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Abstract: The influence of earthquake forces on ultimate bearing capacity of foundations on sloping ground was studied. A solution 
to seismic ultimate bearing capacity of strip footings on slope was obtained by utilizing pseudo-static analysis method and taking the 
effect of intermediate principal stress into consideration. Based on limit equilibrium theory, the formulae for computing static bearing 
capacity factors, Nq, Nc, Nγ, and dynamic bearing capacity factors, Nqd, Ncd, Nγd, which are associated with surcharge, cohesion and 
self-weight of soils respectively, were presented. A great number of analysis calculations were carried out to obtain the relationship 
curves of the static and dynamic bearing capacity factors versus various calculation parameters. The curves can serve as the practical 
engineering design. The calculation results also show that when the values of horizontal and vertical seismic coefficients are 0.2, the 
dynamic bearing capacity factors Nqd, Ncd and Nγd, in which the effects of intermediate principal stress are taken into consideration, 
increase by 4%−42%, 3%−27% and 34%−57%, respectively. 
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1 Introduction 
 

The study on bearing capacity has been the hotspot 
of the geotechnical circle for ages. Among the limited 
literatures available on the seismic bearing capacity, 
MEYERHOF’s[1−2] are perhaps the earliest, where the 
seismic forces were applied on the structure only as 
inclined pseudo-static loads. Effect of the seismic forces 
on the inertia of the supporting soil was not considered in 
these analyses. SARMA et al[3] and RICHARDS et al[4] 
considered the seismic forces both on the structure and 
on the supporting soil mass. Apart from these studies by 
the limit equilibrium method, DORMIEUX et al[5], 
SOUBRA[6−7] and CHOUDHURY et al[8] used the upper 
bound limit method for analyzing the seismic bearing 
capacity of shallow strip footings. YU[9] and YANG[10] 
utilized numerical simulating method and energy 
dissipation method respectively for determination of the 
static bearing capacity of foundation on slope. However, 
for the seismic bearing capacity of strip footings founded 
on the slope in mountainous area, little investigations 
have been conducted. And the existing calculating 
formulae have not considered the effect of intermediate 
principal stress on ultimate bearing capacity. In addition, 
the results obtained by the existing calculating formulae 
are usually smaller than real values and the potential 
strength of soil is not fully mobilized. So in this paper, 
based on the unified strength theory that takes the effect 
of intermediate principal stress into consideration, by

supposing composite curved failure surface and 
employing pseudo-static approach and the method of 
limit equilibrium analysis, a new formula of seismic 
bearing capacity for slope foundation in mountainous 
areas was obtained. 
 
2 Unified strength theory 
 

Unified strength theory for geo-materials can be 
expressed as follows[11−12]: 
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where  α=(1−sin φ0)/(1+sin φ0); σ1 is the major principal 
stress; σ3 is the minor principal stress; b is a coefficient 
that can reflect the influence of intermediate principal 
stress and normal stress on the failure degree of material; 
φ0 is the original angle of internal friction and c0 is the 
original cohesion of geo-material.  

The normal stress σω and shear stress τω acting on 
any inclined plane oriented ω clockwise from the major 
principal plane can be determined: 
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FAN et al[13−14] recommended the following 
equation for ω in limit state: 
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By solving Eqns.(2) and (3), we obtain 
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According to LEE et al[15], the intermediate 

principal stress can be expressed as follows: 
 

2 1 3( ) / 2kσ σ σ= +            (7) 
 
where  k is the coefficient of intermediate principal 
stress, 2µ≤k＜1(µ is Poisson ratio), and k→1 in plastic 
zone. 

From Eqn.(7), we can calculate the ultimate bearing 
capacity of foundation by using the following condition: 
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We can see that σ2 satisfies Eqn.(1b). So substitute 
Eqns.(2)−(8) into Eqn.(1b), we get 
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Eqn.(9a) may be written in the form: 

0Dc B
A Aω ωτ σ= −            (9b) 

Comparing Eqn.(9b) with Mohr-Coulomb criterion, 
we can obtain the cohesion and angle of internal friction 
(c and φ) based on unified strength theory: 
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3 Seismic bearing capacity of strip footing 

on slope 
 
3.1 Failure mode of slope ground 

Failure mode of slope ground is shown in Fig.1. It 
consists of two slip surfaces DEK and EFG. DEK is a 

realistic failure plane and EFG is a virtual failure one. 
Failure plane EFG does not exist. This is just for 
force-analysis of the soil mass behind the footings.  

 

 

Fig.1 Computational model of slope ground 
 

3.1.1 Three wedges in part DEK 
1) Wedge DAE. Wedge DAE is an asymmetrical 

triangular wedge in which soil is in elastic state. 
Assuming the strip footing is rough enough, let χ and χm 
denote the base angles of the wedge ADE, respectively, 
and  

m 2
πχ χ ϕ+ = +             (11) 

2) Wedge AEK. Wedge AEK is a transitional zone 
from active earth pressure under the footing through 
passive earth pressure in the surrounding soil. Assuming 
EK to be a logarithmic spiral curve, point A is the center 
of this spiral curve, so the equation of this curve can be 
expressed as follows: 
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where  r0 is the length of line AE and it can be 
calculated by the following formula: 
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Hence, the length of AK can be written as follows: 
 

0 exp( tan )AKr r θ ϕ=          (14) 
  

3) Wedge AKJ. The wedge AKJ is a Rankine 
passive earth pressure zone. 
3.1.2 Virtual failure plane EFG 

Part DEFG involves a transitional zone EDF and a 
Rankine passive earth pressure zone DFE. 

Since the plane EFG does not reach its ultimate 
limit state and it is difficult to determinate its stress 
distribution, thereby we introduce a coefficient m to 
indicate the mobilization degree of shear on plane EFG. 
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Substitute Eqn.(13) into Eqn.(9b), then 
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where  τω is the ultimate shear stress, cm and φm are the 
cohesion and the angle of friction that are related to m, 
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respectively. 
The values of cm and φm, varying with the values of 

b and m can be obtained by computation (see Table 1). 
When b=0, Eqn.(9b) becomes Mohr-Coulomb criterion 
(τ=c+σtan φ), so Mohr-Coulomb criterion is just a special 
case of this method.  

Similar to EK, the equation of EF can be given as 
follows: 

 
exp( tan )m m m mr rθ θ ϕ= 0 0          (17) 

 
where  rm0 is the length of DE, calculated by 
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Hence, the length of DF can be written as follows: 
 

0 exp( tan )DF m m mr r r θ ϕ= =        (19a) 
 
Similar to AJK, DFG is assumed as a Rankine 

passive states zone, and 
π 2 mDFG ϕ∠ = +           (19b) 

 
Table 1 Values of cm, φm varying with b and m under k=1.0, 

φ0=20˚, c0=20.0 kPa  

m=1.0  m=0.9 m=0.8  m=0.7 

b cm/ 
kPa 

φm/ 
(˚)  cm/ 

kPa 
φm/
(˚)

cm/ 
kPa 

φm/ 
(˚)  cm/

kPa
φm/
(˚)

1.0 21.5 24.1  19.3 21.8 17.0 19.5  14.8 17.1

0.8 21.3 23.5  19.1 21.3 16.9 19.0  14.7 16.7

0.6 21.1 22.9  18.9 20.8 16.7 18.5  14.6 16.3

0.4 20.8 22.2  18.7 20.1 16.6 17.9  14.4 15.8

0.2 20.5 21.2  18.4 19.2 16.3 17.2  14.2 15.1

0.0 20.0 20.0  18.0 18.1 16.0 16.2  14.0 14.3

 
3.2 Limit equilibrium analysis 

The free-body diagram of wedge ADE is shown in 
Fig.2. The forces acting on AE are ppγ, ppq, ppc and Ca, 
where ppγ is produced by the unit weight (the weight per 
unit volume), ppq by the surcharge loading, and ppc by 
the soil cohesion. Both ppc and ppq act at the midpoint of 
AE, and ppγ is assumed to act at two-third position of 
AE. The directions of all these forces make the same 
angle of φ to the normal of AE. In addition, the 
adhesion Ca=c·rDE, where c is the unit cohesion. 

In a similar manner, the forces acting on DE are 
shown in Fig.2. The subscript m of these forces indicates 
the mobilization degree of shear on virtual failure plane 
EF. ppmγ,, ppmq and ppmc are produced by  the unit 
weight, surcharge and soil cohesion, respectively. The 
directions and positions of these forces are similar to 
those of the forces acting on AE. am m DEC c r= ⋅ , where 
cm is the unit cohesion. 

  
Fig.2 Free-body diagram of wedge ADE 

 
The vertical seismic passive resistance can be 

computed as 
p p pc pq( )cos( )p p p pγ χ ϕ= + + −      (20) 

p p p c p q( )cos( )m m m m m mp p p pγ χ ϕ= + + −    (21) 

From the vertical equilibrium of all the forces, we 
can obtain:  
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Determination of the values of all the passive 

resistances is as follows. 
Case 1: c=cm=0, q2=qm=0 , γ≠0 
Considering the forces acting on the wedge AKE, as 

shown in Fig.3, then from the moment equilibrium of all 
the forces about the focus A we have 
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Angles θ and β can be derived from the known 
conditions. The force F1 must act through the point A, so 
its moment for A is zero.  

 

  
Fig.3 Diagram of AEKJ only weight considered 
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Considering the forces acting on the wedge DEFN, 
as shown in Fig.4, then from the moment equilibrium of 
all the forces about the focus D, we have 

 

  
 

Fig.4 Diagram of DEFN only weight considered 
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ξ  is the included angle between GF and ground given 
by Choudhury and Subba Rao[8]:  
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where  kh is horizontal acceleration under seismic action; 
kv is vertical acceleration under seismic action; 

π / 2 ;mβ ξ= −  m mα ϕ ξ= + ; π / 2 mDFG ϕ∠ = + . 
The passive pressure Epmγ that acts on NF is 

horizontal and can be obtained as  
 

2
p

1
2m m mE H Kγ γ ′=  

where 1 sin /(1 sin );m m mK ϕ ϕ′ = + − cosm m mH r α= . 

The force Fm1 must act through the point D, so its 
moment for D is zero.  

Case 2: q=qm=0, γ=0, c, cm≠0 
Considering the forces acting on the wedge AKE, as 

shown in Fig.5, then from the moment equilibrium of all 
the forces about the focus A, we have 
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Fig.5 Diagram of AEJK applied by cohesion 

 
Then considering the forces acting on the area 

DEFN, as shown in Fig.6, and the moment equilibrium 
of all the forces about the focus D, we can get 
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Fig.6 Diagram of DEFN applied by cohesion 

 
Case 3: γ=0, c=cm=0, q, qm≠0,  
Considering the forces acting on the wedge AKE, as 

shown in Fig.7, and the moment equilibrium of all the 
forces about the focus A, we get 
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Fig.7 Diagram of AJEK applied with surcharge 

 
The force F2 must act through the point A, so its 

moment for A is zero.  
Then considering the forces acting on the wedge 

DEFN, as shown in Fig.8, and the moment equilibrium 
of all the forces about the focus D, we get 
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Fig.8 Diagram of DEFN applied with surcharge 

The force Fm2 must act through the point D, so its 
moment for D is zero. 
 
3.3 Seismic bearing capacity 

Substituting Eqn.(23)−(28) into the Eqn.(20), the 
ultimate seismic bearing capacity based on the unified 
strength theory can be expressed in the following form: 
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4 Examples and comments 
 

The angle χ should be assumed for the analysis of 
limit equilibrium. The trial and error method was applied 
to obtain the minimal coefficients of seismic bearing 
capacity.  

1) Comparison of bearing capacity based on unified 
strength theory with that based on Mohr-Coulomb 
Theory. For a sloping ground, given l/B=h/B=0.5，φ=45˚, 
φ0=20˚, c0=20 kPa, k=1.0. Analysis shows that if the 
intermediate principal stress is considered, the 
coefficients of seismic and static bearing capacity (given 
kh=kv=0.2) are larger, for Ncd about 3%−27%, for Nqd 
about 4%−42%(see Fig.9(a)), and for Nγd about 34%− 
57%. The static bearing capacity increases by 17%−43% 
and the seismic one increases by 16%−40%(see 
Fig.9(b)). 

2) Coefficients of the seismic bearing capacity and 
coefficients of static bearing capacity. Figs.10−12 show 
the comparison between coefficients of seismic and that 
of static bearing capacity. Given parameters of a slope as: 
l/B=h/B=0.5, φ=45˚, φ0=20˚, 30˚, 40˚, c0=20.0 kPa，k=1.0, 
b=1.0, considering seismic effect (kh=0.2, kv=0.2; kh=0.2, 
kv=0.4), through the variation of m(=τ/τm) and initial 
friction angle φ, we can see that under the seismic 
loading, Ncd changes very little, while both Nqd and Nγd 
reduce to some extent. Meanwhile, the seismic bearing 
capacity is 10%−20% less than the static bearing 
capacity. 

3) Effect of b on intermediate principal stress. 
Along with the increase of b, this reflects intermediate 
principal stress, the coefficients of seismic bearing 
capacity increases gradually. As far as the range of 
increase is concerned, Nγd is the most obvious, Nqd is in 
the second place, and comparatively, Ncd is the most 
insensitive (see Fig.13).  
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Fig.9 Comparison between bearing capacity by unified theory 

and bearing capacity by non-unified theory 
Accretion rate: (a) Nqd; (b) qud 

 

 
Fig.10 Variation of seismic bearing capacity Ncd with kh and kv  

 

 
Fig.11 Variation of surcharge seismic bearing capacity 

coefficients Nqd with kh and kv  

 

  
Fig.12 Variation of bearing capacity coefficients Nγd with kh and 

kv considering effect of self-weight 
 

 

 
Fig.13 Seismic bearing capacity coefficients: (a) Ncd, (b) Nqd 

and Nγd affected by b at kv=0.2 and kh=0.2 
1—b=1.0; 2—b=0.8; 3—b=0.6; 4—b=0.4; 5—b=0.2; 6—b=0 
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5 Conclusions 
 

1) Based on the unified strength theory that takes 
the effect of intermediate principal stress into 
consideration, by supposing composite curved failure 
planes and employing pseudo-static approach and the 
method of limit equilibrium analysis, a new formula of 
seismic bearing capacity of slope foundation was 
obtained.  

2) The static and seismic bearing capacity that takes 
the effect of intermediate stress into account is larger 
than that without considering the effect of intermediate 
stress; the static bearing capacity increases by 
17%−43% and the seismic one increases by 16%−40%. 

3) Under the seismic loading, Ncd changes very little, 
while both Nqd and Nγd reduce to some extent. 
Meanwhile, the seismic bearing capacity is 10%−20% 
less than the static bearing capacity. 

4) Along with the increase of b that reflects 
intermediate principal stress, the coefficients of seismic 
bearing capacity increases gradually. As far as the range 
of increase lies concerned, Nγd is the most obvious, Nqd 
in the second place, and comparatively, Ncd is the most 
insensitive.  
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