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Abstract: Based on the steady-state strain measured by single-pass hot compression tests, the method by a double-pass hot 
compression testing was developed to measure the metadynamic-recrystallization kinetics. The metadynamic recrystallization 
behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000−1 100 ℃, 
the strain rate range of 0.01−0.10 s−1 and the interpass time range of 0.5−50 s on a Gleeble−3500 thermo-simulation machine. The 
results show that metadynamic recrystallization during the interpass time can be observed. As the deformation temperature and strain 
rate increase, softening caused by metadynamic recrystallization is obvious. According to the data of thermo-simulation, the 
metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics 
model is set up. Finally, the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy 
(correlation coefficient R=0.988 6).  
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1 Introduction 
 

Metallic materials have a certain degree of static 
softening during the multi-pass rolling process as a 
consequence of strain accumulation between passes, e.g. 
metadynamic recrystallization (MDRX), static recovery 
(SRV) and static recrystallization (SRX). Usually, the 
onset of dynamic recrystallization (DRX) during hot 
deformation occurs when a critical strain, εc, is reached. 
This critical strain is related to the peak strain, εp (the 
strain corresponding to the maximum stress in the flow 
curve), following relationship of the type, εc =Aεp. For 
different materials, values between 0.60 and 0.85 [1−4] 
have been reported for constant A. MDRX during the 
interpass time occurs by the continued growth of the 
nuclei formed as a result of DRX during hot deformation 
[5−6]. Hence, MDRX does not require an incubation 
time and such rapid interpass softening can affect the 
mechanical properties, even when the interpass time is 
short. Therefore, the establishment of metallic materials 
MDRX kinetics model is an essential part of simulating 
the evolution of microstructure during the multi-pass 

deformation [7−8]. 
ELWAZRI et al [9] investigated the kinetics of 

metadynamic recrystallization in vanadium microalloyed 
high carbon steels. TOLOUI and SERAJZADEH [10] 
developed an integrated mathematical model to predict 
distributions of temperature, strain and strain rate during 
hot rolling as well as the subsequent microstructural 
changes after hot deformation. As the national 
infrastructure investment increases and the plan for 
development of the west regions is carried out, market 
demand of medium plate is increasing. Faced with broad 
market demand, we a high strength low-alloy (HSLA) 
structural steel Q345B, developed which is a well-known 
variety of structural steel for mining machinery, bridges, 
building steel, and so on, because of its high strength and 
good impact toughness at low temperature [11]. FENG  
et al [12] and SUN et al [13] studied the mechanical and 
metallurgy behaviour of steel Q345B. Despite some 
efforts invested into the behaviors of steel Q345B, the 
kinetics of metadynamic recrystallization in the hot 
deformed steel Q345B still needs further investigation. 
Therefore, the establishment of MDRX kinetics model 
based on the systematic MDRX research of steel Q345B 
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by Gleeble−3500 thermo-simulation machine contributes 
to the development of multipass hot rolling process to 
control the rolling process more accurately, thereby 
enhancing the mechanical properties of product. 
 
2 Experimental 
 
2.1 Experimental materials 

Specimen material is HSLA steel Q345B, and its 
chemical composition is shown in Table 1. 
 
Table 1 Chemical composition of test steel (mass fraction, %) 

C Si Mn P S 

0.16 0.52 1.53 0.024 0.023 

 
2.2 Experimental methods 

Cylindrical specimens of 10 mm in diameter and  
15 mm in height were taken for the research of MDRX 
kinetics model. Its surface should be smooth. 
MDRX during the interpass time occurs by the the nuclei 
formed as a result of DRX during hot deformation, while 
SRX occurs by the nuclei not formed as a result of DRX. 
In the experiment, in order to avoid the impact of SRX 
on MDRX and establish a more accurate MDRX kinetics 
model, DRX should occur about 100% softening during 
the first pass deformation, i.e., the true strain reaches the 
steady-state strain, εss. Because strain rate is the primary 
parameter affecting MDRX kinetics, with a small effect 
of deformation temperature but insensitivity to strain 
[14−17], the true strain should be higher than or equal to 
the steady-state strain during the first pass in order to 
research MDRX evolution process. Flow curves of 
single-pass hot compression tests at different 
deformation temperatures and strain rates are shown in 
Fig.1. From this figure, it can be seen that, εss≥0.38. 

According to the results of single-pass hot 
compression test, double-pass hot compression tests were 
performed in this work. All specimens were austenitized 
at 1 200 ℃ for 3 min. To determine the effects of 
deformation temperature and strain rate, a cooling rate of 
5 ℃/s was applied from initial temperature to deformation 
temperature (1 000−1 100 ℃). The first pass deformation 
was applied at a selected strain rate (0.01−0.1 s−1) until 
the selected strain of 0.5 was attained. The second pass 
deformation was applied after specific interpass time 
(0.5−50 s) until the selected strain of 0.2 was attained. 
The deformation schedule employed for this test is 
displayed in Fig.2. 
 
3 Results and analysis 
 
3.1 Stress−strain curves 

Stress−strain curves for steel Q345B deformed at 

 

 
Fig.1 Flow curves of single-pass hot compression tests at 
different deformation conditions: (a) θ=1 100 ℃; (b) ε& =  
0.01 s−1 
 

  
Fig.2 Schematic illustration of double-pass hot compression 
test 
 
different deformation temperatures and strain rates are 
shown in Fig.3. Several double-pass hot compression 
deformation tests with increasing interpass time are 
plotted together to demonstrate the effect of interpass 
time on the flow curves. When the deformation 
temperature and strain rate are relatively low and the 
interpass time is very short, little static softening 
generated by MDRX takes place (see the interpass time 
of 0.5 and 1 s in Figs.3(a), (d) and (e)). As a consequence 
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of the lack of softening, the second pass curve displays 
little further work-hardening and reaches a steady state 
quickly. In most cases, much static softening takes place, 
even when the interpass time is quite short. As a 
consequence of the rapid softening, the second curve 
displays renewed work-hardening. The second curve 
work hardens in a similar way to the first curve so as to 
rebuild the dislocation structure. Much softening taking 
place during the interpass time is responsible for the 
presence of a new DRX peak in the second curve. This 

peak appears at larger strains when the interpass time is 
increased due to the necessity of rebuilding more of the 
dislocation structure before DRX can be resumed. 
 
3.2 MDRX softening measurement 

There are many methods to calculate the volume 
fraction of MDRX [18−19]. In this work, the 0.2% offset 
yield strength was used to determine the softening 
generated by MDRX [20−23]. The volume fraction of 
MDRX (Xmd) is measured by 

 

Fig.3 Flow curves of two-pass hot compression tests
for different interpass time under different
deformation conditions: (a) θ=1 100 ℃, ε& =0.01
s−1; (b) θ=1 100 ℃, ε& =0.1 s−1; (c) θ=1 100 ℃,
ε& =0.05 s−1; (d) θ=1 050 ℃, ε& =0.01 s−1; (e) θ=
1 000 ℃, ε& = 0.01 s−1 



J. Cent. South Univ. Technol. (2010) 17: 911−917 

 

914

 

m 2
md

m 1
X

σ σ
σ σ

−
=

−
                              (1) 

 
where σm is the flow stress at the interruption; σ1 is the 
offset stress at the first pass deformation; and σ2 is the 
offset stress at the second pass deformation, as shown in 
Fig.4. 
 

 
Fig.4 Schematic illustration of MDRX fraction calculation 
method 
 
3.3 Effect of deformation parameters on MDRX 

The effect of deformation temperature and strain 
rate on MDRX of investigated steel is shown in Fig.5. 
All the softening curves are of sigmoidal shape. It is 
evident that the softening curve follows the Avrami 
equation. The process of MDRX grain growth is fast 
with the increase of deformation temperature. Thus, 
MDRX occurs more fully. Similarly, MDRX occurs 
more easily as the strain rate increases. At a deformation 
temperature of 1 100 ℃ and a strain rate of 0.1 s−1, the 
softening process is so fast that DRX occurs about 48% 
softening after the shortest achievable interpass time of 
0.5 s. Therefore, at higher temperature or greater strain 
rate, the time for 50% MDRX )( md

5.0t cannot be detected in 
the experimental conditions. 
 

 
Fig.5 Effect of deformation temperature and strain rate on 
MDRX 

 
4 Modeling MDRX kinetics 
 

The kinetics of MDRX is usually described by an 
Avrami equation of the following form [17, 24−28]: 

 
md

md md
0.5

1 exp 0.693
k

tX
t

⎡ ⎤⎛ ⎞⎢ ⎥= − − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
                (2) 

 
where t is the interpass time (s); and md

0.5t  is the time for 
50% MDRX (s). Previous studies showed that md

0.5t  is 
mainly affected by the chemical composition of materials 
and deformation conditions. The expression most widely 
used for this parameter is [7−8, 21] 
 

mdmd md
0.5 md expn Q
t A

RT
ε ⎛ ⎞= ⎜ ⎟

⎝ ⎠
&                       (3) 

 
where ε&  is the strain rate (s−1); Qmd is the activation 
energy of MDRX (kJ/mol); R is the gas constant    
(8.31 J/(mol·K)); T is the deformation temperature (K); 
Amd and nmd are material dependent constants. 
 
4.1 Determination of kmd 

In order to determine kmd, taking the natural 
logarithm on both sides of Eq.(2) yields 
 

md md
md 0.5

1ln ln ln 0.693 ln
1

tk
X t

⎛ ⎞⎡ ⎤⎛ ⎞
= + ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠

        (4) 

 
Taking partial derivative of md

0.5ln( / )t t on both sides 
of Eq.(4) yields 
 

md
md md

0.5

ln{ln[1/(1 )]}
ln( / )

X
k

t t
∂ −

=
∂

                     (5) 

 
Eq.(5) proves that ln{ln[1/(1−Xmd)]} has a linear 

relationship with md
0.5ln( / ),t t  as shown in Fig.6. kmd can 

be obtained by least squares method, kmd=0.662 7. 
 

 
Fig.6 Relationship between ln{ln[1/(1−Xmd)]} and md

0.5ln( / )t t  
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4.2 Determination of tmd
0.5  on deformation 

parameters 
Taking the natural logarithm on both sides of Eq.(3) 

yields  
md md
0.5 md mdln ln ln

Q
t A n

RT
ε= + +&                  (6) 

4.2.1 Activation energy of MDRX 
The effect of deformation temperature on md

0.5t  was 
estimated at a constant strain rate. Under this condition, 

md
0.5ln t  has a linear relationship with 1/T. Qmd was 

obtained from the slope of md
0.5ln t  as a function of    

1/T plot, i.e. the slope is Qmd/R. Fig.7 shows the graph 
for this steel. Qmd can be obtained by least squares 
method, Qmd=100.674 kJ/mol. 
 

 
Fig.7 Relationship between 

md
5.0lnt  and 1/T 

 
4.2.2 Effect of strain rate 

The effect of strain rate on md
0.5t  was estimated at a 

constant temperature. Under this condition, Eq.(6) on 
both sides takes partial derivative of ln ε& , and there is  

md
0.5

md
ln
ln

T

t
n

ε
=

&
                               (7) 

 
Eq.(7) proves that md

0.5ln t  has a linear relationship 
with ln ε& , as shown in Fig.8. nmd can be obtained, nmd=  

 

 
Fig.8 Relationship between 

md
5.0lnt  and ln ε&  

−0.762 6. This accords with the values (from −0.84 to 
−0.60) observed by other workers [8, 15, 21]. 
 
4.3 Mathematical model 

In summary, the present data for MDRX can be 
reasonably represented with the following equations: 

 
0.662 7

md md
0.5

1 exp 0.693 tX
t

⎡ ⎤⎛ ⎞
⎢ ⎥= − − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

              (8) 

 
md 5 0.762 6
0.5

100 6741.317 9 10 expt
RT

ε− − ⎛ ⎞= × ⎜ ⎟
⎝ ⎠

&         (9) 

 
5 Comparison between calculated values and 

measured values 
 

In order to verify the accuracy of MDRX kinetics 
model, comparison between the calculated values and 
measured values for the volume fraction of MDRX under 
different deformation conditions is shown in Fig.9. It can 
be seen from these figures that calculated and measured 
values are in good agreement (correlation coefficient 
R=0.988 6). Therefore, this model can give an accurate 
estimate of the softening behaviors and microstructural 
evolution for steel Q345B and contribute to the 
development of multipass hot rolling process to control 
the rolling process more accurately. 
 
6 Conclusions 
 

(1) Based on the steady-state strain measured by 
single-pass hot compression tests, double-pass hot 
compression test process is developed. The true 
stress−true strain curves indicate that three exists MDRX 
process of low-alloy steel Q345B. As the deformation 
temperature and strain rate increase, softening caused by 
MDRX is obvious. 

(2) At a deformation temperature of 1 100 ℃ and a 
strain rate of 0.1 s−1, the softening process is so fast that 
DRX occurs about 48% softening after the shortest 
achievable interpass time of 0.5 s. Therefore, at higher 
temperature or greater strain rate, the time for 50% 
MDRX ( md

0.5t ) cannot be detected in the experimental 
conditions. 

(3) According to the data of thermo-simulation, the 
MDRX activation energy of 100.674 kJ/mol is obtained 
and MDRX kinetics model is set up. 

(4) The calculated and measured values for the 
volume fraction of MDRX under different deformation 
conditions are in good agreement. Therefore, this model 
can give an accurate estimate of the softening behaviors 
and microstructural evolution for steel Q345B and 
contribute to the development of multipass hot rolling 
process to control the rolling process more accurately. 
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