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Abstract: The assessment of the completeness of earthquake catalogs is a prerequisite for studying the patterns 
of seismic activity. In traditional approaches, the minimum magnitude of completeness (MC) is employed to 
evaluate catalog completeness, with events below MC being discarded, leading to the underutilization of the data. 
Detection probability is a more detailed measure of the catalog's completeness than MC; its use results in better 
model compatibility with data in seismic activity modeling and allows for more comprehensive utilization of 
seismic observation data across temporal, spatial, and magnitude dimensions. Using the magnitude–rank method 
and Maximum Curvature (MAXC) methods, we analyzed temporal variations in earthquake catalog completeness, 
fi nding that MC stabilized after 2010, which closely coincides with improvements in monitoring capabilities and the 
densifi cation of seismic networks. Employing the probability-based magnitude of completeness (PMC) and entire 
magnitude range (EMR) methods, grounded in distinct foundational assumptions and computational principles, we 
analyzed the 2010–2023 earthquake catalog for the northern margin of the Ordos Block, aiming to assess the detection 
probability of earthquakes and the completeness of the earthquake catalog. The PMC method yielded the detection 
probability distribution for 76 stations in the distance–magnitude space. A scoring metric was designed based on 
station detection capabilities for small earthquakes in the near fi eld. From the detection probabilities of stations, we 
inferred detection probabilities of the network for diff erent magnitude ranges and mapped the spatial distribution of 
the probability-based completeness magnitude. In the EMR method, we employed a segmented model fi tted to the 
observed data to determine the detection probability and completeness magnitude for every grid point in the study 
region. We discussed the sample dependency and low-magnitude failure phenomena of the PMC method, noting the 
potential overestimation of detection probabilities for lower magnitudes and the underestimation of MC in areas with 
weaker monitoring capabilities. The results obtained via the two methods support these hypotheses. The assessment 
results indicate better monitoring capabilities on the eastern side of the study area but worse on the northwest side. 
The spatial distribution of network monitoring capabilities is uneven, correlating with the distribution of stations and 
showing signifi cant diff erences in detection capabilities among diff erent stations. The truncation eff ects of data and 
station selection aff ected the evaluation results at the edges of the study area. Overall, both methods yielded detailed 
descriptions of the earthquake catalog, but careful selection of calculation parameters or adjustments based on the 
strengths of diff erent methods is necessary to correct potential biases.
Keywords: magnitude of completeness; northern margin of the Ordos Block; PMC method; EMR method; 
earthquake detection probability

Introduction

Statistical seismology models the probabilistic 

distribution of seismic activity, bridging the gap between 
physical and statistical models. Relevant models include 
the G–R model (Gutenberg and Richter, 1944; Ram et 
al., 2022) and the ETAS model (Zhuang, 2011; Bi et 
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al., 2023). The eff ectiveness of these models is aff ected 
by the quantity and quality of seismic data, making the 
efficient use of limited earthquake data an important 
research topic. The magnitude of completeness (MC), 
the lowest magnitude that can be recorded with 100% 
certainty, is typically used to assess the completeness 
of earthquake catalogs. Most MC estimation methods 
are based on the assumptions of the G–R model, where 
MC is defined as the smallest magnitude at which the 
cumulative frequency of magnitude distribution deviates 
from the G–R model (Zúñiga and Wyss, 1995). Several 
evaluation methods based on the G–R model have been 
developed (Wiemer and Wyss, 2000; Cao and Gao, 2002; 
Woessner and Wiemer, 2005), with some of them relying 
less on the assumptions of the G–R model (Rydelek and 
Sacks, 1989; Kagan, 2003; Amorèse, 2007). The noise 
spectra of seismic stations can also be used to assess MC 
(Gomberg, 1991; Kværna and Ringdal, 1999). Waveform 
forward modeling techniques used for evaluating the 
accuracy of seismic source localization (D'Alessandro et 
al., 2011) can also be used to estimate data completeness. 
Some methods, such as the probability-based magnitude 
of completeness (PMC) method (Schorlemmer and 
Woessner, 2008; Li and Huang, 2014; Jiang et al., 2015; 
Schorlemmer et al., 2018) and the Bayesian magnitude 
of completeness (BMC) method (Mignan et al., 2011, 
2013), combine information from earthquake catalogs 
and stations. The PMC method does not depend on the 
G–R model and uses only actual observational data, 
including phase data and station information. The 
BMC method optimizes spatial resolution through the 
integration of prior information on station density with 
local observations. The hierarchical Bayesian model, 
developed based on the BMC method, exhibits higher 
accuracy than the BMC method (Feng et al., 2022). The 
generalized gamma function model can be used for the 
estimation of earthquake catalog completeness, detection 
probability, and b-values, enhancing the accuracy of 
b-value estimation (Martinsson and Jonsson, 2018). The 
normalized distance method (Lombardi, 2021) combines 
maximum likelihood estimation, goodness-of-fit tests, 
and bootstrapping to provide more accurate estimates 
of MC and b-values. Leptokaropoulos et al. (2018) 
discussed the impact of magnitude uncertainty on the 
estimation of earthquake catalog parameters.

T h e  o v e r e s t i m a t i o n  o f  M C c a n  l e a d  t o  t h e 
underutilization of earthquake catalogs, whereas 
underestimation can introduce inaccuracies in the 
estimates of model parameters. Earthquake catalogs are 

inherently heterogeneous and complex datasets aff ected 
by seismic network limitations and spatiotemporal 
variations in earthquake activity (Mignan and Woessner, 
2012). Earlier earthquake catalogs tend to have lower 
completeness, whereas recent catalogs have higher 
completeness owing to the advancement of seismic 
networks. To incorporate both older and newer data, a 
higher MC threshold might be necessary, but this often 
results in the discarding of valuable low-magnitude 
information from the more recent, complete data. 
Conversely, opting for a lower MC necessitates the 
reduction of the time span of the earthquake catalog, 
and a similar dilemma exists spatially. Consequently, 
researchers are often compelled to adopt overly 
conservative MC estimation methods (Mizrahi et al., 
2021). After large earthquakes, because of the strong 
temporal clustering of seismic activity, monitoring 
networks can only capture a subset of events during 
periods of high activity (Kagan, 2004), leading to short-
term aftershock incompleteness (Hainzl, 2022). The 
incorporation of variable MC or detection probability as 
parameters in earthquake models can account for the 
heterogeneity in MC, extending the range of seismic data 
used for model parameter estimation and improving 
model fi tting (Omi et al., 2014; Hainzl, 2016).

Various researchers have compared catalog evaluation 
methods in terms of reliability. Mignan (2012) examined 
how the shape of the frequency–magnitude distribution 
(FMD) impacts the reliability of results. Mignan and 
Woessner (2012) compared the effectiveness of six 
catalog evaluation methods, and Huang et al. (2016) 
conducted numerical tests on five methods, revealing 
that the entire magnitude range (EMR) method is 
stable but generally underestimates MC. Zhou et al. 
(2018) analyzed the stability and reliability of five 
methods under low event numbers and spatiotemporal 
heterogeneity. Pavlenko and Zavyalov (2022) compared 
the eff ectiveness of six methods using synthetic catalogs, 
exploring the eff ects of sample size and initial magnitude 
distribution shape on estimation results. Gong et al. 
(2024) employed synthetic data to assess the stability 
and accuracy of eight methods for estimating MC. 
Whereas previous studies have extensively discussed MC 
estimation, the evaluation of detection probability has 
received less attention.

The PMC method estimates the catalog completeness 
of seismic networks based on the detection probabilities 
of seismic stations. In the EMR method (Woessner and 
Wiemer, 2005), a model that incorporates detection 
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probability is fitted to the FMD across the entire 
magnitude range. Although PMC and EMR methods are 
based on diff erent prior assumptions and computational 
principles, both can estimate earthquake detection 
probabilities and completeness magnitudes. Herein, we 
applied both methods to earthquake observation data 
from the northern Ordos Block margin between 2010 
and 2023 to evaluate both the detection probabilities and 
the completeness of the earthquake catalog. Through 
a comparative analysis of the results, we assessed the 
applicability and accuracy of the two methods and 
elaborated on the quality of the earthquake catalog for 
the study area. Overall, the present study contributes to 
the understanding of detection probability estimation.

Data Overview

The northern margin of the Ordos Block (38°–42°N, 
104°–116°E), located at the junction of several active 
tectonic blocks, was selected as the study area. This 
region, characterized by a history of significant 
earthquakes and numerous active faults since the 
Holocene epoch, presents a considerable risk of future 
seismic events (Xu et al., 2017). It stands out as a 

primary zone of strong seismic activity in Northern 
China (Gao et al., 2016). We utilized the earthquake 
catalog of the China Seismic Network, which covers 
the period from 1965 to 2023 and contains a total of 
48805 earthquake records in local magnitude ML (further 
used as a default magnitude unit). We employed the 
magnitude–rank method and the Maximum Curvature 
(MAXC) method (Wiemer and Wyss,  2000) to 
qualitatively and quantitatively analyze the temporal 
changes in the completeness of the earthquake catalog. 
In the magnitude–rank method (Figure 1(a)), earthquake 
events are sorted in chronological order to observe the 
distribution of earthquake density in both time and 
magnitude (Bi et al., 2023). Areas with high earthquake 
density correspond to MC; importantly, this method 
can exclude the impact of "clustered events" on the 
results (Jiang and Wu, 2011). For quantitative analysis, 
the MAXC method was used to evaluate the temporal 
characteristics of MC in the study area with a window 
length of 500 events (Figure 1(b)). 

Figures 1(a) and 1(b) reveal a stepwise decrease in MC 
for the study area between 1965 and 2023, stabilizing 
after 2010. Based on these trends, we divided the 
earthquake catalog into three distinct periods. The first 
period, spanning 1965 to 1996, shows a relatively stable 
MC that fluctuates around magnitude 2, with a brief 

Figure 1. Temporal variation in MC in the study area in 1976–2023.
(a) Magnitude–Rank chart; (b) MAXC results.

0 0.5 1 1.5 2 2.5 x104

196
5

197
4

197
9

198
4

198
9

199
4

199
9
200

1
200

2
200

3
200

4
200

4
200

5
200

6
200

7
200

8
200

9
201

0
201

1
201

2
201

3
201

4
201

5
201

6
201

7
201

8
201

9
202

0
202

1
202

2 10

20

30

40

50

60

(b)

1980 1990 2000
Time/Year

2010 2020

M
C

3.5

3

2.5

2

1.5

1

0.5

0

(b)

Ma
gn

itu
de

 (M
L)

5

4

3

2

1

0

–1

MC

MCThe first stage: 1966-1996
The second stage: 1997-2009

The third stage: 2010-2023

Earthquake Number

Rank



4

Earthquake detection probabilities and completeness magnitude in the northern margin of the Ordos Block

increase to approximately 4.0 after the 1976 earthquake, 
followed by a gradual recovery to around 2.0 by 1987. 
The second period, from 1997 to 2009, coincides with 
the implementation of the "China Digital Seismograph 
Network" (Liu et al., 2008) and exhibits MC values 
fl uctuating between 1.0 and 2.0. Lastly, the third period, 
covering 2010–2023, shows a signifi cant decline in MC 
followed by stabilization between 0.5 and 1.5, coinciding 
with the implementation of the "15th Five-Year Plan" for 
the digital observation platform by the China Earthquake 
Administration. Importantly, Figure 1(a) reveals a 
wealth of data below the determined MC, highlighting 
the substantial variation in monitoring capabilities over 
time. The use of a fixed MC would inevitably lead to 
the exclusion of a significant portion of data across 
temporal, spatial, or magnitude dimensions.

The dataset utilized for the comparative analysis of 
the PMC and EMR methods encompasses earthquake 
observation data from 2010 to 2023, including a catalog 
of 26,057 earthquakes and observation reports from 76 
permanent seismic stations. Figure 2 shows the spatial 
distribution of earthquakes and seismic stations in the 
study area (Figure 2(a)), the magnitude–frequency 
and cumulative frequency distributions (Figure 2(b)), 
and the annual earthquake counts (Figure 2(c)). The 
spatial distribution of earthquakes in the study area is 
heterogeneous: earthquakes are primarily concentrated 
within the rift zones along the periphery of the Ordos 
Block, with lower seismicity levels observed in the 
interior part of the block and along its northern boundary. 
The spatial distribution of seismic stations is also non-
uniform, with a higher station density in the eastern part 
of the study region.

Figure 2. Data Overview
(a) Earthquake epicenters and seismic stations; (b) magnitude–frequency distribution and CDF; (c) annual earthquake counts.
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Method

PMC
In the PMC method, fi rst, the distribution of detection 

probability is determined for each station within a two-
dimensional parameter space defi ned by magnitude and 
distance. Based on these individual station probabilities, 
we calculated the probability that each grid point in the 
spatial domain is simultaneously detected by a specifi c 
number of stations (set to 4 based on the actual network 
configuration). This yielded a detection probability 
distribution map for the network. By setting a detection 
probability threshold Q, we defined the smallest 
magnitude that meets this threshold as the probability-
based magnitude of completeness (denoted as MP in this 
paper).

In the fi rst step, the probability of detection for each 
station was calculated (Schorlemmer and Woessner, 
2008). Earthquake events recorded by the network 
were plotted in a two-dimensional coordinate system 
of magnitude (M) and epicentral distance (L). Distance 
L and magnitude M were then unified into a single 
magnitude unit using a calibration function specific to 
the China region. In the unified magnitude–magnitude 
space, events within a Euclidean distance of 0.1 were 
considered (if the sample size was less than 10, the 
range was expanded to at least 10 samples). The number 
of events detected (N+) and not detected (N−) by the 
station under consideration were then used to calculate 
detection probability PD(M, L) for the station at (M, L) 
using Equation (1):

. (1)

We smoothed the probability distribution of stations 
through simple physical constraints. (1) At the same 
distance, the detection probability should not decrease 
with the increase in magnitude. (2) For the same 
magnitude, the detection probability should not decrease 
with the decrease in distance. This smoothing method 
was employed to address data sparsity while adhering to 
physical principles.

In the second step, the detection probability for 
the entire network was calculated for earthquakes of 
different magnitudes at each grid point, referred to as 
the synthetic detection probability (PE). It is the joint 
probability of multiple stations simultaneously recording 
an event. The probability of an earthquake being detected 

by at least 4 stations was calculated by subtracting the 
probabilities of detection by fewer than 4 stations from 1, 
as expressed in Equation (2):

   (2)  

Here,  represents the probability that an earthquake at 
a certain grid point is detected by exactly i stations.

The completeness magnitude, MP, is defined as the 
minimum magnitude M at which PE reaches threshold Q 
(Equation 3).

. (3)

Q is the threshold level for earthquakes to be missed, set 
at 0.001. 

The average spacing between stations in the study 
area exceeds 50 km. Because of the limited accuracy 
of the data on the depth of earthquake sources in the 
catalog, we did not consider the eff ect of source depth (an 
average depth of 15 km was assumed). The statistical 
range for station detection probability was set from 
epicentral distance 0–400 km and magnitude 0–5.

EMR
The EMR method (Woessner and Wiemer, 2005) 

models the entire range of the FMD. The high-
magnitude segment (which conforms to the Gutenberg–
Richter relationship) is described by a simple power-law 
function, expressed as log N(M) = a − bM, where N(M) 
represents the frequency of earthquakes with magnitude 
greater than or equal to M; a and b are fi tting parameters; 
and M is the magnitude.

For the incomplete part below the MC, the detection 
probability is described using a one-sided normal 
distribution, denoted by q (Equation (4)). Initially, the 
MAXC method is used to estimate MC. Then, near this 
estimated value, a segmented function is fitted using 
maximum likelihood estimation to obtain estimates of 
parameters μ and σ. The fit of the segmented function 
is evaluated using the Kolmogorov–Smirnov test at a 
significance level of 0.05 (Conover, 1999). Bootstrap 
resampling is used to compute a 95% confidence 
interval, assessing the uncertainty of MC.

   (4)

Here, μ represents the magnitude at which 50% of 
earthquakes are detected, and σ is the corresponding 
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standard deviation. A higher σ value indicates a rapid 
decrease in the network's detection capability. Above 
the MC, the detection probability of earthquakes is 1. 
Figure 3 shows the results for a subset of data from the 
study area (1000 earthquakes). Figure 3(a) shows the 
results on a logarithmic scale, with MC estimated at 1.5. 
It displays the theoretical FMD (circles, based on the 
EMR model), theoretical cumulative FMD (CFMD; 
dashed line, based on the G–R model), observed FMD 

(diamonds), and observed CFMD (triangles). The 
segmented model of the EMR method fi ts the data well 
on both sides of MC. Figure 3(b) shows the likelihood 
as a function of magnitude, and Figure 3(c) exhibits 
the probability of detection as a function of magnitude, 
derived from the ratio of the theoretical FMD according 
to the EMR model and the G–R model across diff erent 
magnitude bins. The positions of points deviating from 
the horizontal line correspond to MC.

Figure 3. Example EMR results
(a) FMD and CFMD (Fitting results of the G–R and EMR models); (b) likelihood (MLE) as a function of magnitude; (c) probability 

of detection as a function of magnitude.
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Result

Station-Wise Detection Probability
To assess the detection probability for 76 seismic 

stations using the PMC method, we used the average 
detection probability within 200 km for earthquakes 
of magnitude 3 or less as the evaluation metric. This 
approach is simpler than that employed by Wang et al. 
(2017) because it uses a single value to represent the 
detection capabilities of a station, which provides some 
information about the detection probability. Stations 
with better recording capabilities for nearby earthquakes 
have larger areas where the detection probability reaches 
1, resulting in a higher average detection probability. 
Therefore, a single metric can be used to effectively 
compare the earthquake detection capabilities of stations 
in the study area. Herein, "detection capability" primarily 
describes a station's ability to record earthquakes, 
corresponding to the detection probability of a staion. At 
the same time, "monitoring capability" mainly describes 
the seismic network's ability to record earthquakes 
within a spatiotemporal area, corresponding to the 

detection probability and completeness magnitude of the 
network.

Figure 4 shows the distribution and frequency of 
station scores. In Figure 5, stations are categorized into 
three categories (good, moderate, and poor), showing 
examples of their recording capabilities through original 
data plots and detection probability distribution plots. 
In the original data plots, red and green dots represent 
earthquakes not recorded and recorded in the station's 
catalog, respectively. For example, the JIZ station scores 
0.13, indicating that it hardly recorded earthquakes 
below magnitude 2 within 100 km and only detected 
earthquakes above magnitude 2.5 within 50 km. The XIJ 
station scores 0.35, showing that it detected earthquakes 
above magnitude 1 within 50 km and earthquakes above 
magnitude 3 within 150 km. The SHZ station scores 0.65, 
indicating that it detected earthquakes below magnitude 
0.5 within 50 km, earthquakes above magnitude 1.5 
within 100 km, and earthquakes above magnitude 3 
within 300 km. Owing to data truncation, some stations 
at the edges of the study area have lower scores, 
particularly stations on the southeast side.

Figure 4. Spatial distribution and frequency plot of station scores:
(a) station map with scores; (b) cumulative and noncumulative frequency distributions of station scorings.
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Seismic signals recorded by a station should be 
positively correlated with magnitude and negatively 
correlated with distance. The detection probability 
should also follow these patterns and exhibit continuous 
variation. However, some stations exhibit different 
tendencies in their detection probability plots (Figure 
6). For instance, the detection probability of the NIW 
station for low-magnitude events does not decrease with 
distance (Figure 6(a)). This anomaly was attributed to 
the incompleteness of the earthquake catalog for low-
magnitude events in the seismic network, resulting in the 

underestimation of the denominator when calculating 
detection probability, thus resulting in the overestimation 
of the latter Equation (1). Schorlemmer et al. (2018) 
discussed similar situations. The detection probability of 
the NIW station rapidly drops to near zero beyond 150 
km, indicating the underutilization of this station for the 
detection of more distant earthquakes within the study 
area. The BTO station shows a distinct step-like pattern 
around magnitude 1, caused by insuffi  cient data for low-
magnitude events.
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Earthquake Detection Probability and 
Magnitude of Completeness

When using the PMC method, after obtaining the 
detection probability for each station, the synthetic 
detection probability formula (Equation (2)) was 
applied to derive the synthetic detection probability, 
PE, for different magnitude bins. This PE represents 
the detection probability of the seismic network and 
is denoted as P(PMC). For the EMR method, a spatial 
grid with a resolution of 0.1° × 0.1° was employed. 
A circular area with a radius of 100 km centered on 

each grid point was used to defi ne the earthquake event 
selection zone. A minimum earthquake count threshold 
of 50 events was used in the analysis. To evaluate δMC, 
100 bootstrap resampling iterations were performed, 
ultimately yielding the spatial distributions of both the 
completeness magnitude (MC(EMR)) and the detection 
probability (P(EMR)) at different magnitude levels. 
We then plotted the detection probability distributions 
for both methods at magnitudes 0.3,0.5,0.8,1.0,1.5 
and 2.0 (fi rst two columns in Figure 7), along with the 
differences in detection probabilities between the two 
methods (third column in Figure 7).

Figure 5 Station-wise detection probabilities for three score ranges.
The graph presents data and detection probability distribution for three stations. The fi rst column represents raw data, and the 
second column shows station detection probability. Each pair of plots corresponds to a station, with station names and scores 

indicated on the left.
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As shown in Figure 7, the high-value detection 
probability areas expand with increasing magnitude. 
For magnitude 0.3, high detection probability areas 
are concentrated on the eastern side of the study area. 
For magnitude 1.5, the area of certain detection covers 
almost the entire study region. In the third column of 
Figure 7, for lower magnitudes, P(PMC) is higher than 
P(EMR) in areas with good monitoring capabilities, 
while P(PMC) is lower than P(EMR) in areas with 

worse monitoring capabilities. The diff erences between 
P(PMC) and P(EMR) decrease with increasing 
magnitude. At magnitudes above 0.5, the discrepancy 
is concentrated in the northwestern part of the study 
area, where P(PMC) is generally higher than P(EMR). 
As the magnitude increases, the diff erences between the 
detection probabilities of the two methods diminish, with 
P(PMC) showing a faster rate of change with increasing 
magnitude.

Figure 6 Stations exhibiting non-compliant decay patterns:
distributions of detection probability with the station names labeled above each subplot.
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Figure 7. Spatial distribution of earthquake detection probability for different magnitude (0.3, 0.5, 0.8, 1.0, 1.5 and 2.0) using EMR 
method (fi rst column) ,PMC method (second column) and   the difference between the two methods (third column).

Figure 8. Comprehensive magnitude completeness:
(a) MC (EMR); (b) MP; (c) MC (EMR)−MP.

Figure 8 presents the completeness magnitudes 
(MP and MC(EMR)) obtained via the PMC and EMR 
methods, as well as their diff erences (MC(EMR) − MP). 
The PMC method provided complete estimates for the 
study area, whereas the EMR method yielded results 
only for a portion of the area (blank areas in Figures 
8(a) and 8(c) indicate regions where the calculation 
conditions were not met and no assessment was made). 
The results of the two methods are positively correlated, 
showing that the monitoring capabilities gradually 
decrease from east to west. The diff erence map (Figure 
8(c)) shows that MC(EMR) is higher than MP on the 
eastern side of the study area, whereas MP is higher 
than MC(EMR) in most of the central and western areas. 
Figure 9(a) displays the relationship between MP and 

MC(EMR) in the common calculable area, showing a 
positive and approximately linear correlation between 
the two. The dashed line represents the reference line 
(MP = MC(EMR)), with MP being about 0.5 lower than 
MC(EMR), indicating a systematic difference. Figure 
9(b) shows that MC(EMR) and the diff erence (MC(EMR) 
− MP) are positively correlated, suggesting that MP 
is underestimated to a greater extent in areas with 
weaker monitoring capabilities. This was attributed to 
the overestimation of detection probability for lower 
magnitudes and areas with weak monitoring capabilities, 
as previously discussed. The higher MC(EMR) values 
compared to MP in the southern part of the study area 
were attributed to the truncation eff ect of data selection. 
In the PMC method, we did not consider the eff ects of 
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Figure 9. Relationship between the results of the two methods:
(a) MP vs. MC (EMR); (b) MC (EMR)−MP vs, MC (EMR).

stations and data outside the study area on the evaluation 
results, whereas the results of the EMR method, which 
employs actual observed data, are not affected by 
data truncation. A significant spatial heterogeneity in 
monitoring capabilities is observed within the study 
area, which is closely related to station distribution. 
The monitoring capabilities are better on the eastern 
side of the study area, with MP below 1, whereas areas 
with dense station distribution in the northeast show MP 
values below 0.5. The monitoring capabilities are the 

weakest in the western side of the study area, with MP 
around 3. In areas with better monitoring capabilities, 
the assessment results of the two methods are closer, 
whereas in areas with weaker monitoring capabilities, 
MP is lower than MC (EMR). Evaluations performed 
using the EMR and PMC methods for the study area a 
decade earlier (Liu et al., 2013; Liu et al., 2014) showed 
higher MC (EMR) and MP, indicating that monitoring 
capabilities in the study area improved over the past 
decade.
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Discussion

Calculations of detection probability require knowing 
the number of actual recorded earthquakes and the 
number of earthquakes that truly occurred. However, the 
true number of earthquakes is unknown. Therefore, the 
main challenge in evaluating detection probabilities lies 
in estimating the true number of earthquakes. The two 
methods used herein diff er primarily in their approach to 
the estimation of the true number of earthquakes. In the 
PMC method, the network's earthquake catalog is used as 
a representation of true earthquake occurrences. Because 
of the inherent incompleteness of network catalogs, this 
approach may underestimate the detection probability. 
At the same time, in the EMR method, the number of 
actual earthquakes at lower magnitudes is extrapolated 
based on the Gutenberg–Richter relationship. This 
method is highly sensitive to the b-value so that even 
small errors can signifi cantly impact the estimated true 
earthquake count. The discrepancies in completeness 
magnitudes obtained through these two methods reveal 
that in regions with weaker monitoring capabilities, 
the PMC method yields higher probabilities than the 

EMR method, supporting our hypothesis. Conversely, 
in regions with better monitoring capabilities, the 
differences between the results of the two methods are 
less pronounced.

We plotted the detection probability curves with 
respect to magnitude for nine grid points at different 
locations within the study area (Figure 10). The shapes 
of the curves, showing the relationship between 
detection probability and magnitude, vary between the 
two methods across different regions. In regions with 
robust monitoring capabilities (Figures 10(e)–(i)), the 
curves derived via both methods are in good agreement. 
However, in regions with weaker monitoring capabilities 
(Figures 10(a)–(d)), the curve of the PMC method 
deviates from the horizontal line (where the x-coordinate 
equals 1) at lower magnitudes compared to the EMR 
method. Notably, across all grid points, the curves 
generated using the PMC method exhibit a more rapid 
decay.

To investigate the effect of the distance for which 
station-wise detection probability is calculated on the 
network catalog completeness, two distance thresholds 
(D) were tested. Figure 11(a) presents the results for D 
= 400 km, and Figure 11(b) exhibits the results for D = 
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200 km. The difference (ΔMP) between the two results 
is shown in Figure11(d) and (f). The two results are 
highly consistent, with minor discrepancies observed in 
regions with high network density. The distance to the 
fourth nearest station (D4th) was selected as an indicator 
of network density (Density) to analyze its impact on the 
results, following Mignan et al. (2011) (Figure 11(c)). 
Lower D4th values indicate higher network density. Figure 
11(f) shows the variation in ΔMP with D4th, indicating 
a positive correlation between the two. Overall, ΔMP is 
predominantly within 0.5, and for D4th within 100 km, 

ΔMP is mostly below 0.3. In regions where D4th is less 
than 50 km, the results are very close, indicating that in 
densely populated station areas, MP is primarily aff ected 
by nearby stations, whereas in sparsely populated areas, 
it is influenced more by distant stations. Figure 11(e) 
shows MC (EMR), MP, and MC (EMR)−MP as functions 
of D4th. MC (EMR) values are higher than MP, and both 
MC (EMR) and MP are positively correlated with D4th 
but show a notable degree of dispersion. This suggests 
that factors beyond station density also contribute to 
monitoring capabilities.

Figure 10 Decay curves of detection probability at different grid points.
The graph compares the detection probability curves for 9 points, with each subplot representing one point. Latitude and 

longitude are labeled above each subplot.
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Figure 12 exhibits the changes in P(EMR) and 
P(PMC) with D4th and magnitude. Both P(EMR) and P 
(PMC) are negatively correlated with D4th and positively 

correlated with magnitude, with P(PMC) showing a 
more pronounced variation with D4th and magnitude than 
P(EMR).

Figure 11. Effects of parameters used in station-wise evaluation as well as network density on results.
(a) Distribution of MP for a station evaluation range of 0–400 km; (b) distribution of MP for a station evaluation range of 

0–200 km; (c) distribution of network density parameter D4th; (d) difference between the results for the two evaluation ranges; 
(e) MC (EMR), MP, and MC (EMR)−MP as functions of D4th; (f) relationship between ΔMP and D4th.

Figure 12. Variation in the detection probability of the network with magnitude and network density
(a) P(EMR); (b) P(PMC).
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Schorlemmer and Woessner (2008) compared the 
PMC and EMR methods in Southern California and 
reported that MP is lower than MC (EMR) at 77% of 
the grid points and higher at approximately 11%. 

Conversely, assessments in Switzerland (Nanjo et al., 
2010) and seismic array studies (Jiang et al., 2015) 
have shown that MP is generally higher than MC (EMR). 
Herein, MC (PMC) is lower than MC (EMR), aligning 
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with the results of the Southern California study but with 
a more pronounced diff erence. Figure 8 shows that MC 
(EMR) is lower than MP at the edges of the study area. 
This discrepancy was attributed to data truncation eff ects 
arising from the exclusion of stations and data from 
outside the study area when assessing the monitoring 
capabilities within the study region. Two types of 
truncation effects could have affected our estimates of 
network monitoring capabilities. First, relying solely on 
earthquake data from within the study area might not 
fully refl ect the detection capabilities of stations located 
near its edges because, in this case, events recorded by 
these stations outside the region are omitted (Li and 
Huang, 2014). However, herein, data solely from within 
the study area was used to better reflect each station's 
ability to record earthquakes in that region. Thus, we 
did not expand our dataset. The second truncation eff ect 
concerns station selection, potentially leading to the 
underestimation of monitoring capabilities, particularly 
in the southern part of the study area.

The EMR method shows commendable reliability and 
stability compared with other methods (Woessner and 
Wiemer, 2005), especially for small sample sizes (Zhou 
et al., 2018). However, it is prone to overestimation 
(Pavlenko et al., 2022) and fails to provide assessments 
in regions with insufficient data. PMC methodically 
assesses MC by analyzing the characteristics of the 
seismic network without assuming a G–R model. This 
method uses actual earthquake observations to overcome 
the "blank areas" caused by a scarcity of earthquakes, 
thereby providing comprehensive evaluations across the 
study area. However, the PMC method operates under 
the assumption that the network's earthquake record 
is complete. This assumption is then used to assess 
station detection probabilities, which are further used to 
derive network detection probabilities and completeness 
magnitude. This process is based on circular reasoning, 
making PMC inherently inconsistent. Thus, PMC’s 
evaluation lower limit is the seismic network's actual 
MC. Therefore, when using PMC, it is essential to ensure 
that its underlying assumptions are met or to correct 
biases by combining PMC with methods such as EMR 
based on prior information.

Conclusion

The completeness of the earthquake catalogs often 

shows temporal and spatial heterogeneity. At the same 
time, detection probability provides a more detailed 
description of the earthquake catalog. Herein, the 
northern margin of the Ordos Block was selected as the 
study area to evaluate the overall temporal changes in 
the completeness of the earthquake catalog since 1965. 
The PMC and EMR methods were used to analyze the 
earthquake catalog since 2010 to obtain the detection 
probability and completeness magnitude in the study 
area. The results of the two methods were compared, 
with the main fi ndings presented below:

(1) Using the magnitude–rank method and the 
MAXC method, we studied the temporal changes in 
the completeness of the earthquake catalog from 1965 
to June 2023. MC in the study area showed a phased 
decline, stabilizing after 2010, which was attributed 
to the improvement of monitoring capabilities and the 
increase in the density of seismic networks. At the same 
time, signifi cant diff erences in MC were observed across 
diff erent periods.

(2) The PMC method was used to obtain the 
distribution of detection probability in the distance–
magnitude space for 76 stations, along with station 
scores for the period from 2010 to June 2023. The 
detection capabilities of different stations significantly 
differed. According to the calculation principles and 
actual results, station detection probability is affected 
by the completeness of the network catalog, potentially 
leading to overestimation at lower magnitudes. The 
obtained MP and MC (EMR) supported these speculations.

(3) We used the PMC and EMR methods to obtain 
detection probabilities at different grid points in the 
study area (P(PMC) and P(EMR)). In areas with 
weaker monitoring capabilities, P(PMC) was lower 
than P(EMR), with the difference decreasing with the 
increase in magnitude. The curves of P(PMC) and 
P(EMR) versus magnitude were consistent in areas with 
good monitoring capabilities. At the same time, in areas 
with poor monitoring capabilities, the P(PMC) curve 
deviated from the horizontal line at lower magnitudes 
compared to P(EMR). Additionally, P(PMC) varied 
more signifi cantly with the changes in network density 
and magnitude.

(4)  The  de tec t ion  probabi l i t ies  (M P and  MC 
(EMR)) at different grid points in the study area were 
positively correlated and exhibited an approximately 
linear relationship. MP was generally lower than MC 
(EMR), with a systematic difference of about 0.5. The 
underestimation of MP was related to the overestimation 
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of station-wise detection probabilities, which was 
more significant in areas with weaker monitoring 
capabilities. The statistical range of station-wise 
detection probabilities aff ected the MP results, especially 
in sparsely populated areas.

(5) The distribution of monitoring capabilities of the 
seismic network along the northern margin of the Ordos 
Block was uneven. The obtained MC values increased 
with decreasing station density. In the eastern part of 
the study area, MP was less than 1, and in the densely 
populated northeastern region, MP could be less than 
0.5. The western part of the study area showed the worst 
monitoring capabilities, with MP around 3. Data and 
station selection affected the assessment results at the 
edges of the study area.
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