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Abstract: Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic 
theory of one-dimensional consolidation of double-layered soil was modified to consider the change of vertical total stress with depth 
and time together. Because of the complexity of governing equations, the numerical solutions were obtained in detail by finite 
difference method. Then, the numerical solutions were compared with the analytical solutions in condition that non-Darcian flow law 
was degenerated to Dary’s law, and the comparison results show that numerical solutions are reliable. Finally, consolidation behavior 
of double-layered soil with different parameters was analyzed, and the results show that the consolidation rate of double-layered soil 
decreases with increasing the value of exponent and threshold of non-Darcian flow, and the exponent and threshold gradient of the 
first soil layer greatly influence the consolidation rate of double-layered soil. The larger the ratio of the equivalent water head of 
external load to the total thickness of double-layered soil, the larger the rate of the consolidation, and the similitude relationship in 
classical consolidation theory of double-layered soil is not satisfied. The other consolidation behavior of double-layered soil with 
non-Darcian flow is the same as that with Darcy’s law. 
 
Key words: one-dimensional consolidation; double-layered soil; non-Darcian flow; depth dependent vertical total stress; time- 
dependent loading 
                                                                                                             

 

 
1 Introduction 
 

The theory of consolidation which forecasts 
settlement rates and dissipation rates of excess 
pore-water pressure in soft clays has always been a 
research focus in the field of soil mechanics. As well 
known, Darcy’s flow law was widely applied in most 
existing theories of consolidation for its simplicity. 
However, numerous studies have shown that the water 
flow in fine-grained soils under low hydraulic gradients 
may deviate from the Darcy’s flow law [1−7]. The 
deviation of water flow from Darcy’s law was called as 
non-Darcian flow by HANSBO [1]. In addition, the 
non-Darcian flow proposed by HANSBO has been 
recognized by more researchers, and this non-Darcian 
flow within fine-grained soil may obey an exponential 
relationship at low gradients and a linear relationship at 
high gradients. 

Since this non-Darcian flow can be recognized by 
many researchers, it has a theoretical significance in 
acquainting the influence of this non-Darcian flow law 
on consolidation behavior. DUBIN and MOULIN [6] 

firstly investigated the problem of one-dimensional 
consolidation with this non-Darcian flow. However, they 
replaced the exponential relation, v=κim, with a linear 
relation, v=κi, in the case of i<il. HANSBO [7] analyzed 
one-dimensional consolidation with this non-Darcian 
flow, and observed a better agreement to the field 
settlement observations. Moreover, based on this non- 
Darcian flow, TEH and NIE [8] analyzed the 
consolidation of sand-drained ground with the radial and 
vertical drainages and investigated the influence of 
non-Darcian flow on the consolidation behavior. XIE   
et al [9] applied a semi-analytic method to get the 
solution of one-dimensional consolidation equation 
incorporating this non-Darcian flow, but the linear flow 
relationship at high gradients in this non-Darcian flow 
was omitted. LIU et al [10] studied one-dimensional 
consolidation taking into consideration this non-Darcian 
flow by the finite volume method. E et al [11] analyzed 
the reason for this non-Darcian flow, and showed that the 
laggard dissipation of pore water pressure induced 
laggard rate of consolidation with this flow law. LI et al 
[12] made a comprehensive analysis of one-dimensional 
consolidation of homogeneous soil layer, taking into con- 
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sideration this non-Darcian flow, along with the change 
of vertical total stress with depth and time together. All 
these previous works, however, did not deal with familiar 
layered soils in an actual foundation, including a 
double-layered soil, which is the simplest layered soil. In 
addition, according to the study by ZHU and YIN [13], 
in most cases, the consolidation of a double-layered soil 
occurs simultaneously with the change of vertical total 
stress that varies with time and depth due to a 
time-dependent external loading. Therefore, in this work, 
one-dimensional consolidation of double-layered soil 
was analyzed, considering the non-Darcian flow 
described by exponent and threshold gradient, along with 
the linear change of vertical total stress with depth and 
time together. 
 
2 Derivation of governing equations 
 
2.1 Presentation of problem 

As shown in Fig. 1, the foundation consists of two 
soil layers, and an arbitrary layer is indexed with j (j=1 
or 2). The water flow in both soil layers conforms to the 
non-Darcian flow described by exponent and threshold 
gradient, and the exponent and threshold gradients in the 
j-th layer are denoted as mj and i1j. According to the 
continuity conditions, i0j=i1j(mj−1)/mj and κj=kj/ 

)(
1

1
jm

jjim  can be obtained. The coefficient of 
permeability, the coefficient of constrained 
compressibility and the coefficient of consolidation of 
the j-th layer are denoted as kj, mvj and cvj, respectively. 
The thickness of the whole double-layered soil is 
denoted as H, and that of the j-th soil layer is denoted as 
hj. Time-dependent external loading σ(0,t) is applied to 
the surface of double-layered soil. Drainage conditions 
of double-layered soil in the vertical direction are either 
pervious top and pervious bottom (PTPB), or pervious 
top and impervious bottom (PTIB). 
 

  
Fig. 1 Schematic diagram of one-dimensional consolidation of 

double-layered soil with non-Darcian flow 

2.2 Basic assumptions 
In order to get the governing equations of 

consolidation of a double-layered soil to consider 
non-Darcian flow law and linear change of vertical total 
stress with depth and time, the following assumptions are 
made: 

1) Both the water and the solid constituents of the 
soil are perfectly incompressible; 

2) The soil profile of a foundation consists of two 
soil layers, and the soil within each layer is 
homogeneous and fully saturated; 

3) The deformation and the water flow within a 
double-layered soil only take place in the vertical 
direction and the small strain assumption is incorporated; 

4) The soils in each layer are linearly elastic, and 
the coefficients of constrained compressibility are 
constants; 

5) The water flow in the soil obeys the non-Darcian 
flow law described by exponent and threshold gradient, 
and the parameters keep constant during the process of 
consolidation; 

6) As shown in Fig. 2, the vertical total stress within 
the double-layered soil is assumed to change linearly 
with depth within the whole soil layers and linearly 
increases with time up to the final value. Therefore, the 
vertical total stress can be expressed as  
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                        (1)  
where z and t are coordinates; (z, t) is a function of 
vertical total stress; (0, t) is the vertical total stress on 
time at the top surface of double-layered soil; (H1, t) is 
the vertical total stress on time at z=H1; (H, t) is the 
vertical total stress on time at z=H; tc is the construction 
time; σ0 is the value of vertical total stress at t=tc and z= 
0; σ1 is the value of vertical total stress at t=tc and z=h1; 
σ2 is the value of vertical total stress at t=tc and z=H. 
 
2.3 Derivation of governing equations 

As shown in Fig. 1, a unit cell is taken out from the 
j-th soil layer of the double-layered soil. According to the 
continuity condition that the change of water quantity in 
a unit cell should be equal to the volume change of the 
unit cell, the differential equations governing one- 
dimensional consolidation of the double-layered soil with 
non-Darcian flow can be derived, considering variation  
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Fig. 2 Variations of vertical total stress with time (a) and  

depth (b) 

 
of vertical total stress with depth and time: 
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 uj(z, t) is excess pore water 

pressure in the j-th soil layer; ij(z, t) is the hydraulic 
gradient in the j-th soil layer. 

Two common drainage conditions in the vertical 
direction, either pervious top and pervious bottom 
(PTPB), or pervious top and impervious bottom (PTIB), 
can be written as 

 
 1

2

0, 0

0
z H

u t

u

z 

 



 

(PTIB)                                                  (3a) 

 

1

2

(0, ) 0

( , ) 0

u t

u H t


 

 (PTPB)                                                (3b) 

 
Continuity conditions of excess pore water pressure 

and flow velocity between different soil layers can be 
expressed as 
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where i1(h1, t) is the hydraulic gradient of the first soil 
layer at z=h1; i2(h1, t) is the hydraulic gradient of the 
second soil layer at z=h1. 

The initial condition can be further given as 
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3 Derivation of numerical solutions 
 
3.1 Governing equation in terms of dimensionless 

variables 
In order to simplify the process of calculation, the 

dimensionless variables are introduced as follows: 
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where j=1 or 2. 

In terms of these dimensionless variables, the 
governing Eq. (2) can be rewritten as 
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In terms of aforementioned dimensionless variables, 

Eqs. (3a), (3b), (4a), (4b) and (5) can be rewritten as 
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3.2 Discretization of governing equation 
Equation (7) is a second order non-linear 

differential equation, and analytical solutions can hardly 
be obtained. Therefore, finite differential method is 
adopted to get numerical solutions of excess pore water 
pressure and average degree of consolidation. Firstly, the 
spatial domain within the first soil layer, 0≤Z≤Zf, is 
divided into N1 equant segments from the top down by 
the proportional spacing ΔZ, and the second soil layer is 
divided by the proportional spacing ΔZ into N2 equant 
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drainage and continuity conditions can be rewritten as 
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 (16b) 
 

In terms of matrix, the difference of Eq. (14) in 
drainage condition and continuity conditions can be 
rewritten as 

 

     1 1k k k  A U B                                                  (17) 
 

According to the difference of Eq. (14), the elements 
of matrices A and B can be expressed as 

 
1

, 2(1 )k
l l lA λφ                                                     (18a) 

 
1

, 1 , 1
k

l l l l lA A λφ 
                                                  (18b) 
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j l j lQ Q                                                    (18c) 

where l=1, 2, …, N1−1, N1+1, …, N−1. 
According the flow continuity condition at the 

interface of different soil layers, 
1 1,N NA  and 

1NB  can be 
written as 
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              (19d) 
 

For the case of PTIB, it can be seen from Eq. (7) 
that mathematical calculation difficulties with 
non-Darcian flow law may be encountered at the bottom 
boundary surface for its imperviousness. Since both 
Darcy’s flow law and non-Darcian flow pass through the 
original, Darcy’s flow law is equivalent to this 
non-Darcian flow law at the impervious boundary. In 
order to get rid of the mathematical calculation 
difficulties, Darcy’s flow law should be adopted at the 
impervious boundary. So, AN,N, AN,N−1 and BN can be 
expressed as 

 
AN,N=−2(1+λ)                                                            (20a) 
 
AN,N−1=2λ                                                                   (20b) 
 

1
2, 2, 1 2, 2, 2( 1) 2 2( )k k k k

N N N N NB λ U λU Q Q
         (20c) 

 
For the case of PTPB, according to Eq. (15b), AN,N, 

AN,N−1 and BN should be expressed as 
 
AN,N=1                                                                       (21a) 
 
AN,N−1=0                                                                    (21b) 
 
BN=0                                                                          (21c) 
 

U is an unknown column matrix, and its elements 
1

,
k
j lU 

 are dimensionless expressions of excess pore water 
pressure at tv,k+1. B is a known column matrix, and its 
elements can be expressed by the dimensionless 
variables of excess pore water pressure at tv,k. In order to 
obtain the unknown column matrix U, matrix A should 
be a constant matrix. If a time increment is little enough, 
replacing the dimensionless value of excess pore water 
pressure at tv,k+1 by that at tv,k can be allowed, and 
approximation for matrix U could be obtained by solving 
Eq. (17). Moreover, the exact solutions for matrix U can 
be obtained by iterations, i.e. repeating the above solving 
scheme. According to the study by ELNAGGAK and 
KRIZEK [14], the solving conditions of Eq. (17) during 
the process of iterations can be satisfied. 
 
3.3 Solutions of degree of consolidation 

The average degree of consolidation in terms of 
deformation Ust can be defined as 

 
t

st
S

U
S

                                                                      (22) 

 
The deformation of double-layered soil at any time 

St follows 
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 
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v2  
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H

h
m σ z t u z t z                                (23) 

 
The final settlement of double-layered soil S∞ can 

be written as 
 

1

1

  

v1 v2 0  
( , )d ( , )d

h H

h
S m σ z t z m σ z t z                        (24) 

 
Substituting Eqs. (23) and (24) into Eq. (22), in 

terms of dimensionless variables, the following equation 
can be obtained: 
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Since the analytical solution of excess pore water 

pressure can not be derived, numerical integration must 
be introduced to Eq. (25). In terms of numerical 
integration, Eq. (25) can be expressed as 
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The definition of average degree of consolidation in 

terms of stress (or excess pore water pressure) is the ratio 
of average effective stress at any time to average final 
effective stress in double-layered soil: 
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                  (27) 
 

If dimensionless variables and numerical integration 
are incorporated, Eq. (27) can be rewritten as 
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It can be seen from Eqs. (26) and (28) that average 

degree of consolidation in terms of deformation is equal 
to that in terms of stress at the case of b=1. Otherwise, 
average degree of consolidation in terms of deformation 
is not equal to that in terms of stress for the case of PTIB. 
That is, for double-layered soil, the dissipation rate of 
excess pore water pressure is usually not equal to the rate 
of deformation any more. 
 
4 Verification of difference results 
 

Based on Darcy’s law, XIE [15] gave a general 
analytical solution to the problem of one-dimensional 
consolidation for a double-layered soil with arbitrary 
distribution of initial pore water pressure and casual 
variation of surface load with time, and ZHU and YIN 
[13] presented an analytical solution for the 
consolidation analysis of a double-layered soil profile 
under depth-dependent ramp loading. When the equation 
m1=m2=1 is satisfied, non-Darcian flow in the double- 

layered soil can be degenerated into Darcy’s law. Thus, 
the theory of consolidation of double-layered soil with 
non-Darcian flow law will be turned into Darcy’s law. 
Table 1 gives a comparison between the results by FDM 
and that by analytical method at the case of m1=m2=1. It 
can be seen that the maximum value of absolute     
error of average degree of consolidation is 0.531 7%, and 
corresponding relative error is 0.84%. Therefore, the 
results of average degree of consolidation by FDM can 
be supposed to be consistent with the analytical solutions, 
and the reliability of difference program is verified. 
 
5 Consolidation behavior of double-layered 

soil with non-Darcian flow 
 

It can be seen from solution procedure that 
influencing factors of double-layered consolidation with 
non-Darcian flow include parameters of non-Darcian 
flow, relative permeability and relative compressibility of 
double-layered soil, the ratio of the equivalent water 
head of external load to the thickness of double-layered 
soil, uniform distribution of vertical total stress and ramp 
loading rate. Then, PTIB is taken from drainage 
conditions as an example to explain consolidation 
behavior of double-layered soil. 
 
5.1 Influence of non-Darcian flow law on consolidation 

behavior of double-layered soil 
LI et al [12] analyzed consolidation behavior of 

homogeneous soil with non-Darcian flow described by 
exponent and threshold gradient, and indicated the 
influence of non-Darcian flow on consolidation behavior. 
The lager the exponent and threshold gradient of 
non-Darcian flow, the little the rate of consolidation for 
homogeneous soil. Figures 3 and 4 show the influence of 
the exponent and threshold gradient on consolidation 
behavior of double-layered soil. The consolidation rate of 
Case 1 is larger than that of other cases, and that of Case 
4 is the lowest. Thus, for double-layered soil, the smaller 
the exponent and threshold gradient, the larger the 
consolidation rate. Meanwhile, the exponent and 
threshold gradient of the first soil layer greatly influence 
the consolidation rate of double-layered soil for the case 
of PTIB. 
 
5.2 Influence of permeability and compressibility of 

double-layered soil on consolidation behavior 
For homogeneous soil with non-Darcian flow, if the 

parameters of non-Darcian flow are considered constant, 
coefficient of consolidation is a unique soil indicator 
deciding consolidation rate, and it is unnecessary to 
consider permeability and compressibility of soil   
layers. For double-layered soil, however, such position of  
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Table 1 Comparison between results by FDM and analytic solutions 

In terms of stress In terms of deformation 
tv 

FDM/% Exact solution/% Absolute error/% FDM/% Exact solution/% Absolute error/%

0.001 0 0.069 6 0.069 3 0.000 3 0.107 8 0.106 9 0.000 9 

0.002 4 0.250 6 0.250 7 −0.000 1 0.393 6 0.392 5 0.001 1 

0.004 4 0.606 5 0.608 2 −0.001 7 0.965 9 0.965 7 0.000 2 

0.005 9 0.928 1 0.931 6 −0.003 5 1.491 1 1.491 9 −0.000 8 

0.007 9 1.414 5 1.420 7 −0.006 2 2.295 6 2.298 4 −0.002 8 

0.010 6 2.156 9 2.167 4 −0.010 5 3.542 7 3.548 7 −0.006 0 

0.019 1 4.980 2 5.006 6 −0.026 4 8.424 2 8.442 4 −0.018 2 

0.046 4 17.695 2 17.726 8 −0.031 6 30.846 9 30.867 8 −0.020 9 

0.062 4 24.788 8 24.755 7 0.033 1 43.013 6 42.981 8 0.031 8 

0.083 8 32.007 3 31.823 2 0.184 1 53.367 3 53.212 0 −0.155 3 

0.110 0 40.383 2 40.043 1 0.340 1 62.807 7 62.533 9 0.273 8 

0.200 0 63.954 5 63.422 8 0.531 7 81.817 5 81.455 2 0.362 3 

0.490 0 94.095 6 93.877 5 0.218 1 97.560 3 97.449 7 0.110 6 

0.660 0 98.020 5 97.924 2 0.096 3 99.196 5 99.150 6 0.045 9 

0.880 0 99.521 3 99.490 9 0.030 4 99.806 7 99.792 8 0.013 9 

1.190 0 99.935 3 99.929 9 0.005 4 99.973 9 99.971 5 0.002 4 

Note: m1=m2=1, a=0.1, b=0.1, c=1, tvc=0.05, n0=1.5, n1=1, n2=0.5, PTIB. 

 

 
Fig. 3 Influence of exponent on average degree of consolidation 

in terms of deformation (Case 1: m1=1.2, m2=1.2; Case 2: m1= 

1.2, m2=1.5; Case 3: m1=1.5, m2=1.2; Case 4: m1=1.5, m2=1.5) 
 

 
Fig. 4 Influence of threshold gradient on average degree of 

consolidation in terms of deformation (Case 1: i11=5, i12=5; 

Case 2: i11=5, i12=20; Case 3: i11=20, i12=5; Case 4: i11=20, 

i12=20) 

consolidation coefficient is no longer satisfied. As shown 
in Fig. 5, even if consolidation coefficients of both soil 
layers with different permeability and compressibility are 
the same, the rate of deformation is no longer equivalent. 
Thus, consolidation behavior of double-layered soil 
largely depends on relative permeability, the value of a, 
and relative compressibility, the value of b. Such 
consolidation behavior of double- layered soil is 
consistent with that based on Darcy’s flow law. 
 

 
Fig. 5 Curve of average degree of consolidation in double- 

layered soils with different permeability and compressibility 
 

Figure 6 shows that the consolidation rate of 
double-layered soil decreases with the increase of the 
thickness of low-permeability and high-compressibility 
soil layer, and increases with the increase of the thickness 
of high-permeability and low-compressibility soil layer. 
Therefore, based on non-Darcian flow, replacing soft soil 
with high-permeability and low-compressibility materials 
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Fig. 6 Influence of relative thickness of double-layered soil on 

average degree of consolidation 

 
in actual engineering not only decreases the total 
settlement, but also accelerates the consolidation of soil. 
This consolidation behavior of double-layered soil is the 
same as that with Darcy’s law. 

It can be seen from Fig. 7 that the average degree of 
consolidation in terms of deformation is not equal to that 
in terms of stress except the case of b=1. If b is not equal 
to one, the dissipation rate of excess pore water pressure 
of double-layered soil is not consistent with deformation 
rate. This consolidation behavior of double-layered soil 
with non-Darcian flow is different from that of 
homogeneous soil with non-Darcian flow, but is the same 
as that of double-layered soil with Darcy’s flow. 
 

 
Fig. 7 Comparison of average degree of consolidation in terms 

of stress and in terms of deformation (Case 1: a=10, b=10; 

Case 2: a=1, b=1; Case 3: a=0.1, b=0.1) 

 
5.3 Influence of external load and thickness of double- 

layered soil on consolidation behavior 
Influence of qh on consolidation behavior can be 

seen from Fig. 8. The larger the value of qh, the faster the 
consolidation. In addition, the curve of consolidation 
with non-Darcian flow can gradually approach that with 
Darcy’s flow with the increase of the value of qh. The 
value of qh is the ratio of the equivalent water head of 

 

 
Fig. 8 Influence of qh on average degree of consolidation in 

terms of deformation 

 
external load to the total thickness of double-layered soil. 
The consolidation rate of the double-layered soil with 
different ratios of the equivalent water head of external 
load to the thickness will be different, even if at the same 
time factor. Therefore, influences of external load and the 
thickness of double-layered soil are the same as those of 
homogeneous soil with non-Darcian flow. The similitude 
relationship between thin samples and field layers with 
non-Darcian flow is no longer satisfied. 
 
5.4 Influence of uniform distribution of vertical total 

stress on consolidation behavior 
Figure 9 shows the influence of uniform distribution 

of vertical total stress on average degree of consolidation. 
The consolidation rate of Case 1 is faster than that of 
other cases, and the consolidation in terms of 
deformation accelerates with the increase of the value of 
n0. Case 1 indicates that vertical total stress decreases 
from maximum with increasing the depth of soil layers, 
naming reverse triangle distribution. Case 5 indicates  
 

 
Fig. 9 Influence of uniform distribution of vertical total stress 

on average degree of consolidation in terms of deformation 

(Case 1: n0=2, n1=1, n2=0; Case 2: n0=1.5, n1=1, n2=0.5; Case 3: 

n0=1, n1=1, n2=1; Case 4: n0=0.5, n1=1, n2=1.5; Case 5: n0=0, 

n1=1, n2=2) 
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that vertical total stress increases from zero with the 
increase of depth of soil layers, naming triangle 
distribution. Therefore, for the case of PTIB, the rate of 
consolidation is at its maximum for the case of reverse 
triangle distribution of vertical total stress while at its 
minimum for the case of triangle distribution. This 
consolidation behavior of double-layered soil is the same 
as that with Darcy’s law. 
 
5.5 Influence of loading rate on consolidation behavior 

Figure 10 shows the influence of loading rate on 
average degree of consolidation in terms of deformation. 
tvc=0 indicates that the external load is instantly applied 
to the surface of double-layered soil, and the rate of 
deformation is larger than other values of tvc. Therefore, 
the rate of deformation decreases with the increase of the 
value of construction time factor, tvc. This consolidation 
behavior of double-layered soil is the same as that with 
Darcy’s law. 
 

 
Fig. 10 Influence of loading rate on average degree of 

consolidation in terms of deformation 

 
6 Conclusions 
 

1) The consolidation rate of double-layered soil 
decreases with the increase of the value of exponent and 
threshold of non-Darcian flow, and the exponent and 
threshold gradients of the first soil layer greatly influence 
the consolidation rate of double-layered soil. Even if the 
parameters of non-Darcian flow keep constant, 
coefficient of consolidation is not a unique soil indicator 
deciding the consolidation behavior of double-layered 
soil any more. Relative permeability and relative 
stiffness of double-layered soil greatly influence the rate 
of consolidation. 

2) In condition that the stiffness of soil layers is not 
equivalent, for double-layered soil, the average degree of 
consolidation in terms of deformation is no longer equal 
to that in terms of stress. The dissipation rate of excess 
pore water pressure is not equal to the rate of 
deformation. 

3) Based on non-Darcian flow, the larger the ratio of 
the equivalent water head of external load to the total 
thickness of double-layered soil, the faster the 
consolidation, and the similitude relationship between 
thin samples and field layers under non-Darcian flow is 
not satisfied. The rate of consolidation of double-layered 
soil decreases with the increase of the thickness of 
low-permeability and high-compressibility soil layer, and 
increases with the increase of the thickness of high- 
permeability and low-compressibility soil layer. 

4) Distribution of vertical total stress is closely 
related to the consolidation rate of double-layered soil. 
For the case of PTIB, the rate of consolidation is at its 
maximum for the case of reverse triangle distribution of 
vertical total stress. The less the value of construction 
time factor, the faster the deformation of double-layered 
soil. 
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