges fast to the exact design point and the response 
surface model approximates the true limit state surface 
well in the key region. 
 
3.2 Example 2 

The limit state function for structural reliability 
analysis is ,18)( 3

22
2
1

3
1  xxxxg x  in which the 

random variables are also independent, where x1~N(10, 5) 
and x2~N(9.9, 5). 

As shown in Fig. 2, the limit state surface is 
extremely highly non-linear in the region around the 
design point and the constructed response surface model 
fits quite well in this region. Table 4 presents the results 
by the adaptive MCS, the direct optimization method and 
the proposed method (7p). The R-F method could not 
converge in this problem. The proposed method (7p) 
uses the optimization method to search the design point 
and yields to a reliability of 2.292 3. It is rather close to 
the result using the optimization method directly on the 
true limit state function. These results imply that the 
scheme of experiment design and the double weighted 
system is applicable to the highly non-linear problems. 
And the computational error is influenced by the method 
using for the search of the design point. 
 
3.3 Example 3 

The limit state function for structural reliability 
analysis is: g=YS−M, where random variables are  

 

Table 3 Proposed method of Example 1 

Design point 
Method 

/kN*
1x  /mm*

2x  

Reliability 
index 

Failure 
probability 

Time of 
iteration 

Time of 
g(x)-evaluation 

R-F method 1 118.565 4 165.464 7 2.330 9 0.009 88 — — 

Ref. [12] 1 107.380 0 164.610 0 2.332 8 0.009 83 5 29 

Proposed method (7p) 1 117.979 5 165.448 2 2.330 6 0.009 89 4 31 

Proposed method (9p) 1 117.979 7 165.435 8 2.330 9 0.009 88 4 39 
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Fig. 1 Iterative convergence condition of Case 1 (proposed method (9p)): (a) First iterative step; (b) Second iterative step; (c) Third 

iterative step; (d) Fourth iterative step 

 

Table 4 Proposed method of Example 2 

Design point 
Method 

/kN*
1x  /mm*

2x  

Reliability 
index 

Failure 
probability 

Time of 
iteration 

Time of 
g(x)-evaluation 

Adaptive MCS [11] 1.700 0 1.945 0 2.533 0.005 63 — — 

Optimization method 1.685 5 1.967 9 2.2983 0.010 77 — — 

Proposed method (7p) 1.699 6 1.996 2 2.2923 0.010 94 4 31 

 

 
Fig. 2 Response surface function and design point of Example 

2 obtained by proposed method 

independent, Y~LN (275.52, 34.44) MPa, S~LN (8.19× 
10−4, 4.1×10−5) m3 and M~Type I Largest (1.13×105, 
2.26×105) N·m. 

The random variables in this case are non-normally 
distributed. The equivalent procedure proposed by 
Rackwit and Fiessler was used to treat the non-normality 
of variables. The results of different methods are 
comparable (see Table 5). But the projection procedure 
proposed by Ref. [10] is tedious and needs more 
computational cost. The proposed method (7p) yields to 
a precise result after three steps of iteration. 
 
3.4 Example 4 

This example shows a steel joint with rising 
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Table 5 Proposed method of Example 3 

Design point 
Method 

*
1x  *

2x  *
3x  

Reliability
index 

Failure 
probability 

Time of 
iteration 

Time of 
g(x)-evaluation

MCS — — — 2.721 0 0.003 250 — — 

Ref. [10] — — — 2.735 0 0.003 120 — — 

Proposed method (7p) 2.363 1×104 7.95×10−4 1.88×105 2.736 6 0.003 103 3 23 

 

Table 6 Distributions of random variables in Example 4 

Random 
variables 

Distribution Mean value 
Standard 
deviation 

Random 
variables 

Distribution Mean value 
Standard 
deviation 

x1 Lognormal 1.044 0 0.313 20 x4 Lognormal 1.011 0 0.151 65 

x2 Normal 0.700 0 0.070 00 x5 Type I largest 0.000 5 0.000 08 

x3 Lognormal 0.239 1 0.095 64 x6 Lognormal 1.802 0 0.720 80 

 

Table 7 Proposed method of Example 4 

Design point 
Method 

*
1x  *

2x  *
3x  *

4x  *
5x  *

6x  

Reliability 
index 

Failure 
probability 

Ref. [20] — — — — — — 2.387 0 0.008 49 

Optimization method 0.713 9 0.654 9 0.201 6 1.126 3 0.000 569 7 0.924 7 2.377 9 0.008 71 

Proposed method (17p) 0.688 8 0.655 5 0.199 9 1.131 5 0.000 574 0 0.987 9 2.378 6 0.008 68 

 

temperature and in the fatigue condition. The limit state 
function is strongly nonlinear and expressed as 
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The random variables are independent and their 

distributions are listed in Table 6. 
This case is a complex problem with six 

non-normally distributed variables and a strong nonlinear 
limit state function. It can be used to check the 
adaptability of the proposed method in complex 
problems. The results are given in Table 7. The uniform 
design table U17(178) was used in this case. The result of 
the proposed method was compared with the result from 
Ref. [20]. But, its adaptive DOE needs a procedure of 
coordinate selection based on derivation, nevertheless, 
the UD is more easily to execute. 
 
4 Conclusions 
 

1) An improved adaptive response surface method 
for complex structural reliability analysis with implicit 
limit state function is studied. The main characteristic of 
the improved method is that the UD is used to replace the 
traditional experimental design method to sample the 
fitting points and a named double weighted system is set 
to determine the coefficients of the response model. The 
double weighted system considers the influence of the 
distances from the fitting points to the limit state surface 

and to the estimated design point. The coefficients of 
response model determined by DWR are more rational. 

2) The numerical examples show that the proposed 
method has good convergent capability and 
computational accuracy. Nevertheless, some drawbacks 
still exist. The computational accuracy is still dependent 
on the design point searching method. The uniformity of 
UD and the value of fi will affect the computational 
result. More research should be performed to uncover 
and quantify the influence, thereby, to guide the use of 
the proposed method. 
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