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Abstract: To make heat conduction equation embody the essence of physical phenomenon under study, dimensionless factors were 
introduced and the transient heat conduction equation and its boundary conditions were transformed to dimensionless forms. Then, a 
theoretical solution model of transient heat conduction problem in one-dimensional double-layer composite medium was built 
utilizing the natural eigenfunction expansion method. In order to verify the validity of the model, the results of the above theoretical 
solution were compared with those of finite element method. The results by the two methods are in a good agreement. The maximum 
errors by the two methods appear when τ (τ is nondimensional time) equals 0.1 near the boundaries of ξ =1 (ξ is nondimensional 
space coordinate) and ξ =4. As τ increases, the error decreases gradually, and when τ =5 the results of both solutions have almost no 
change with the variation of coordinate ξ. 
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1 Introduction 
 

Heat conduction of composite medium is widely 
applied in many engineering and science areas, for 
instance, short pulse laser film heating [1], lens 
manufacturing [2], soil humidity [3], heat exchanger [4] 
and architectural design [5]. There are various research 
methods for solving transient heat conduction problem in 
composites, such as method of separation of variables [6], 
orthogonal expansion method [7], Laplace transform 
method [8], Green function method [9−11], Galerkin 
method [12−13] and integral-transform method [14]. 
However, among these methods, Laplace transform 
method only focuses on infinite or half-infinite objects, 
others return to the method of separation of variables in 
which thermal diffusivity is kept on the side of space 
variable function, and in essence, they are morbid. 

Compared with other solving methods, natural 
eigenfunction expansion method makes the theoretical 
solution correspond to the nature of the studied 
phenomenon through putting thermal diffusivity on the 
side of time variable function. In addition, this method 
has the advantages of simple solving procedures of 
eigenvalue and eigenfunction and high efficiency. 
MONTE [15−16] solved transient heat conduction 
problems in one-dimensional double-layer and multi- 

layer composite media using natural eigenfunction 
expansion method. SUN and WICHMAN [17] 
investigated one-dimensional three-layer wall with fixed 
wall temperature by natural eigenfunction expansion 
method and the theoretical solution was extended to be 
suitable for arbitrary number of layers finally. However, 
both studies were based on the theoretical solution 
derivation of transient heat conduction equation and its 
boundary conditions that take the excess temperature as 
dependent variable utilizing natural eigenfunction 
expansion method. And then, the theoretical solution was 
transformed to the dimensionless form. The results of 
such processing made the theoretical solution model not 
a universal one and the equations deduced in the 
theoretical solution model very numerous and 
complicated, which greatly increased the complexity of 
the problem. 

Thus, based on dimensionless treatment of 
relatively simple transient heat conduction partial 
differential equation and its boundary conditions using 
dimensionless factors and according to natural 
eigenfunction expansion method, a theoretical solution 
model for the problem of transient heat conduction in 
one-dimensional double-layer composite medium was 
developed. Utilizing the natural orthogonality relationship 
between eigenfunctions in the model established and 
adopting the method of graphics combining with 

                       
Foundation item: Projects(50576007, 50876016) supported by the National Natural Science Foundation of China; Projects(20062180) supported by the 

National Natural Science Foundation of Liaoning Province, China 
Received date: 2010−03−12; Accepted date: 2010−06−30 
Corresponding author: BAI Min-li, Professor; Tel: +86−411−84706305; E-mail: baiminli@dlut.edu.cn 



J. Cent. South Univ. Technol. (2010) 17: 1403−1408 

 

1404 

 

numerical technique, a complete solution of transient 
heat conduction problem was obtained and verified by 
comparing with the solution of finite element method. 
Meanwhile, the positions near the boundaries where 
large errors appeared between two methods were further 
discussed. 
 
2 Dimensionless treatment of heat conduction 

equation 
 
As shown in Fig.1, a composite medium consisting 

of two parallel layers is considered, where, k1 and k2 are 
the thermal conductivities of the first and second layers, 
respectively; α1 and α2 are the thermal diffusivities; and 
x1, x2 and x3 are the border coordinates. The two layers of 
the medium have initial temperatures of T1(x) and T2(x), 
respectively. At time t=0, two boundaries of the 
composite medium were heated by fluids with the same 
initial temperature Tf but different heat transfer 
coefficients of h1 and h2, separately. 
 

 
Fig.1 Sketch map of two-layer composite medium 
 

Assume that perfect thermal contact conditions are 
satisfied, and thermal conductivity and thermal 
diffusivity are fixed within each layer. T0 represents the 
same temperature of the composite region, and T1 and T2 

are temperatures of the two layers, respectively. 
The following dimensionless factors are introduced 

in order to transform one-dimensional transient heat 
conduction partial differential equation and its boundary 
conditions to dimensionless forms:  
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where ξ is the nondimensional space coordinate; τ is the 
nondimensional time; Bi is the Biot number; κ is the 
thermal conductivity ratio; δ is the thermal diffusion ratio; 
Θ is the nondimensional temperature; and γ is the 
nondimensional interface coordinate. Subscript i 
represents the first and the second layers or the interface 

position. 
One-dimensional transient heat conduction partial 

differential equation can be written as follows (τ≥0): 
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where [ ]1, ,i iξ γ γ +∈  i=1, 2. 
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Inner boundary conditions become ( 2ξ γ= ): 
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Initial conditions become:  
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where [ ]1, ,i iξ γ γ +∈  i=1, 2; and ( )iT ξ represents the 
initial temperature of the ith layer transformed from Ti(x). 
 
3 Solving of dimensionless heat conduction 

equation 
 

Using method of separation of variables to solve 
Eq.(1), we have 

 
( , ) ( ) ( )i i iX GΘ ξ τ ξ τ= ⋅                         (5) 

 
where τ≥0; [ ]1, ,i iξ γ γ +∈  i=1, 2; Xi(ξ) represents the 
spatial variable function; and Gi(τ) is the time variable 
function. 

Introducing Eq.(5) into Eq.(1) and using natural 
eigenfunction expansion method, separate equations of 
functions Gi(τ) and Xi(ξ) can be derived:  
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where [ ]1, ,i iξ γ γ +∈ i=1, 2; and λi is the separation 
constant corresponding to the ith layer of the composite 
medium. 

The solutions of Gi(τ) and Xi(ξ) can be gained by 
solving Eqs.(6)−(7).  
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where τ≥0, and i=1, 2.  

( ) sin( ) cos( )i i i i iX a bξ λ ξ λ ξ= +                  (9) 
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where [ ]1, ,i iξ γ γ +∈  i=1, 2; and ai and bi are integral 
constants corresponding to the ith layer of the composite 
medium. 
 
3.1 Application of boundary conditions 

Introducing Eq.(5) into Eqs.(2)−(3), supposing λ1=λ 
(λ is an arbitrary number greater than zero), a1=c (c is a 
constant dependent on initial conditions (4)), and using 
δ1=1, solution of ( , )iΘ ξ τ  (i=1, 2) can be written as: 

 
τλξλλΦτξΘ

2
e) ,(~)() ,( −= iii Xc                 (10) 

 
where [ ]1, ,i iξ γ γ +∈ i=1, 2; and  ( 1,2)i iΦ = are defined 
as 
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Function iX~  (i=1, 2) may be written as 
 

( , ) sin( / ) ( ) cos( / )i i i iX λ ξ λξ δ ∏ λ λξ δ= +%      (12) 
 
where [ ]1, ,i iξ γ γ +∈ i=1, 2. 

Function iΠ (i=1, 2) is given by 
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where 1 2( )X γ′% is the derivative of 1 2( ).X γ%  

Introducing Eq.(5) into boundary condition of 
3ξ γ=  and comparing with Eq.(13b), we have  
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Thus, Eq.(14) is the equation of computing 
eigenvalues. 

Eq.(10) satisfies Eqs.(1)−(3). Thus, Eq.(10) has an 
infinite number of solutions and each corresponds to a 
series of eigenvalues λ1＜λ2＜…＜λm＜… (m=1, 2, 
3, …): 
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corresponding to eigenvalue λm. 
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It is very easy to prove that the eigenfunctions 
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, ξmiX (i=1, 2) satisfy the following orthogonal 
relationship: 
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where functions )(~

, ξmiX and )(~
, ξniX represent different 

eigenfunctions corresponding to eigenvalues λm and λn 
respectively in the ith layer; and the solving of constant 
Nm can be found in Ref.[15]. 

The solution of temperature distribution ( , )iΘ ξ τ  
(i=1, 2) is composed of the fundamental solutions of the 
above separated equations according to the principle of 
linear superposition: 
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where τ≥0; [ ]1, ;i iξ γ γ +∈ and i=1, 2. 
 
3.2 Application of initial conditions 

Introducing initial conditions (4) into Eq.(18) yields: 
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where τ≥0; [ ]1, ;i iξ γ γ +∈ and i=1, 2. 

Multiplying both sides of Eq.(19) by operator 
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where the solution of the integration on the right side of 
Eq.(20) can be found in Ref.[15]. 
 
4 Example analysis and numerical verifica- 

tion 
 

The following values to the defined dimensionless 
parameters are employed: γ1=1, γ2=2, γ3=4, κ1=1, κ2=2, 
δ1=1, δ2=1, 

1
1,iB =

2
1.iB =  

 
4.1 Determination of eigenvalues 

The first step for the solution of Eq.(15) concerns 
the determination of the eigenvalues. In this case, it is 
not possible to obtain an explicit solution from Eq.(14) 
for eigenvalue λ. However, the problem can be solved by 
means of the combination of both a graphical and a 
numerical scheme. Hence, two functions Π11(λ) and 
Π22(λ) are used to express Eq.(14), that is, Π11(λ)= Π22(λ). 
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The changes of functions Π11(λ) and Π22(λ) against λ 
are shown in Fig.2. The asymptotes of functions Π11(λ) 
and Π22(λ) can also be seen in the figure. The intervals 
that Eq.(14) have roots can be determined utilizing the 
asymptotes of function Π22(λ). For each inter-district, 
root λ of Eq.(14) can be obtained by means of Newton 
iteration procedure, as shown in Table 1. 
 

 
Fig.2 Changes of functions Π11(λ) and Π22(λ) against λ: 1—
Π1(λ); 2—Π22(λ); 3—Vertical asympototes of Π11(λ); 4—
Vertical asymptotes of Π22(λ) 
 
4.2 Determination of amount of eigenvalues p 

After the determination of eigenvalues, the second 
step is to determine the amount of eigenvalues p. For 
general engineering problems, p can be determined by 
requiring that the exact (p→∞) and approximate (p= 
finite) solutions are differed by not more than 3%. For 
space coordinate ξ, the maximum deviations of iΘ  (i=1, 
2) between the exact (p→∞) and approximate (p=finite) 
solutions occur near the outer boundary surfaces that can 
be observed in Fig.3. In order to achieve the same 
convergence accuracy, more eigenvalues should be 
solved on the outer boundary surfaces. That is, more 
summing calculations of function terms need to be done. 
And for time coordinate τ, the maximum deviations 
appear at τ= 0. Therefore, positions ξ=1 and ξ=4 and time 
τ=0 are the best positions and time to determine the 
amount of eigenvalues p. 

Fig.3 shows the changes of dimensionless 
temperature iΘ (i=1, 2) with different values of parameter 
p against coordinate ξ for τ=0. Fig.3 shows that functions 

iΘ (i=1, 2) are continually approximating towards a 
definite limit when increasing the amount of eigenvalues 
p. When taking a limiting process (p→∞), functions iΘ  
(i=1, 2) converge to 1. When taking p=23, the error of 
the exact (p→∞) and approximate (p=finite) solutions is 
less than 2.6% for ξ=γ1, and less than 2.7% for ξ=γ3. 
Although for sufficiently large time τ, p can be notably 
reduced. In order to reduce the error, p=23 is fixed when 
requiring the approximate solutions of iΘ (i=1, 2) at 
time τ. 

Table 1 First 25 roots of transcendental Eq.(14) 

m λm Interval of λm Value of λm 

1 λ1 0.316 1−0.983 8 0.615 1 

2 λ2 0.983 8−1.703 5 1.543 7 

3 λ3 1.703 5−2.453 0 2.284 6 

4 λ4 3.216 9−3.988 4 3.317 3 

5 λ5 3.988 4−4.764 1 4.445 4 

6 λ6 4.764 1−5.542 4 5.265 2 

7 λ7 6.322 4−7.103 5 6.376 5 

8 λ8 7.103 5−7.885 5 7.525 5 

9 λ9 7.885 5−8.668 1 8.358 2 

10 λ10 9.451 1−10.234 5 9.487 8 

11 λ11 10.234 5−11.018 2 10.640 4 

12 λ12 11.018 2−12.802 1 11.477 1 

13 λ13 12.586 2−13.370 4 12.613 8 

14 λ14 13.370 4−14.154 8 13.767 2 

15 λ15 14.154 8−14.939 3 14.605 7 

16 λ16 15.723 8−16.508 5 15.746 0 

17 λ17 16.508 5−17.293 2 16.899 5 

18 λ18 17.293 2−18.078 0 17.738 8 

19 λ19 18.862 8−19.647 7 18.881 3 

20 λ20 19.647 7−20.432 6 20.034 7 

21 λ21 20.432 6−21.217 5 20.874 5 

22 λ22 22.002 5−22.787 5 22.018 4 

23 λ23 22.787 5−23.572 5 23.171 6 

24 λ24 23.572 5−24.357 6 24.011 7 

25 λ25 25.142 7−25.927 8 25.155 6 

 

 
Fig.3 Dimensionless temperature Θ  for τ=0 as function of ξ 
with p as parameter (interface is located at ξ=2) 
 
4.3 Numerical verification 

Fig.4 shows the comparison of solving by natural 
eigenfunction expansion and finite element methods. As 
shown in Fig.4(a), the results of both methods are 
coinciding, which shows that the solutions of two methods 
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Fig.4 Comparison of solutions using natural eigenfunction 
expansion and finite element methods (interface is located at 
ξ=2): (a) Dimensionless temperature; (b) Relative error at each 
point ξ and specified time τ 
 
are kept consistent with each other. The maximum errors 
occur at boundaries of ξ＝1 and ξ＝4 when τ＝0.1. The 
finite element solutions are 0.039 and 0.051 larger than 
theoretical solutions, respectively. The reason is that 
Eq.(18) needs to calculate more eigenvalues λ at the 
outer boundaries to achieve higher accuracy, however, 
the cost is extra computational time. And in the solving, 
in order to govern the error between exact (p→∞) and 
approximate solutions (p=finite) to be less than 3%, only 
the first 23 eigenvalues were used. And in Fig.4(b), when 
τ is small, the error between finite element and 
theoretical solutions changes significantly against the 
change of coordinate ξ. The maximum errors occur at 

boundaries ξ＝1 and ξ＝4 when τ＝0.1, which are 
3.91% and 5.08%, respectively. At the other moments 
and positions, the error is lower than 1%. With the 
increase of τ, the error between two methods varying 
against the change of coordinate ξ becomes less. When  
τ ＝ 5, two solutions remain unchanged against the 
change of coordinate ξ. 
 
5 Conclusions 
 

(1) Firstly, the transient heat conduction model is 
transformed to the dimensionless form. Then, the 
dimensionless thermal diffusivity is put on the side of 
time variable function. Thus, the physical essential of the 
phenomenon can be embodied by transformed equation 
of heat conduction. A theory solution model of transient 
heat conduction problem in one-dimensional double- 
layer composite medium is developed. The model is 
more generic compared with those in Refs.[15−17], and 
steps of derivation and expressions are much simpler. 

(2) A method that combines graphics and numerical 
methods is adopted and Newton iterative method is used 
in each small interval for calculating eigenvalues. The 
eigenvalues model developed is calculated, and the 
problem unable to calculate eigenvalue equation using 
numerical method alone is solved. 

(3) Validity and rationality of the theory solution 
model are validated by finite element method. At time   
τ＝0, the maximum errors occur at boundaries of ξ=1 
and ξ=4. And the smaller the time τ, the larger the error. 
Through calculating Eq.(14) with more eigenvalues λ 
and increasing the summation items in Eq.(18), the error 
can be decreased efficiently. However, the cost consumes 
much more computing time. 
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