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Abstract: The selection of input variables and their amount has been an important issue in big data load 
forecasting. Taking heating load forecasting as an example, this paper proposed a method for data fi ltering 
based on information entropy. First, the heating data from an air source heat pump system adopted by a rural 
residence in northern China were employed. Moreover, the training data were classifi ed based on linear or 
nonlinear variations of outdoor temperature and its changing ranges, while the validation data included three 
diff erent types of weather conditions, namely, cold, cool, and mild. Then, the information entropy under 2-h, 
4-h, 6-h and 8-h training window was quantifi ed to be 1.811, 1.839, 1.877 and 1.856, respectively. For the 
employed rural residence, an equivalent three-resistance and two-capacity model was established to validate 
the eff ectiveness of the training window. Using the derived optimal thermal resistance and capacity, the various 
selection of outdoor temperature variation trend and range were compared and optimized. Results showed that 
6 h of training data had the maximum information entropy and the most abundant information, the minimum 
errors between actual and forecasting data were observed under 6 h of training data, linear change, and lower 
outdoor temperature. The mean absolute percentage errors for the load forecasting of three typical days were 
5.63%, 8.46%, and 12.10%, respectively.
Keywords: training data selection; information entropy; heating load model; rural residence

Introduction

The building sector represents a substantial energy 
consumer, and a substantial proportion of energy is 
allocated to heating, ventilation, and air conditioning. 
Statistical studies indicate that buildings account for 

40% of global energy consumption (Kang et al., 2023; 
Lu et al., 2023). By accurately predicting short-term 
building load, energy utilization can be optimized to save 
energy and reduce emissions (Wang et al., 2023). The 
data involved in load forecasting have been expanding 
owing to the growing adoption of intelligent building 
technology and sensor equipment (Ledesma et al., 2023). 
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Hence, the selection of input variables and their amount 
directly infl uences the accuracy and utility of the results 
of building load prediction.

The conventional approaches for input variable 
selection encompassed various algorithms and the use 
of principal component analysis (PCA) to decompose 
data. The cluster decomposition algorithm was generally 
employed in various algorithms for input variable 
selection. Li et al. (2022) combined unsupervised 
K-means clustering and supervised K-nearest neighbor 
classification methods to conduct data clustering and 
extract features from input data for load prediction. 
Fan et al. (2015) used cluster analysis to optimize the 
input data and enhance the predictive performance 
of the model. Panapakidis et al. (2014) proposed a 
method to study the electricity consumption of buildings 
through clustering techniques. Luo et al. (2020) 
employed clustering technology to extract features 
from input data, such as daily weather profi les. Chen et 
al. (2020) developed an enhanced pattern recognition 
prediction model based on fuzzy C-means clustering 
and nonlinear regression techniques. Ding et al. (2017) 
built a clustering method to optimize the accuracy of 
office building cooling load prediction for model input 
variables. Lin et al. (2022) used K-means algorithm to 
cluster the input data set to enhance the accuracy and 
stability of the model.

The random forest (RF) algorithm was also utilized 
for data processing and analysis. Liu et al. (2023) 
proposed RF to select high-influence parameters of 
building cooling load to lower the dimensionality of 
original input data and to strengthen the generalization 
ability of the model. Dong et al. (2021) examined RF 
and Pearson correlation analysis to identify features 
of the input data. Liu et al. (2023) used RF to select 
input data for cooling load prediction for large public 
buildings. In addition, some alternative algorithms were 
utilized to select input variables for load forecasting 
by scholars. Tan et al. (2023) developed a multistage 
input data feature filtering method for load prediction 
based on a synthesis correlation analysis algorithm. 
Amasyali et al. (2021) utilized neighborhood component 
analysis to conduct feature selection on input data. Xiao 
et al. (2023) proposed a time convolutional network to 
extract features and developed input feature sets for the 
prediction model. Zhou et al. (2021) adopted operating 
parameters determined by the ReliefF algorithm as input 
parameters to enhance model stability.

The technique of decomposing data to extract features 

for load forecasting was greatly used by scholars and 
researchers. Lu et al. (2020) employed a fully integrated 
empirical mode decomposition with adaptive noise to 
decompose raw data into multiple smooth datasets to 
forecast building load. Al-musaylh et al. (2018) and 
Wang et al. (2019) decomposed the input data into 
intrinsic mode functions and residual terms. Yang et al. 
(2022) used mutual information and PCA to conduct 
feature selection reduction on multidimensional weather 
influencing factors. Quanga et al. (2021) developed a 
hybrid online model for real-time data processing and 
decomposed the original load sequence into trend terms, 
seasonal terms, and residual terms.

The said methods mainly focused on the selection 
of input variables, while determining the optimal 
amount of data needed for load prediction is also 
crucial. Information theory has been employed for data 
processing and analysis for a considerably long time. 
Zhang et al. (2016) introduced a novel data feature 
selection method by merging fuzzy rough sets with 
information entropy theory. Dai et al. (2016) used feature 
selection algorithms for an interval-valued information 
system based on information entropy. Deng et al. (2022) 
performed the neighborhood fuzzy entropy method 
based on dual-similarity to select data features for label 
distribution learning. Zhu et al. (2023) presented an 
information screening method based on entropy to select 
samples with high information content. Zhang et al. 
(2023) explored the selection of data features for portion 
labeling of neighborhood rough set information theory. 
Zhao et al. (2023) suggested a partial label classifi cation 
data outlier detection based on conditional information 
entropy, which improved the application scenarios and 
ranges of information entropy. He et al. (2024) presented 
an oscillating particle swarm optimization feature 
selection algorithm for mixed data based on mutual 
information entropy, which increased the classification 
accuracy by 5.8% compared with other algorithms. The 
advantages of data fi ltering based on information entropy 
are as follows:

1) Information entropy can be employed for feature 
selection to decrease data dimension and increase model 
effi  ciency. 

2) Information entropy filtering facilitates lessening 
redundant information in the data and strengthening the 
generalization ability of the model.

3) Information entropy can be employed to optimize 
the attention model and enhance the information 
resolution.
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Therefore, selecting the appropriate amount of training 
data is key to the successful construction of a heating 
load model. In this paper, a data fi ltering method based 
on information entropy is presented, and the information 
entropies of 2, 4, 6, and 8 h of training data are 
determined. The eff ectiveness of the data fi ltering using 
information entropy is proven through the prediction 
results of room temperature and heating load by the 
developed equivalent three-resistance, two-capacity 
(3R2C) model. 

Modeling and Methodology

This section presents the experimental methodologies, 

the selection and classification of data, the method 
of information entropy for data filtering, and the 
development of an equivalent resistance–capacitance 
(RC) model.

Experimental methodologies
Fig. 1 shows that the detached rural residence is in 

Beijing, China, in a cold zone, with an average outdoor 
air temperature of −1.6°C in winter. The rural residence 
has a fl oor area of approximately 120 m2. The building 
has four rooms, all with south-facing windows. The 
windows are double glass with aluminum frames. All the 
walls are made of 6 cm thick bricks and covered with 
plaster.

Fig. 1 View of a detached rural residence in Beijing.

The heating supply data are acquired from an actual 
heating project. The heating system is observed from 
November 15, 2019, to March 15, 2020. Heating load 
and outdoor air temperature are examined as inputs to 
the RC model. All data are sampled at intervals of 1 min, 
which can avoid overlooking thermal dynamics.

Methodology of information entropy
The term “information” is the interpretation or 

decoding of events, data, or signals that possess 
signifi cance. In information theory, information content 
can commonly be expressed as the uncertainty of the 
contained data. To deepen the understanding of this 
uncertainty, employing the concept of information 
entropy for explanation is customary.

The idea of “information entropy” was introduced by 
Shannon in 1948 (Li et al. 2022). “Information entropy” 
is the level of uncertainty or amount of information 
contained in a random event (Rossini et al. 2019). It 
can be applied in numerous fields, such as geoscience, 
artificial intelligence, data filtering, and geoscience 
(Ghosh et al. 2017). The utilization of information 
entropy fi ltering mitigates superfl uous data and improves 
the model’s generalization capacity.

A load forecasting case is used to analyze the 
application of information entropy filtering for data 
analysis in this paper. The process of information 
entropy fi ltering data is presented in Fig. 2. The general 
procedure for screening data by information entropy 
can include the following steps (using building load 
forecasting as an example): 

1) Data collecting. Data collection involves gathering 
a diverse range of information relevant to load 
forecasting, covering historical load data, weather data, 
time data, and other relevant factors.

2) Data pre-processing. Data pre-processing entails 
cleaning, removing outliers, filling in missing values, 
and guaranteeing data integrity and accuracy to prime 
the gathered data for examination.

The method of data cleaning refers to the collected 
data to standardize the data format and correct the 
inconsistency. The removal of outliers refers to the 
detection and processing of extreme values that may 
cause bias in the analysis. The accumulated experimental 
data may possess unreasonable conditions, which 
are identified and eliminated by an Excel screening 
function. Filling missing values are data that have been 
supplemented owing to missing data. The average value 
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imputation approach is employed for data fi lling in this 
study.

3) Feature selection. Feature selection is a vital step 

in load forecasting, where remarkable features are 
identifi ed from the collected data.

4) Construct feature vectors. Construction of feature 

Fig. 2 Information entropy fi ltering data.

vectors is performed by arranging the eigenvalues of 
each data set in order of diff erent interval probabilities to 
form distinct eigenvectors.
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where m and n represent the number of rows and 
columns in the eigenvector, respectively, whereas i and 
j signify the position and index of element x within the 
eigenvector, respectively.

To acquire the eigenvalues of the dataset using PCA, 
the following steps are used: (1) Covariance Matrix 
Computation. Determining the covariance matrix of 
the dataset entails finding the covariance between 
each pair of variables in the dataset. (2) Eigenvalue 
Decomposition. Eigenvalue decomposition on the 
covariance matrix results in a set of eigenvalues and their 
corresponding eigenvectors. (3) Selection of Principal 
Components. The eigenvalues denote the amount of 
variance acquired by each corresponding eigenvector. 
The top eigenvalues and their associated eigenvectors 

are selected to keep the most substantial features. (4) 
Feature Vector Computation. The feature vectors are 
calculated by multiplying the original data matrix with 
the selected eigenvectors. Each row in the resulting 
matrix denotes a transformed data point in the reduced-
dimensional space.

5) Calculate probability distribution. The occurrence 
probability of each eigenvalue in different intervals is 
determined for the eigenvectors of every dataset.

6) Calculate information entropy. The information 
entropy of the training sets is calculated to quantify 
the level of uncertainty and information across several 
durations of training. The entropy equation is used for 
computational purposes in this study.

1
ln

n

j
i

E P P ,                           (2)

where P is the probability distribution, and Ej is the 
information entropy.

7) Feature ordering. The features are ordered 
according to the computed information entropy, and 
choosing features with higher information entropy is 
prioritized.
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3R2C model
The advantages of the white box and black box 

models are merged in the development of the gray box 
model, which is based on the partial mechanism method. 
The refinement of such models also requires a limited 
number of data-driven conditions, while results can be 
interpreted with specific physical implications. An RC 
model is largely used in gray-box modeling for system 
characterization. It is principally employed for loading 
prediction and building thermal modeling. Hence, an RC 
model is used for model building in this paper.

Given the inadequate thermal insulation, simple 
structure, and small heat capacity of rural residences 
in northern areas, a 3R2C model is implemented for 
this building. A simplified RC model is demonstrated 
in Fig. 3. The 3R2C model is composed of three major 
components: outdoor air, opaque envelope, indoor air 
and internal thermal mass. The simplified RC model 
hypothesis is explained in reference (Li et al. 2022; 
Kang et al. 2023).

Fig. 3 Model structure of the 3R2C model.

Each node in a circuit, Tw and Tin, is distributed to 
a circuit node, and the flow to and from each node is 
balanced. The governing equation of the heat balance of 
each node is expressed as follows:

w out w in w
w

ow wi

dT T T T TC
dt R R

,                    (3)

inf

in out in w in
in ASHP

wi

dT T T T TC Q
dt R R ,           (4)

( )ASHP p s rQ c m T T ,                    (5)

where ρ and cp are the density and the specific heat 
capacity of the heat-carrying agent, respectively. 
This model has two states, namely, Tw and Tin, which 
correspond to the temperature of the building’s 
opaque envelope and the mean indoor air temperature, 

respectively. Tout is the outdoor air temperature. Row is 
the thermal resistance between the exterior surface of an 
opaque envelope and the outdoor air. Accordingly, Rwi 

is the thermal resistance between the indoor air and the 
interior surface of an opaque envelope. Cw is the thermal 
capacitance of an opaque envelope. Cin is the thermal 
capacitance of the indoor air and internal thermal mass. 
Rinf is the thermal resistance between the indoor and 
outdoor air through windows. All thermal resistances 
and thermal capacitances are considered time-invariant. 
QASHP is the heating load provided by air source heat 
pump system, which is computed by the measured water 
flow rate and the temperature difference between the 
supplied water and the returned water.

Model identifi cation approach and the objective function
The constructed heating load model shows a nonlinear 

optimization to find the optimal values of R and C. 
Genetic algorithm (GA) is an optimization algorithm 
based on natural selection and gene recombination, 
which can automatically adjust parameters to find 
the optimal solution (Yi et al. 2022). Compared with 
other optimization algorithms, GA has the following 
advantages: 1) Parallel computing capability: GA 
can calculate multiple individuals in parallel, thus 
accelerating the optimization speed. 2) Robustness: 
GA has strong robustness to noise and discontinuity 
and can operate in complex, uncertain environments. 
3) Adaptive: GA can automatically modify parameters 
to adapt to diverse problems and data sets to enhance 
optimization efficiency. Hence, GA is employed to 
search for the optimal values of R and C. The fl ow chart 
of parameter optimization by GA is illustrated in Fig. 4.

Fig. 4 Flow chart of parameter optimization by GA.

Start GA

Initializing the value of
  Row  Rwi  Rinf  Cw  Cin

GA population initialization
Gen=1,[Row  Rwi  Rinf  Cw  Cin]

Calculating the predicted indoor air
temperature based on 3R2C model

Calculating the objection function

Fitness evaluation

Convergence or
max generation?

  Stop and output
Row  Rwi  Rinf  Cw  Cin

End

N

selection,
crossover,
mutation

The measured
   indoor air 
  temperature

gen=gen+1



6

Training data selection using information entropy: 
Application to heating load modeling of rural residence in northern China

A fitness function of GA optimization is employed 
to evaluate the predicted results and the measurement 
results in this paper. This objective function J of the 
optimization aims to minimize the integral root mean 
square error (RMSE) described in equation (6):

2

1
( )

( , , , , )

n

act pre
iow w wi inf in

x x
J R C R R C minimize

N
,

    (6)

where xact is the measured indoor air temperature; xpre is 
the predicted indoor air temperature; Row, Cw, Rwi, Rinf, 
and Cin are the parameters of the 3R2C model. 

Evaluation metrics
The mean absolute error (MAE), mean absolute 

percentage error (MAPE), RMSE, and R-squared (R2) 
are suggested to assess the accuracy of model prediction. 
The diff erence between the predicted results and actual 
values can be measured from several perspectives. The 
above performance criteria are expressed as follows:

1
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Results and Discussion

To demonstrate the effectiveness of information 
entropy filtering data, this section introduces the 
prediction of indoor air temperature and heating load 
with diff erent training windows based on the RC model.

Selection of data
Considering the small indoor thermal disturbance and 

the absence of solar radiation at night, a heating load 
model is developed using data collected after 22:00. 
The training data for 2, 4, 6, and 8 h are selected as the 
subjects. Table 1 describes the training time windows. 

The training data of 8,  6,  4,  and 2 h are the 
experimental data from 22:00 of the previous day to 
6:00, 4:00, 2:00, and 0:00 of the next day, respectively, 
and 1 min denotes a set of experimental data. Hence, the 
training data of 2 to 8 h are expressed as 120 to 480 sets 
of experimental data, respectively.

Table 1 Description of training time windows
Training time window (h) 2 4 6 8

Time of duration (h) 22:00-0:00 22:00-2:00 22:00-4:00 22:00-6:00
Experimental data (sets) 120 240 360 480

Statistics reveal that during the 8 h from 22:00 of 
the previous day to 6:00 of the next day, the number of 
days exceeds half of the heating season when outdoor 
air temperature varies between 12°C and 1℃. Hence, 
this paper only considers the results of model training 
within this outdoor air temperature range. The results of 
outdoor temperature change under diff erent training time 
windows (2, 4, 6, and 8 h) are presented in Fig. 5. 

Fig. 5 shows that for 6 and 8 h of training data, 
outdoor air temperatures change between 3°C and 6°C 
on more than half of the days throughout the heating 
season. Thus, for 6 and 8 h of training data, model 
training is performed at an outdoor temperature interval 
of approximately 3°C–6°C. For 4 h of training data, the Fig. 5 Proportion of days with outdoor air temperature range.
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Fig. 6 Example of linear and nonlinear data.

outdoor temperature fluctuates between 2°C and 5°C 
on more than half of the days throughout the heating 
season. Hence, for 4 h of training data, model training 
is performed at a temperature range of 2°C–5°C. For 2 
h of training data, the variation in outdoor temperature 

is mainly concentrated at 2°C. Thus, for 2 h of training 
data, model training is performed at an interval of 2°C.

Meanwhile, outdoor air temperature curve of training 
data can be classified into two types: similar to linear 
data and nonlinear. Two instances of linear data and 
nonlinear data are presented in Fig. 6. The linear data 
indicate minor fluctuations in outdoor temperature, 
whereas the nonl inear  data  reveal  remarkable 
fluctuations. For convenience, L and N denote the 
linear and nonlinear training data, respectively, and 
their subscripts indicate diverse intervals of outdoor air 
temperature. A higher subscript number denotes a higher 
outdoor air temperature and vice versa.

Three representative days are chosen to validate the 
load prediction. The actual measurement data for these 
three validation days are shown in Table 2. These three 
categories of outdoor air temperatures, namely, cold, 
cool, and mild, are designated as test1, test2, and test3, 
respectively.

Table 2 Actual measurement data of three validation days

Weather type Outdoor temperature 
range (°C)

Indoor temperature 
range (°C)

Supply water 
temperature (°C)

Return water 
temperature (°C)

cold −11.9–−4.2 15.1–16.4 24.8–34.8 27.7–30.8
cool −3.8–2.7 17.4–18.2 28.1–36.4 27.9–31.2
mild 0.7–5.2 20.9–22.9 28.0–36.5 28.1–31.6

Calculation result of information entropy
In practice, empirical guidelines can be obtained from 

historical data for the entire heating season (Datale et al., 
2022). This paper employs four training windows (2, 4, 6, 
and 8 h) to compute information entropy. The calculation 
results are divided into seven diverse temperature error 
intervals. The probability distribution statistics are 
exhibited in Fig. 7. 

Fig. 7 Temperature probability distribution for different 
training windows.

Information entropy is determined according to 
equation (2), which is expanded to equation (11) in this 
paper.

1 2 3 4
1 2 3 4

5 6 7
5 6 7

1 1 1 1ln ln ln ln

1 1 1ln ln ln

jE p p p p
p p p p

p p p
p p p

,     (11)

where pi is the probability distribution of temperature 
errors between the measured and predicted values, 
and subscript i denotes various error intervals, namely, 
[0,0.1), [0.1,0.2), [0.2,0.3), [0.3,0.4), [0.4, 0.5), [0.5, 0.6), 
and [0.6,1.0).

Fig. 7 presents that the probability distribution of 8-h 
training window within the temperature interval [0,0.1] is 
0.18, and it increases to 0.19 within the intervals [0.1,0.2) 
and [0.2,0.3). The probability distribution in the interval 
[0.3, 0.4) is 0.21, it decreases to 0.16 in the interval [0.4, 
0.5), further drops to 0.12 in the temperature range of 
[0.5, 0.6), and reaches a low value of 0.03 in the interval 
[0.6, 1.0).
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The statistical fi ndings reveal the following calculation 
results for the 8-h information entropy:

8 1 2 3 4
1 2 3 4

5 6 7
5 6 7

1 1 1 1ln ln ln ln

1 1 1ln ln ln

E p p p p
p p p p

p p p
p p p

, (12)

The information entropy of 8 h of training data is 
1.856. The information entropies of E6, E4, and E2 are 
1.877, 1.839, and 1.811, respectively.

The training window should ideally provide more 
informative content to enable the model to learn and 
predict with higher accuracy. If the training data 
demonstrate a higher level of information entropy, it 
indicates greater diversity and complexity within the 
dataset, enabling the model to gain insights into various 

scenarios and adapt better to unseen data. Such datasets 
enhance the model’s generalization capabilities and its 
ability to control real-world complexities instead of 
solely overfitting existing data. Hence, the information 
entropy of 6 h of training data displays strong 
predictability.

Validation results of various training window
2 and 4-h training window validation

The outdoor air temperature varies during the 2-h 
training window from −12°C to 0°C, with intervals of 
2°C. In Fig. 8, for 2-h training window, L1 (N1)–L6 
(N6) are represented as −12°C–−10°C, −10°C–−8°C..., 
−2°C–0°C.

Figs. 8 and Fig. 9 present the actual measured 
temperature and 3R2C predicted temperature for the 

Fig. 8 Actual measured temperature and 3R2C predicted temperature (2 h).
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Fig. 9 Actual measured temperature and 3R2C predicted temperature (4 h).

training window of 2 and 4 h, respectively. The predicted 
indoor temperature is consistent with the actual indoor 
temperature decline trend, but errors are noted in 
several moments. The weak predictive performance 
may be owing to inadequate training data to capture the 

room’s thermal behaviors accurately; hence, important 
building thermal dynamic properties are missed. Another 
possibility is that the temperature differences between 
indoors and outdoors are extremely small to drive the 
predictive performance of the RC model.

Table 3 Correlation performances and error results of test3 (2 h)
Outdoor temperature 

type
Outdoor temperature 

range (°C) R2 (%) MAE (%) MAPE (%) RMSE (%)

L1 −12–−10 95.26 16.13 0.74 18.25
L2 −10–−8 95.00 18.30 0.84 20.40
L3 −8–−6 94.34 19.63 0.90 21.85
L4 −6–−4 93.15 22.36 1.03 26.52
L5 −4–−2 92.14 25.63 1.18 29.53
L6 −2–1 91.78 28.76 1.33 31.79
N1 −12–−10 95.24 16.15 0.75 18.45
N2 −10–−8 94.37 19.89 0.92 22.99
N3 −8–−6 94.68 18.81 0.87 21.41
N4 −6–−4 92.78 24.32 1.26 27.30
N5 −4–−2 92.12 24.77 1.14 27.11
N6 −2–0 91.25 29.83 1.38 33.42

Table 4 Correlation performances and error results of test3 (4 h)
Outdoor temperature 

type
Outdoor temperature 

range (°C) R2 (%) MAE (%) MAPE (%) RMSE (%)

L1 −12–−9 96.86 12.39 0.57 14.46
L2 −9–−6 95.74 15.44 0.71 17.81
L3 −6–−3 94.63 19.27 0.89 21.79
L4 −3–1 93.18 22.22 1.02 23.96
N1 −12–−9 96.57 12.85 0.59 14.81
N2 −9–−6 95.34 16.30 0.76 18.78
N3 −7–−4 95.01 18.09 0.83 19.88
N4 −4–0 92.33 24.60 1.13 26.75
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The error results acquired from validating 2- and 4-h 
training windows on test3 are presented in Tables 3 
and 4, respectively. Table 3 shows the optimal result of 
forecasting indoor air temperature with a 2-h training 
window is L1; R2 is 95.26%, MAE is 16.13%, MAPE
is 0.74%, and RMSE is 18.25%. Table 4 reveals a high 
degree of accuracy for indoor air temperature prediction 
with a 4-h training window is L1; R2 is 96.86%, MAE is 

12.39%, MAPE is 0.57%, and RMSE is 14.46%.

6-h training window validation
Training windows of 6 h are split into three sets 

of linear and three sets of nonlinear data. Fig. 10 
presents the actual measured temperature and 3R2C 
predicted temperature for test3. The measured indoor air 
temperature and predicted indoor air temperature fi t well 
in most cases. 

Fig. 10 Actual measured temperature and 3R2C predicted temperature (6 h).

The training windows of six groups are validated on 
test3, and the results are presented in Table 5. For 6-h 
linear training window, indoor and outdoor temperature 
differences range from 24.8°C to 28.1°C, 23.3°C to 
25.1°C, and 20.2°C to 22.4°C. The RC model exhibits 
superior prediction performance owing to a greater 

temperature disparity between the indoor and outdoor 
temperatures. For example, the RMSE for L1, L2, and L3 
are 11.73%, 16.45%, and 19.26%, respectively.  Table 5 
and Fig. 10 reveal that the predictive performance of the 
linear training window is better than that of the nonlinear 
window under the same outdoor temperature ranges. The 

Table 5 Correlation performances and error results of test3 (6 h)
Outdoor temperature 

type
Outdoor temperature 

range (°C) R2 (%) MAE (%) MAPE (%) RMSE (%)

L1 −13–−8 98.37 9.03 0.41 11.73
L2 −8–−3 97.42 13.44 0.62 16.45
L3 −4–2 95.10 17.27 0.80 19.26
N1 −13–−8 98.22 9.66 0.44 12.16
N2 −8–−4 96.29 15.25 0.70 17.24
N3 −4–1 94.61 19.74 0.91 22.34
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Fig. 11 Actual measured temperature and 3R2C predicted temperature (8 h).

RMSE for linear training window is 11.73%, whereas 
that for nonlinear training window is 12.16%.

8-h training window validation
Fig. 11 shows the actual measured indoor air 

temperature and 3R2C predicted indoor air temperature 

for test3. In most cases, the predicted indoor air 
temperature matches the actual measured indoor 
temperature well. Correlation performances and error 
results for test3 are presented in Table 6. 

Table 6 Correlation performances and error results of test3 (8 h)
Outdoor temperature 

type
Outdoor temperature 

range (°C) R2 (%) MAE (%) MAPE (%) RMSE (%)

L1 −13–−8 98.16 9.81 0.45 11.80
L2 −8–−4 96.42 14.45 0.66 16.32
L3 −5–1 95.27 16.98 0.78 18.87
N1 −13–−8 97.28 11.07 0.51 12.96
N2 −9–−4 96.23 15.88 0.73 17.77
N3 −4–1 94.88 18.58 0.86 20.46

Combining Fig. 11 and Table 6, it can be seen that 
L1 has the highest performance when predicting indoor 
air temperature, and R2, MAE, MAPE, and RMSE are 
98.16%, 9.81%, 0.45%, and 11.80%, respectively. For 
the same outdoor air temperature interval, the prediction 
results of the 6-h training window are similar to or better 
than those of the 8-h training window. The comparison 
of the performance between 6- and 8-h training windows 
for room temperature prediction demonstrates results 

consistent with those obtained using the information 
entropy method in the calculation results of the 
information entropy section.

Combined Table 3 to table 6, the better results of 
prediction are obtained by using a 6-h training window, 
which is consist with the derived result of information 
entropy. Therefore, in future study, the method of 
information entropy can be used for the data volume 
selection of prediction.
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Accumulated heating load validation
This paper employs a 6-h training window of linear 

large temperature difference type for accumulated 
heating load analysis. The three typical days mentioned 
above are used to validate the accumulated energy 
consumption. Fig. 12 presents the predicted and 
measured accumulated heating load of three typical 
days. The overall trend of heating load profiles of RC 
predicted and the measured are similar.

Fig. 12 Comparison of predicted and measured 
accumulated heating load.

Based on the measured heating load, the MAPE
of 3R2C predicted heating load of three typical days 
are 5.63%, 8.46%, and 12.10%. Due to the greater 
variability in energy consumption compared with 
indoor air temperature and the inherent noise in 
energy consumption signals, the predicted indoor air 
temperature demonstrates less variability than the 
energy consumption prediction, making it more stable. 
In summary, the effectiveness of information entropy 
selecting data is proven by the prediction of indoor air 
temperature and heating load.

Conclusion

The effectiveness of load forecasting in big data is 
not necessarily improved by increasing the amount 
of training window employed. The key to successful 
construction of a model lies in selecting an appropriate 
amount of data. Thus, a method based on information 
entropy theory to fi lter the training data is proposed. The 
main conclusions are as follows:

(1) A training data filtering method based on 
information entropy is presented. The information 
entropies of 2, 4, 6, and 8 h are 1.811, 1.839, 1.877, 

and 1.856, respectively. The 6-h training window 
demonstrates the maximum information entropy, 
resulting in the largest amount of data.

(2) The load prediction improves when using a 6-h 
training window under the same outdoor air temperature 
conditions and ranges. Under cold, cool, and mild 
weather, MAPE for indoor air temperature predictions 
are 0.57%, 0.46%, and 0.41%, respectively. 

(3) For the same training window and outdoor 
temperature range, linear data provide a more accurate 
prediction of room temperature than nonlinear data. 
For cold, cool, and mild weather conditions, the RMSE 
for 6 h of linear training data are 11.15%, 12.32%, and 
11.73%, respectively, and the corresponding RMSE for 
6 h of nonlinear training data are 12.04%, 12.68%, and 
12.16%, respectively.

(4) The utilization of a training window with 
lower outdoor temperature can obtain more accurate 
predictions of room temperature under the same training 
window and outdoor temperature type. In cold, cool, 
and mild weather conditions, the MAE obtained using 
a 6-h training window are 8.94%, 7.68% and 9.03%, 
respectively.

(5) 6-h training window, linear change, and lower 
outdoor temperature type are used for load prediction. 
The MAPEs of three typical days are 5.63%, 8.46% and 
12.10%, and the 6-h training window is validated to be 
abundant in information, thus possessing the maximum 
information entropy.
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Nomenclature
Symbols
C thermal capacitance
E information entropy
R thermal resistance
T Temperature
cp specifi c heat
density
m mass fl ow rate of water
Subscripts and Superscripts
in indoor air
out outdoor air
p probability distribution
s supply water
r return water
w  building opaque envelope
inf infi ltration
m  internal thermal mass
Abbreviations
AT  Actual temperature
GA Genetic algorithm
PCA Principle component analysis
RC Resistance–capacitance
RF Random forest 
MAE Mean absolute error 
MAPE Mean absolute percentage error 
RMSE Root-mean square error
R2 R-squared




