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Abstract: Waveforms of artifi cially induced explosions and collapse events recorded by the seismic network 
share similarities with natural earthquakes. Failure to identify and screen them in a timely manner can 
introduce confusion into the earthquake catalog established using these recordings, thereby impacting future 
seismological research. Therefore, the identifi cation and separation of natural earthquakes from continuous 
seismic signals contribute to the monitoring and early warning of destructive tectonic earthquakes. A 1D 
convolutional neural network (CNN) is proposed for seismic event classifi cation using an effi  cient channel 
attention mechanism and an improved light inception block. A total of 9937 seismic sample records are 
obtained after waveform interception, filtering, and normalization. The proposed model can obtain better 
classifi cation performance than other major existing methods, exhibiting 96.79% overall classifi cation accuracy 
and 96.73%, 94.85%, and 96.35% classification  accuracy for natural seismic events, collapse events, and 
blasting events, respectively. Meanwhile, the proposed model is lighter than the 2D convolutional and common 
inception networks. We also apply the proposed model to the seismic data recorded at the University of Utah 
seismograph stations and compare its performance with that of the CNN-waveform model.
Keywords: Attention mechanisms; Seismic classifi cation; CNNs; Raw seismic waveform.

Introduction

In recent years, the field of seismology has attracted 
extensive research (Lu et al., 2019; Zhu et al., 2019a; 
Elsayed et al., 2022). The monitoring capability of 
seismic station networks has signifi cantly improved with 
the increase in station density and the advancement of 
digital seismic observation systems, which can monitor 
all types of seismic events. The scientific nature of 

seismic hazard analysis and seismicity research will 
be significantly impacted if the natural seismic catalog 
is tainted due to seismic misidentification. The rapid 
identification of seismic events has great practical 
importance and is one of the hot topics of seismological 
research.

In the past, many scholars have studied seismic 
identifi cation technology, and the identifi cation methods 
can be mainly divided into two categories. One is 
based on the source mechanism with clear geophysical 
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significance. The other is centered on the numerical 
theory of statistical inference and signal analysis of 
waveforms. After years of research, various automatic 
earthquake identification methods have emerged, 
including those based on Akaike information criteria and 
on short-term average/long-term average (Zhao et al., 
2019). Each method has its own pros and cons. Rational 
use of seismic recognition methods can classify seismic 
events and noise, preventing seismic event waveforms 
from being contaminated by noise fingerprints. In 
addition, similarity threshold methods (Yoon et al., 
2015) can identify seismic events in continuous data.

With the rapid development of artificial neural 
networks, artifi cial intelligence has emerged. Thus, more 
scholars at home and abroad apply deep learning neural 
network techniques in the study of earthquakes. In China, 
Bian (2002) used the traditional BP neural network 
structure to classify seismic and blast events after 
training a feature dataset with log spectral amplitude 
values of P-wave and S-wave spectra. Ren et al. (2019) 
used a Bagging machine learning algorithm to classify 
natural and nonnatural earthquakes. A convolutional 
neural network (CNN) is a well-known deep learning 
method with powerful image recognition capability. 
The common CNN oil consists of a convolutional layer, 
a pooling layer, a fully connected layer, and an output 
layer, which learns the feature information of the input 

by training a large amount of data to recognize new 
input samples. Perol et al. (2018) proposed the fi rst CNN 
ConvNetQuake using earthquake waveform data. Duan 
(2021) proposed a 13-layer CNN-Epq13 for natural and 
artifi cial blast earthquake identifi cation. Chen Runhang 
et al. (Chen et al., 2018) used a CNN to classify 
seismic waveform signals from Mel frequency cepstral 
coefficient maps. Sugiyama et al. (2021) applied 3D 
convolution to seismic data for earthquake localization. 
Tian et al. (2022) identified natural earthquakes and 
blasts by multiple inputs in time and frequency domains. 
Ku et al. (2021) proposed a CNN with a spatial attention 
mechanism to classify seismic events, obtaining 
excellent results. Jin et al. (2024) proposed CNN_BAM 
that combines an improved visual geometry group with 
a convolutional block attention module for recognizing 
and classifying microseismic data. Numerous studies 
have shown that deep learning-based models perform 
effectively in the earthquake domain (Nakano et al., 
2019, Trani et al., 2022, Lim et al., 2022, Wang et al., 
2023).

CNNs are widely used in deep learning algorithms 
with excellent results. Moreover, the CNN model in 
earthquake studies performs efficiently, indicating that 
they have great potential for earthquake monitoring 
applications.

Table 1. Survey of seismic classifi cation research. (√ denotes covered and × indicates not covered. 
CA + SI is channel attention that considers spatial information.)

Research Raw waveform 
input Light weight CA + SI Multidatasets

Perol et al., 2018; Duan, 2021; 
Tian et al., 2022; Trani et al., 2022 √ × × ×

Chen et al., 2018; Sugiyama et al., 2021; 
Nakano et al., 2019 × × × ×

Ku et al., 2021 √ × √ ×
This paper √ √ √ √

In the previous event classifi cation methods, waveform 
data and spectrograms are usually used as input data. 
Nakano et al. (2022) compared the performance of 1D 
and 2D CNNs, and their experimental results show that 
producing the time–frequency domain representation is 
unnecessary for high-performance classification. Thus, 
we select 1D CNNs, which are simpler than 2D CNNs, 
to construct the network. Residual network (ResNet) (He 
et al., 2016) protects the integrity of the information by 
bypassing the input directly to the output. Consequently, 
the network becomes easier to optimize, alleviating the 

problem of vanishing gradients. The inception block 
allows for the aggregation of visual information at 
diff erent sizes while initially performing dimensionality 
reduction on larger-sized matrices, facilitating the 
extraction of features from different scales (Liu et 
al., 2024). Therefore, to improve the classification 
accuracy and control the model complexity, the 
effi  cient channel attention network (ECA-Net) and light 
inception block are added to the 1D CNN model. The 
attention mechanism can render the feature map more 
discriminative, allowing the model to focus more on the 
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essential features. The network structure is optimized 
using the inception structure for seismic waveform data, 
reducing the number of parameters.

Table 1 shows the results of seismic classification 
research. The contributions of our work are as follows:

(i) We proposed a 1D CNN model for seismic event 
classification using ECA-Net and light inception 
block. We modified the lightweight channel attention 
mechanism to enhance the spatial information. In 
addition, we optimized the commonly used multiscale 
convolutional network to achieve a lighter architecture.

(ii) We evaluated the proposed model with the 
collected dataset, and it achieved high test accuracy and 

low resource consumption.
(iii) The proposed model performed effi  ciently using 

the seismic data recorded at the University of Utah 
seismograph stations.

Methods

In this section, we focus on the model structure, 
including ECA-Net, light inception block, and the 
overall structure.

Fig.1. (a) ECA module (b) improved ECA module.

Attention
According to the importance of each input channel, 

SENet (Hu et al., 2020) can enhance the important 
channels and suppress the unimportant channels, 
constituting a channel attention mechanism. ECA-Net 
uses a 1D convolution with an adaptive kernel size of 
K (Fig. 1(a)), which represents the coverage of local 
cross-channel interactions instead of the fully connected 
layer in SENet. ECA-Net has been proven to perform 
favorably while benefiting from much lower model 
complexity (Wang et al., 2020).

The ECA-Net was modifi ed to become more suitable 
for time series data. In the original ECA-Net, the global 
average pooling, where all feature values in the channels 
are assigned an identical weight, is used for the squeeze 
operation. We proposed to combine global average 
pooling and global covariance pooling (Dai et al., 2019) 
for capturing global information in the squeeze operation 
to improve ECA-Net (Fig. 1(b)), merging global 
statistical modeling. Global covariance pooling (GCP) 
that is used to aggregate the information of deep CNNs 
has achieved remarkable performance gains on various 
vision tasks (Fukui et al., 2016; He et al., 2016; Szegedy 
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et al., 2015). GCP can select values that can represent 
the data distribution of the feature graph by calculating 
the covariance matrix (second-order information) of 
the feature graph. The covariance matrix describes the 
correlation between the feature graphs fi (i=1,···,C) in 
the channel dimension. The correlation between channels 
is calculated in pairs to obtain the covariance matrix, 
which is defined as Equation (1), where conv(fC, fC) is 
the covariance calculation between paired feature graphs. 
The feature map vectors of all channels are merged into 
a feature map matrix X of size W×C. The covariance 
matrix is calculated using Equation (2), where I is an all-
1 matrix with the same size as X.

Σ=  (1)

Σ=XT 1
W

-
1

W2 X. (2)

The covariance matrix is orthogonally decomposed, 
and then the costandard deviation matrix Σ1/2 of size 
C×C is obtained using Equation (3), where Λ is the 
diagonal matrix formed by the eigenvalues of Σ, and y_
C represents the set of the costandard deviation of the 
feature graph of the c channel against the feature graph 
of other channels. A quantity that can better represent the 
data distribution of the feature graph of each channel is 
the average value of each component of its costandard 
deviation vector. The output of the global covariance 
pool is the tensor of C×1. Then, the result of the global 
average pooling is integrated to obtain the global 
information of the feature map.

Σ1/2=UΛ1/2UT
1 2  (3)

The important features are considered, and those that 
are nonbeneficial to the current task are suppressed, 
facilitating the network’s learning of the seismic data.

Light inception block
The inception model can reduce parameters while 

increasing the depth and width of the network. 
Moreover, the inception V1 model (Szegedy et al., 2015) 
uses a 1 × 1 convolution kernel for lift-dimensioning and 
simultaneous convolutional reaggregation at multiple 
sizes. Related improvements mainly include inception 
V2 (Ioffe, Szegedy, 2015), which incorporates batch 
normalization; inception V3 (Szegedy et al., 2016b), 
which factorizes convolutions with small fi lter size; and 
inception V4 (Szegedy et al., 2016a), which incorporates 
residual networks.

A general inception network (Fig. 2 (a)) and a residual 
network structure (Fig. 2 (b)) are used for feature 
extraction of 2D data. In this study, 1D CNNs, which are 
more suitable for time series data, are selected to replace 
2D CNNs. Referring to the inception network, the 
pooling branch is subtracted from the cascade path, and 
a branch is added to improve the ability of the network 
to extract multiscale features and capture more seismic 
features. In addition, establishing a light inception block 
after changing the multibranch structure into a linear 
structure (Fig. 3) reduces the risk of overfi tting caused 
by excessive parameters. The input data undergo 1×1 
and two 1×3 1D convolutional kernel processes, and 
then the feature map is spliced to obtain X4 = C(X1, X2, 
X3), where C represents the concatenation operation. 
After changing its feature dimension by using a 1×1 
1D convolution kernel, the feature map is added to the 
input (X6 = X5 + X0) and activated by RELU to output 
the multiscale feature information of the light inception 
block. The features of input data are extracted through 
the convolution kernel.

After aggregation, the approach is equivalent to 
combining the “collective knowledge” of the previous 
several layers, and then a convolution layer is used to 
extract the features. The input is connected with the 

Fig.2. (a) Inception block (b) residual block.
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Fig.3. Light inception block.

output through identity mapping, and it is reinvested 
into the decision space after RELU activation, thereby 
accelerating the gradient propagation. The block 
combines residual network and inception network to 
maintain a low model complexity, extracts as many 
features of input information as possible, improves 
the retention rate of low-dimensional information, and 
enables easy optimization of the network.

Network structure

0

 (4)

The core of 1D CNN is to extract features along the 
temporal dimension of the seismic time series data. The 
size of the convolution kernel determines the range of 

the receptive fi eld, and the fi xed temporal neighborhood 
information can be sensed and encoded during feature 
extraction. The convolution is the fundamental layer that 
extracts feature maps by introducing fi lters with the size 
of L, as shown in Equation (4), where z represents the 
convolutional input, w denotes the fi lter with the size of 
L, and o indicates the output feature map.

Aiming at the problem of seismic event classifi cation, 
the three-channel waveform is considered the input 
and the seismic classes as the output to train the 
CNN. The CNN extracts the inherent features of the 
waveform through the convolution kernel, sets multiple 
convolutional layers, extracts more features, integrates 
the above feature information, and finally outputs the 
probability of the seismic classes of the object by a 
similar voting method. Dropout regularization suppresses 
overfitting, potentially enhancing the stability and 
performance of the proposed model. In the training stage, 
the model uses the attention mechanism to suppress the 
irrelevant features but focuses on the signifi cant features 
of the target. The approach does not require cutting 
the regions of interest between the networks, which 
is conducive to data processing. The features are then 
captured at multiple scales using lightweight inception 
blocks, and the combination of attention mechanisms 
and lightweight inception blocks assists the network in 
learning deep information about the data.

The network structure is  shown in Fig.  4.  A 
convolution layer with a width of 7 in the shallow layer 
of the convolutional network was replaced with a light 
inception block to improve the extraction ability of 
multiscale features. In addition to the light inception 
block, the other convolution sets include the convolution 
layer (the number of channels is 64, the length of the 
convolution kernel is 7, L2 regularization), the max 
pooling layer, and the dropout layer (dropout rate 0.2). 

Fig.4. Seismic event classifi cation of CNN structure.
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These layers are activated by RELU through the fl attened 
layer, followed by two fully connected layers (number of 
neurons 32, 3), and classifi ed by softmax output seismic 
events.

Experiments

In this section, we performed experiments to 
investigate the effectiveness of the proposed CNN 
architectures with attention module and light inception 
block.

Dataset
In this section, we focus on the input data used in 

this study. The nonnatural seismic events in Jiangsu 

and its adjacent areas since 2015 are selected as input 
data, as well as the seismic events from the earthquake 
catalogs of China’s capital area (Beijing, Hebei, Tianjin, 
Liaoning, and Shanxi) since 2008. Then, the arrival time, 
amplitude, and event type of the recorded waveforms 
within 200 km of the epicenter are labeled. In addition, 
natural seismic events with epicenter error less than 50 
km and magnitude between 2.0 and 4.0 were collected 
(Fig. 5). A total of 9937 sets of three waveform samples 
were obtained (including 5337 natural seismic events, 
2794 collapse events, and 1806 blasting events). The 
input data were divided into two independent sets, 
namely the test set and the training set, at a 1:4 ratio. 
Waveforms were sampled at 100 Hz on three channels 
corresponding to the three spatial dimensions, including 
BHE (oriented west–east), BHN (oriented north–south), 
and BHZ (oriented vertically).

Fig.5. Map of (a) natural earthquakes and (b) unnatural earthquakes.

Fig.6. Pre-processing steps for input data, including fi ve 
steps.

For each waveform, 5 seconds before and 35 seconds 
after the arrival of seismic P-wave were intercepted (40 
seconds in total). After de-averaging, de-trending, and 
band-pass fi ltering of 1–30 Hz, these data are normalized 
to ensure that the input data were in the 0–1 range (the 
pre-processing steps were shown in Fig.6). Sub-headings 
should be typeset in boldface italic and capitalize the 
fi rst letter of the fi rst word only. Section number to be in 
boldface roman.

Performance evaluation
In this section, we discuss four topics: the selection of 

attention mechanisms, the ablation study, the evaluation 
of our methods compared with other classifi er methods, 
and the evaluation of model complexity. The Adam 
algorithm was adopted in the training process, and the 
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Fig.7. Performance comparison of different attention mechanisms.

cross-entropy loss function was used to optimize the 
network parameters. The learning rate was set at 0.001, 
and the number of training samples in each batch was set 
at 32.

Selection of attention mechanisms
We initially discuss the selection of attention 

mechanisms. Soft attention mechanism includes channel 
domain attention (SENet, ECA-Net), spatial domain 

attention (SAM), and mixed domain attention (CBAM 
(SE + SAM)). To select a more suitable attention 
mechanism for seismic waveform classifi cation, SENet 
(Hu et al., 2020), ECA-Net (Wang et al., 2020), SAM 
(Zhu et al., 2019b), and CBAM (SE + SAM) (Woo et 
al., 2018) were added to the model for experimental 
comparison. The classification accuracy of seismic 
signals by networks with diff erent attention mechanisms 
is shown in Table 2.

Table 2. Accuracy of seismic event classifi cation methods incorporating different attention mechanisms
Methods Indicators Accuracy (%) Recall (%) F1 score

SAM 91.86 91.67 0.9179
CBAM 91.45 91.67 0.9157

SE 93.35 93.21 0.9328
ECA 93.67 93.78 0.9375

Fig. 7 and Table 2 illustrate that the channel attention 
mechanism is more suitable for seismic classification 
tasks. Compared with the SENet-integrated model, 
the accuracy and recall rates of the model integrated 

with the ECA-Net are increased by 0.32% and 0.57%, 
respectively. The addition of the ECA-Net improves the 
network classifi cation eff ect.

Ablation study
Three sets of comparison experiments are conducted 

using the framework of a six-layer CNN, demonstrating 
that various structural improvements and fusion 
strategies can eff ectively enhance the segmentation eff ect 
of the algorithm. The results are shown in Table 3, where 
boldface is the optimal value of the same index. Fig. 8 

shows the comparison of the training performance of 
the ablation study. Table 3 shows that the addition of the 
attention mechanism and light inception block improved 
the network accuracy to a certain extent and reduced 
the loss function. Moreover, the light inception network 
played a greater role in improving the performance of 
the proposed 1D CNN.
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Table 3. Result of the ablation study using the proposed model as the backbone 
in terms of classifi cation accuracy, recall, and F1 score.

Network Structure Accuracy (%) Recall (%) F1 score 
Without ECA-Net 92.69 91.67 0.9192

Without light inception block 91.14 91.01 0.91
Without GCP 94.67 93.78 0.9445

Model in this paper 96.79 96.87 0.9652

Evaluation of our methods compared with other 
classifi er methods

To measure the performance difference between the 
proposed CNN model and other methods under the same 
experimental conditions and input data., the traditional 
classifier K-neighbor (KNN), support vector machine 
(SVM) (Tang et al., 2020), multilayer perceptron (MLP) 
(Laasri et al., 2013), CNN-waveform (Tian et al., 2022), 
Deepquake (Trani et al., 2022), and ConvNetQuake 
(Perol et al., 2018) are considered for reference. The 
accuracy pairs of each classification are shown in 
Table 4. The table illustrates that traditional classifiers 
SVM, MLP, and KNN have poor classification effects. 

Among them, our model improved by 2.9% in terms 
of overall accuracy compared with CNN-waveform; 
it also exhibited improvements of 0.28%, 5.25%, and 
2.93% in single-class classifi cation accuracy for natural 
earthquakes, blasting, and collapse. Our model performs 
more on the event classifi cation of blasting and collapse 
than on natural earthquakes. The reason may lie in the 
fact that the attention mechanism and the lightweight 
inception module are more suitable for capturing the 
event features in blasting and collapse. In addition, the 
experimental results suggest that the recognition rate of 
natural seismic events is generally higher than that of 
blasting and collapse events. Thus, the large amount of 
natural seismic data cannot be ruled out.

Table 4. Comparison with other algorithms using the same dataset in terms of classifi cation accuracy
(NE is a natural earthquake, and AAR is the average accuracy rate).

Classifi er methods Year NE Blasting Collapse AAR
KNN - 78.37 71.91 68.98 74.85

MLP (Laasri et al., 2013) 2013 74 68 51 70
ConvNetQuake (Perol et al., 2018) 2018 94.5 89.32 85.43 91.7

SVM (Tang et al., 2020) 2020 76.17 64.74 72.57 72.16
CNN-waveform (Tian et al., 2022) 2022 96.45 89.6 93.42 93.89

Deepquake (Trani et al., 2022) 2022 94.66 89.74 89.52 92.40
This paper 2024 96.73 94.85 96.35 96.79

Fig.8. Comparison of the training performance in the ablation study: (a) accuracy curve and (b) loss function curve.
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Evaluation of model complexity
We compare the training parameters of each network. 

The number of network parameters can be used to 
evaluate the complexity and speed of the model. 
Network parameters can be divided into trainable 
parameters and untrainable parameters, which can refl ect 
the memory size occupied.

The six-layer CNN 2D CNN, MLP, Deepquake (Trani 
et al., 2022), CNN-waveform (Tian et al., 2022), the 
SENet structure, and the inception V3 network structure 
of the neural network were added as references.

As shown in Table 5, the MLP network requires 
more parameters to be trained than the proposed CNN. 
The number of parameters and calculation amount is 
one-fifth of the input six-layer 2D CNN (224, 224, 3) 
and approximately one-tenth of the three-layer MLP 
network. The network in Fig. 2 (a) is used to replace the 
light inception block in this study, causing a parameter 
increase. Moreover, the SENet network requires more 
training parameters. A 1D CNN with a light inception 
block has a simpler network structure, less resource 
consumption, and lower requirements on the equipment.

Table 5. Comparison in terms of parameter, trainable parameter.
Network Structure Parameter Trainable parameter Untrainable parameter
Six-layers 2D CNN 819404 819148 256
Three-layers MLP 1544963 1544963 0

Deepquake 301571 301571 0
CNN-waveform 8271331 8271331 0

SENet 166095 165839 256
Inception structure 263900 261660 256

This paper 160017 159889 128

Fig.9. (a) Map of seismic monitoring stations (b) the BGU station and the distribution of earthquakes it monitored (triangles 
represent stations, red circles represent detected seismic events).

Discussion

We evaluated the classification performance of the 
proposed network using seismic data recorded at the 
University of Utah seismograph stations. Then, we 
compared it with the CNN-waveform model (Tian et al., 
2022). Utah and its surrounding areas are considered the 

research areas (115°W-108°W, 36°N-43°N). According 
to the earthquake catalog provided by Linville (2019), 
we downloaded 2028 local seismic events and 1169 
quarry blast events recorded by the University of 
Utah seismograph station during 2013–2017 from 
IRIS. The data acquired were from 39 stations (Fig. 
9). The magnitude range is −9.99–3.48 ML, and the 
epicenter distance is 0.05–240 km. Based on the P-wave 
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arrival times selected from the earthquake catalog, the 
waveforms of the P-wave arrival times and the 40s after 
arrival were intercepted and processed. Comparing 
the classification effectiveness of the network using 
the single station waveform of an event as input data, 
the accuracy of the proposed method and the CNN 
waveform model is 95.59% and 92.07%, respectively. 
The datasets of both methods are from the same region, 
whereas the accuracy of the proposed method is slightly 
higher. The proposed network also has better results on 
other datasets with certain generalizations.

Conclusion

In this study, a 1D CNN model integrating the 
attention mechanism and light inception block is built. 
Then, the three-channel seismic waveform data, after 
pre-processing, are directly fed into the network, thereby 
realizing the classification of the natural seismic, 
collapse, and blasting events. Our methods are evaluated 
and compared with other classifier methods, and the 
results show that the proposed model has a relatively 
simple structure, excellent classification performance, 
fewer training parameters, less computation, and 
relatively low requirements for equipment. Meanwhile, 
the addition of an attention mechanism and light 
inception block enhances the performance of CNNs. The 
proposed model performed efficiently when evaluated 
using the seismic data recorded at the University of Utah 
seismograph stations.

A number of recommendations for future research are 
provided. The neural network has a strong dependence 
on the training data set. Subsequently, more data must 
be collected, and the data set samples must be improved 
and optimized by adding collapse and blasting events 
and selecting more representative samples, etc., and 
the difference between varying source mechanisms, 
propagation paths, and absorption effects of the same 
source leads to distinct waveform signals. Therefore, 
more data sets can eff ectively improve the generalization 
ability of the system. Subsequently, we can further 
add the data of interference, noise, or shock and other 
categories, expand the categories of recognition, and re-
clean the labels of the data set to reduce the risk of low 
recognition accuracy caused by label errors. In addition, 
given the data set limitations, the generalization ability 
of the proposed 1D CNN model must be tested and 
studied.
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