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Abstract: Traditional deep learning methods pursue complex and single network architectures without 
considering the petrophysical relationship between different elastic parameters. The mathematical and 
statistical significance of the inversion results may lead to model overfitting, especially when there are a 
limited number of well logs in a working area. Multitask learning provides an eff ective approach to addressing 
this issue. Simultaneously, learning multiple related tasks can improve a model’s generalization ability to a 
certain extent, thereby enhancing the performance of related tasks with an equal amount of labeled data. In this 
study, we propose an end-to-end multitask deep learning model that integrates a fully convolutional network 
and bidirectional gated recurrent unit for intelligent prestack inversion of “seismic data to elastic parameters.” 
The use of a Bayesian homoscedastic uncertainty-based loss function enables adaptive learning of the weight 
coeffi  cients for diff erent elastic parameter inversion tasks, thereby reducing uncertainty during the inversion 
process. The proposed method combines the local feature perception of convolutional neural networks with 
the long-term memory of bidirectional gated recurrent networks. It maintains the rock physics constraint 
relationships among diff erent elastic parameters during the inversion process, demonstrating a high level of 
prediction accuracy. Numerical simulations and processing results of real seismic data validate the eff ectiveness 
and practicality of the proposed method. 
Keywords: Prestack seismic inversion; Multitask learning; Fully convolutional neural network; Bidirectional 
gated recurrent neural network

Introduction

The prestack seismic inversion technique retains the 
characteristics of seismic reflection amplitudes that 
vary with incident angle or offset distance [1]. Through 
prestack inversion, various geological parameters, such 
as P- and S-wave velocities, density, Poisson’s ratio, 
and fl uid factor, can be determined for detailed reservoir 
studies. Joint analysis of these parameters can reduce 
ambiguity in seismic interpretation and effectively 

predict underground lithology, physical properties, 
and hydrocarbon content. The initial application of 
the prestack seismic inversion technique focused on 
qualitatively describing reservoir types. To obtain 
elastic parameters that directly reflect subsurface 
lithological information and serve the needs of oil and 
gas exploration, the technique has evolved into a series 
of quantitative prestack inversion methods for describing 
diff erent types of reservoir parameters.

Traditional prestack seismic inversion methods 
can be broadly categorized into two types. The 
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first type is based on the Zoeppritz equation and its 
approximations to calculate the reflection coefficients 
and predict hydrocarbon reservoirs by studying the 
influence of elastic parameter variations on seismic 
amplitudes. However, different amplitude versus offset 
approximation formulas have specific assumptions 
and applicable conditions. Deviations may occur when 
these conditions are not fully satisfied. The second 
type is the prestack-full waveform inversion (FWI) 
method based on the wave equation. This approach uses 
complete wavefield information to solve the inverse 
problem, resulting in higher inversion accuracy than 
the former approach. Nevertheless, they are prone to 
becoming trapped in local optima, and the substantial 
computational and storage requirements limit their 
practical application. Therefore, FWI is currently 
primarily used for low-frequency velocity modeling 
in seismic imaging as a background field to achieve 
more accurate imaging results. Yuan et al. [12] eff ectively 
applied FWI to reservoir characterization at a low cost.

With the development of deep learning (DL) and big 
data, an increasing number of DL methods have been 
applied in the fi eld of geophysical exploration, including 
first arrival picking [2][3], velocity modeling [4], FWI [5], 
seismic facies recognition [6][7], fault identification [8]

[9], wave impedance inversion [10][11][12], and reservoir 
prediction [13][14]. Some researchers have successfully 
applied DL techniques to prestack inversion, yielding 
promising outcomes. Biswas et al. [15] used a physics-
guided convolutional neural network (CNN) for prestack 
inversion and accurately predicted elastic parameters 
through unsupervised learning. Du et al. [16] constructed 
an anisotropic inversion model for prestack seismic 
inversion using residual networks to extract features 
from input data and obtain P-wave impedance, S-wave 
impedance, and rock physics parameters. Wang et al. 
used band-limited inversion data, seismic velocity 
data after correctedcorrection, and other information 
to generate full-band inversion data, including 
P-wave impedance and P-to-S -velocity ratio, which 
serveserved as inputs for subsequent inversion of low-
frequency models. ExperimentThe experimental results 
indicateindicated that the low-frequency models based 
on deep learningDL eff ectively refl ectrefl ected changes 
in sedimentary facies and improveimproved the accuracy 
of inversion results.Sun et al. [17] used reversible neural 
networks to learn the amplitude versus offset forward 
modeling process and inverted low-to-mid-frequency 
velocities and densities from input data. This method 

randomly generates easily obtainable datasets without 
requiring precise training samples and initial models, 
thereby reducing the dependence on initial models to a 
certain extent. This method demonstrated good inversion 
results for low-to-mid-frequency velocities and densities 
using synthetic and field data. Cao et al. [18] employed 
sequential Gaussian simulation and elastic distortion 
algorithms to generate sufficient and diverse datasets. 
They used a combination of U-Net and fully connected 
neural networks to predict elastic parameters. Sparse 
refl ection coeffi  cients were used as physical constraints 
to enhance network prediction accuracy. The inversion 
results were superior to those of the traditional DL 
methods.

The aforementioned DL methods demonstrate 
excellent performance in prestack seismic inversion 
and perform well on fi eld data. However, they typically 
require a substantial amount of labeled training data to 
enhance model prediction accuracy. Owing to the high 
drilling costs, the limited number of wells constrains 
model generalization ability. Moreover, they do not 
specifically design appropriate network structures for 
different elastic parameter inversion tasks and usually 
adopt a single-task and single-output format for 
different inversion tasks. There are empirical physical 
formulas linking diff erent parameters that show certain 
correlations. Therefore, the inversion processes of 
multiple elastic parameters can be regarded as multitask 
learning (MTL) process. MTL, an important part 
of machine learning, is inspired by human learning 
behavior. In the process of learning new skills, it 
attempts to apply the knowledge learned through one 
task to help learn another related skill. The main idea is 
to simultaneously learn multiple related tasks and share 
specific domain knowledge inherent in different tasks 
by sharing some parameters. This approach enhances a 
model’s generalization ability across multiple tasks and 
improves its overall performance. Traditional transfer 
learning refers to transferring knowledge learned in 
one domain to another, with a sequence in the learning 
process. In MTL, information among diff erent types of 
tasks can be shared, and knowledge can be transferred 
among different tasks. Therefore, MTL is also called 
parallel transfer learning. Compared with traditional 
single-task learning (STL), MTL has several advantages. 
1) MTL can aggregate data from multiple tasks and use 
their correlation to achieve augmentation; diff erent tasks 
can explore domain knowledge and reuse information, 
thereby effectively reducing the demand for data and 
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alleviating the adverse effects of data sparsity. 2) By 
exploring and synthesizing domain knowledge and 
feature information from different tasks, MTL can 
provide more robust embedded representations for 
different tasks, effectively reducing the risk of model 
overfitting and improving model performance in each 
task. 3) MTL can simultaneously learn multiple models, 
thereby reducing training time and storage, updating, and 
maintenance costs in the subsequent learning; also, MTL 
can balance the noise of diff erent task data and improve 
a model’s generalization ability.

In this study, we propose a deep MTL method that 
combines a fully convolutional network (FCN) and 
bidirectional gated unit (Bi-GRU) to achieve end-to-
end intelligent inversion from seismic data to elastic 
parameters. The MTL is designed to model both mid-
to-long-term dependencies and nonlinear relationships 
present in seismic data. Furthermore, the MTL loss 
function is designed based on homoscedastic uncertainty 
to achieve adaptive learning of weights for different 
inversion tasks. Finally, the proposed method is 
applied to field data from eastern China to verify its 
eff ectiveness.

Method and Model

Multitask FCN–Bi-GRU Deep Neural Network 
Model
Information Sharing Layer

FCN is  a  var iant  of  CNN tha t  incorpora tes 
convolutional layers and can selectively retain pooling 
layers based on diff erent tasks. Its main characteristic is 
the use of convolutional layers instead of fully connected 
layers in traditional CNNs. By preserving the spatial 
position information of the original input data, FCN uses 
deconvolutional layers to increase the feature vector 
size. The upsampled feature vectors are then used for 
classification or regression predictions for each feature 
point. In addition, FCN can incorporate skip connections 
from different depth layers to ensure robustness and 
accuracy.

The information sharing layer uses convolutional 
kernels of different sizes to extract shared high-
dimensional temporal features from the input seismic 

Figure 1. FCN architecture.

data. The convolutional formula is as follows:

j

1( )l l l l
j i ij j

i M
x f x W b ,                 (1)

where  denotes the feature output matrix, f represents 
the activation function,  and  denotes the 
convolution kernel weights and biases, respectively, and 
* represents the convolution operation.

The input data are the seismic angle gathers of 
CDP (Common Depth Point) points, which include 
two dimensions: time and angle. Two sets of different 
convolutional blocks were used to extract local features 
of different scales from the seismic data. Because 

the input data size changes during feature extraction, 
deconvolution layers are employed to up-sample the 
features so that they have the same sampling rate as the 
label data.

Special Task Layer
Bi-GRU is an extended form of a recurrent neural 

network comprising two stacked GRUs in both 
directions. Its structure is shown in Figure 2. When 
performing sequence modeling, it uses hidden state 
vectors to consider information from both forward 
and backward directions, capturing long-distance 
dependencies in the sequence data through contextual 
computation to determine the fi nal output. The purpose 
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of this special task layer is to establish a nonlinear 
mapping relationship between shared high-dimensional 

temporal features and real-well labels comprising a 
series of Bi-GRUs.

Figure 2. Bi-GRU architecture.

Figure 3. Basic FCN–Bi-GRU structure.

In Figure 2, for any time step t, there is a forward 
propagation layer  and a backward hidden state layer 

 . The forward and backward hidden state updating 
processes are as follows:

1 1 1 1 1
1t t th f W x U h b ,               (2)

2 2 2 2 2
1t t th f W x U h b ,             (3)

where W, U, and b are model parameters. At time t, 
the forward and backward recurrent layers update 
their hidden states to obtain the results for the forward 
propagation layer  and the backward hidden state 
layer  . These results were concatenated into a new 
vector that contained information from the seismic 
data in both the forward and backward directions. This 
vector was then used as the hidden state ht for the next 

input layer. For models with multiple hidden layers, this 
vector can be used as input for subsequent classifi cation 
or regression tasks.

Multitask FCN–Bi-GRU Model
When using DL models for seismic inversion, it is 

often difficult to fully extract effective and potential 
complex relationships between seismic data and elastic 
parameters using a single network. Considering the 
correlation between different elastic parameters, we 
propose a multitask FCN–Bi-GRU model that combines 
convolutional and recurrent networks. The basic network 
structure is shown in Figure 3. The model uses a 
parameter hard-sharing mechanism to realize MTL, and 
the network input data are normalized prestack seismic 
data. First, the shared local morphological features of the 
input seismic data are extracted by the FCN in the shared 
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layer, and temporal feature vectors are constructed. The 
results are then fed into subnetworks of different task 
layers for capturing the trend and information of high-
dimensional time-series features with depth modeling the 
internal feature dynamics, which facilitates the learning 
of the dynamic change law inside elastic parameters. 
Finally, the fully connected layer is used to reduce the 
number of channels in the output vectors, which is then 
used for the subsequent label loss computation and 
elastic parameter model prediction. The network model 
considers the seismic local morphological feature related 
to the stratigraphic sedimentary law and can establish 
a nonlinear relationship between this feature and the 
labels of different elastic parameters, thereby enabling 
complete learning of the spatiotemporal features of 
seismic data.

Design of Loss Function Optimization
Uncertainty is an important research direction in DL 

and can be conceptualized as epistemic or aleatoric 
uncertainty. The former refers to the cognitive bias caused 
by insuffi  cient data. When there is insuffi  cient data and 
the training data distribution is not representative of the 
overall data distribution, there is bias in model training, 
and this uncertainty can be improved by increasing the 
training data. Aleatoric uncertainty refers to cognitive 
bias caused by the task or data. This is characterized 
by the fact that it does not improve with increasing 
data. Aleatoric uncertainty can be further divided into 
1) heteroscedastic uncertainty, which refers to the 
model prediction bias caused by mislabeling, and 2) 
homoscedastic uncertainty [19], which refers to the bias 
that does not depend on the data but is caused by the 
same data for diff erent tasks. One of the ideas of MTL to 
adjust the weight coeffi  cients for diff erent tasks is based 
on the uncertainty weighting method, which makes the 
overall multitask model training smooth and effective 
by assigning relatively small weights to difficult tasks 
based on the homoscedastic uncertainty in the contingent 
uncertainty for modeling.

The loss function of a conventional MTL network 
model highly depends on the weight coefficients of 
individual task losses, which are usually manually 

adjusted. It is defi ned as follows:

2
1 2i ii

MLoss L w ,                (4)

where M denotes the number of tasks, ωi denotes the 
hyperparameter in the loss function representing the 
weight of different tasks that need to be manually 
adjusted, and λ denotes the regularization parameter for 
the model’s weight parameters, which is used to prevent 
overfi tting. Because MTL model performance is highly 
infl uenced by the weight of each task loss function, one 
challenge in MTL is balancing the weight coefficients 
among diff erent tasks. Conventional approaches simply 
add up the losses of tasks or set a unified loss weight, 
and sometimes further manual adjustment may be 
performed. However, in MTL, different tasks often 
have diff erent optimization goals and data distributions. 
Therefore, simply adding task loss functions or manually 
adjusting weight coefficients may not yield optimal 
results in MTL. Considering the intrinsic rock physics 
relationships among different elastic parameters, 
we designed an MTL model loss function based on 
homoscedastic uncertainty to balance multiple elastic 
parameter inversion tasks and avoid manual adjustment 
of weight coeffi  cients. Assuming the model input data x, 
weight parameter w, noise σ2 in the output values, and 
network model output f w (x). The probability estimation 
of regression tasks can be represented as follows:

2| ,w wp y f x N f x  ,              (5)

The maximum likelihood estimation of Equation 5 is 
as follows:

2
2

1|
2

w wlogp y f x y f x log , (6)

We defi ne the MTL likelihood function as follows:

1 1, , | | |w w w
k kp y y f x p y f x p y f x  , 

(7)

where y1, y2, y3 represent the outputs of three tasks (in 
this study, P-velocity, S-velocity, and density). Then, we 
obtain

  

1 2 3 1 2 3

2 2 2
1 1 2 2 3 3

, , | | | |

; , ; , ; ,

w w w w

w w w

p y y y f x p y f x p y f x p y f x

N y f x N y f x N y f x
,                                 (8)

Maximizing the logarithm of the likelihood function is equivalent to minimizing its negative logarithm, which 
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results in the following MTL loss function:  

1 2 3 1 2 3, , , , , | wLoss w logp y y y f x  

2 2 2
1 2 3 1 2 32 2 2

1 2 3

1 1 1 log
2 2 2

w w wy f x y f x y f x

1 2 3 1 2 32 2 2
1 2 3

1 1 1= ( ) ( ) ( ) log
2 2 2

L w L w L w  

,                     (9)
            

By minimizing this loss function, the weight 
coeffi  cients can be automatically adjusted. σ1

2, σ2
2,and σ3

2 
represent the noise in the outputs of the three tasks, and 
larger noise leads to smaller weight coeffi  cients for the 
corresponding tasks. The term log σ1 σ2 σ3 is a regularizer 
for the output noise terms to prevent excessively small 
weight coeffi  cients. By minimizing this loss function, the 
manual adjustment process of task weight coeffi  cients is 
eliminated, and the optimal solution is obtained through 
the adaptive adjustment of weight coefficients during 
network training.

Evaluation Criteria for Inversion Results
To quantitatively evaluate the subsequent inversion 

results, two evaluation criteria are introduced in this 
section. The first is the Pearson correlation coefficient 
(PCC), which measures the degree of correlation 
between the true and inversion results. Its value ranges 
from −1 to 1, and it is defi ned as follows:

   

2

ˆ1
2

1 1 ˆ

ˆ
ˆ

ˆ

  1,
  

N
i y i yi

N N
i y i yi i

y y
PCC y y

N y y
 ,  (10)

where y represents the true well log curve, ' represents 
the results obtained from diff erent inversion methods, N 
denotes the sequence length (the number of time samples 
for a single trace), and μy and  denote the means of 
the true and predicted values, respectively. PCC refl ects 
the correlation between the true and predicted results. 
A higher correlation indicated that the predicted results 
were highly similar to the true results in the waveform, 
indicating better inversion results, whereas a lower 
correlation indicated poorer inversion results.

Because different elastic parameters have different 
dimensions and orders of magnitude, the second 
evaluation criterion uses the mean absolute percentage 
error (MAPE) to measure prediction accuracy. MAPE 

reflects the absolute error percentage and confidence 
level between the inversion and true results, ranging 
from 0 to 1, and it is defi ned as follows: 
  

1

ˆ  100%   
N

i i

t i

y yMAPE
N y

 ,                 (11)

A smaller MAPE indicates that the inversion results 
are closer to the true results numerically, indicating 
better inversion results, whereas a larger MAPE suggests 
significant differences from the true results and poorer 
inversion performance.

Numerical Examples

Prestack Elastic Parameter Inversion Under 
Noise-Free Conditions

Figures 4a–c show the P-velocity, S-velocity, and 
density of the two-dimensional (2D) Marmousi model, 
respectively. Six incident angles of 4°, 8°, 12°, 16°, 
20°, and 24° were selected. The reflection coefficient 
sequences dependent on angles were calculated using 
the Aki–Richards equation [20]. The convolution between 
a zero-phase Ricker wavelet with a frequency of 25 Hz 
and the angle reflection coefficient sequence generates 
prestack seismic gather. Figure 4d shows prestack 
common-angle data for an incident angle of 20°, where 
the black and red curves represent the training and 
testing data, respectively.

The following formula is used to normalize the 
prestack seismic data:

  X X
X

X
 ,                          (12)

where Xμ and Xσ denote the mean and standard 
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deviation of the input data, and X denotes normalized 
data. The FCN–Bi-GRU model was trained using the 
corresponding seismic data and pseudo-well logs. The 
iteration period was set to 500, the learning rate was 
set to 0.005, and an Adam optimizer with adaptive 
moment estimation was used for gradient descent. The 
regularization parameter λ for the model weight was 
set to 1×10-4. The obtained elastic parameter prediction 
model was applied for testing on the normalized prestack 
seismic data, and the elastic parameter results were 

predicted by reverse normalization of the network output. 
Based on the above process, testing was performed 
under both STL and MTL conditions. The FCN–Bi-
GRU model was used, and the network parameters were 
the same as those outlined in the previous section. The 
only difference is that in the STL inversion case, there 
is only one special task layer that inverts a single elastic 
parameter (either P-velocity, S-velocity, or density) at a 
time.

Figure 4. Vp (P-wave velocity), Vs (S-wave velocity) model, density model, and prestack seismic data. 
(a) P-velocity; (b) S-velocity; (c) Density; (d) Prestack seismic data.

Figure 5 shows the STL and MTL inversion results. 
From the 2D inversion profiles, it can be preliminarily 
observed that the STL inversion results in the complex 
geological structure area from CDP 350–500 having 
poor profiles, with more vertical artifacts and lower 
lateral continuity. Compared with the STL inversion, 
the MTL inversion results have relatively better profi les, 
with reduced vertical artifacts and strong spatial 
structural consistency, indicating good correspondence 
between the underground geological structures and 
P-velocity, S-velocity, and density. However, there 
were still some vertical artifacts near the region, with 
signifi cant vertical changes in the structure around CDP 
480. This is attributable to two reasons: 1) different 

dimensional information exists between the prestack 
seismic data and elastic parameter model, resulting 
in weak spatial correspondence, especially in terms 
of frequency components, where low-frequency 
components are diffi  cult to learn; 2) owing to the trace-
by-trace inversion, the lateral variation in the geological 
formation was not considered; thus, when there is a large 
deviation in the elastic parameter result of a single trace, 
the lateral continuity of the predicted profi le deteriorates.

We performed four sets of tests. Test 1 represents 
STL; to demonstrate the superiority of the proposed 
loss function optimization, three additional comparative 
tests were conducted with MTL: Tests 2 and 3 involved 
manually adjusting the weight coeffi  cients. In Test 2, the 
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weight coefficients were set to be equal, meaning that 
each task contributed equally to the loss function. In Test 
3, the weight coefficients were manually optimized to 
determine the optimal values. Test 4 used a loss function 
designed with homoscedastic uncertainty to adaptively 

adjust the weight coefficients. The specific parameters 
are shown in Table 1. The tests used 10 noise-free 
prestack seismic datasets uniformly extracted as training 
data, with pseudo-well logs serving as labels. The 
inversion results of diff erent methods were obtained.

Figure 5. Comparison of STL and MTL inversion results. 
(a) Vp (MTL); (b) Vs (MTL); (c)Density (MTL); (d) Vp (STL); (e) Vs (STL); (f) Density (STL).

Figure 6. Evaluation metrics for inversion results under different training modalities.
(a) PCC for different experiments; (b) MAPE for different experiments.

Table 1 Weight coeffi cients for different experimental loss functions
Test Training methods Weight coeffi  cients

Test 1 STL ——
Test 2 STL and equal weight 0.33 / 0.33 / 0.33
Test 3 MTL and optimal weight 0.21 / 0.35 / 0.44
Test 4 MTL and uncertainty ——

Figure 6 shows the evaluation results of the four sets 
of weight coefficient experiments. The MTL inversion 
results have higher correlation coefficients and lower 

absolute errors than the STL inversion results. Further, 
among the three sets of comparative experiments for 
MTL, the uncertainty weight performed better than the 
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optimal weight found through fi ne-grained grid search, 
indicating the eff ectiveness of the proposed loss function 
optimization. The main reason may be that the best 
weights found using the grid search method are limited 
by the search resolution, resulting in certain limitations 
in terms of weight search accuracy. In addition, 
optimizing the weights through uncertainty allows for 
dynamic changes in the weight coeffi  cients of diff erent 
tasks during network training, thereby improving the 
network optimization process.

The joint analysis of the elastic parameter inversion 
results for STL (Test 1) and MTL (Test 4) is shown in 

Figure 7, where the black curve represents the rock 
physics cross plot with true elastic parameter labels. 
The cross plot of the elastic parameter inversion results 
for MTL presents a relatively narrow distribution and 
is closer to the true cross plot curve. This indicates 
that using MTL can achieve knowledge sharing of 
rock physics for different elastic parameter inversion 
tasks and maintain the rock physics relationship among 
diff erent elastic parameters during the inversion process, 
thereby improving the performance of individual tasks 
and obtaining elastic parameter inversion results that are 
more consistent with underground geological structures.

Figure 7. Comparison of STL and MTL inversion elasticity parameter cross plot.
(a) Vp–Vs cross plot (STL); (b) Vp–Density cross plot (STL); (c) Vs–Density cross plot (STL); 
(d) Vp–Vs cross plot (MTL); (e) Vp–Density cross plot (MTL); (f) Vs–Density cross plot (MTL).

Prestack Elastic Parameter Inversion Under 
Noise

Real seismic data collected in the field were often 
subject to external interference, resulting in inevitable 
disturbances. To further illustrate that MTL has better 
noise resistance than STL, different levels of random 

noise are added to the original seismic data. The 
networks are separately trained on diff erent noise levels 
and then extrapolated to the corresponding noisy data 
to obtain inversion results at different noise levels. 
Figure 8 shows the STL and MTL inversion results 
under a signal-to-noise ratio (SNR) of 5. Tables 2 and 3, 

Table 2 Quantitative evaluation of inversion results based on MTL
SNR Vp-MAPE (%) Vs-MAPE (%) Den-MAPE (%)
15 5.19 5.64 1.36
10 5.35 5.98 1.89
5 5.71 5.92 1.35
2 5.74 7.61 1.73
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respectively, summarize the quantitative evaluation of 
the STL and MTL inversion results of seismic data with 

diff erent SNRs.

Figure 8. Comparison of STL and MTL inversion results at SNR = 5. 
(a) Vp (MTL); (b)Vs (MTL); (c) Density (MTL); (d) Vp (STL); (e) Vs (STL); (f)Density (STL).

Table 3 Quantitative evaluation of inversion results based on STL
SNR Vp-MAPE (%) Vs-MAPE (%) Den-MAPE (%)
15 5.35 5.69 1.57
10 8.20 7.67 2.07
5 9.36 9.01 2.39
2 9.77 9.71 2.48

From the inversion results of the noisy data in Figure 
8, the inversion profi le obtained by MTL is cleaner and 
more continuous, indicating that MTL networks are more 
suitable for prestack data with a low SNR. The STL 
inversion shows the “hanging noodles” phenomenon at 
the anticline between 4.5 and 6 s, indicating a deviation 
in the prediction results. In contrast, the MTL inversion 
improves the lateral continuity, and the “hanging 
noodles” phenomenon disappears at the anticline, better 
reflecting the true underground geological structure. 
From the quantitative evaluation of the inversion 
results corresponding to Tables 2 and 3, under the same 
noise-level conditions, the MTL inversion has better 
adaptability to noisy data and produces better inversion 
results. When the SNR is relatively high (SNR = 15), 
the improvement in prediction accuracy resulting from 
MTL is not signifi cant, with MAPE increasing by only 

0.16%, 0.05%, and 0.21%. However, when the SNR was 
relatively low (SNR = 2), MTL significantly improved 
the prediction accuracy, with MAPE increasing by 
4.42%, 2.1%, and 0.75%. The tests on noisy data show 
that MTL can use the correlation among data to achieve 
data enhancement, balance the noise of different tasks, 
and improve the accuracy of inversion results for noisy 
data.

Field Data Processing

The proposed inversion method was applied to real 
data from an oilfield. The prestack data were obtained 
from a potential oil reservoir block in an eastern oilfi eld 
exploration area of China. The reservoir in this block is 
a heavy oil reservoir with meandering river deposition, 
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braided river deposition, and a fan delta. The shallow 
reservoir has loose characteristics with high porosity and 
permeability. The deep reservoir has either low porosity 
and permeability or medium porosity and permeability 
characteristics. Figure 9 shows a well-to-well seismic 
profile passing through six wells with a total of 428 
traces, and each trace records 901 time samples. The 
time range is 1.6–2.2 s, with a time sampling interval 
of 1 ms. To test and validate the proposed method, 

five wells are selected as training wells, whereas the 
remaining one well (CDP 12) is used as the testing well.

Using the well-to-well logging data and the near-well 
data shown in the above figure to train the multitask 
FCN–Bi-GRU model, we performed 500 iterations. 
The other settings are the same as in the synthetic 
data example, except for the iteration number and 
training dataset. The trained network model was then 
applied to the entire seismic profi le to obtain inversion 
results. Figure 10 shows the MTL inversion results 
for P-velocity, S-velocity, and density. From the 2D 
inversion results, the overall trend is an increase 
from shallow to deep, which is consistent with real 
geological rules. This forms a solution with a distinct 
layered background and has more signifi cant geological 
signifi cance, eff ectively refl ecting the lateral distribution 
characteristics and vertical stacking relationship of the 
reservoir. In addition, the inversion results showed high 
resolution in both vertical and horizontal directions with 
good lateral continuity.Figure 9. Well-to-well seismic profi le.

Figure 10. Multitask FCN–Bi-GRU elastic parameter inversion results (a) Vp, (b) Vs, and (c) Density.

We further validate and analyze the inversion results 
of the proposed method by comparing the inversion 
results of the training well trace (CDP 64) and validation 
well trace (CDP 12). As shown in Figure 11, the MTL 
inversion results at CDP 64 match well with the true 
results and provide a more pronounced characterization 
of details, indicating that the network has been 
suffi  ciently trained on the training well positions. Both 

the traditional and MTL inversion methods well fit the 
true well curve in the range of 1.6–1.7 s at CDP 12. 
However, in the formation area with a larger vertical 
span from 1.7 to 1.9 s, the MTL inversion results deviate 
more from the true curve than the traditional method’s 
results, and its predicted results are underestimated 
compared with the true values. At the blind well location, 
the correlation coeffi  cient between the predicted and true 

1  50 100 150 200 250 300 350 400
CDP Number

1600

1800

2000

2200

Tim
es

 (m
s)

-2500
-2000
-1500
-1000
-500
0
500
1000
1500
2000
2500

Am
pli

tud
e

1  50 100 150 200 250 300 350 400
CDP Number

1600

1800

2000

2200

Tim
es

 (m
s)

2.4
2.6
2.8
3  
3.2
3.4
3.6
3.8
4  
4.2

Vp
 (k

m/
s)

1  50 100 150 200 250 300 350 400
CDP Number(b)

(c)

(a)

1600

1800

2000

2200

Tim
es

 (m
s)

0.8
1  
1.2
1.4
1.6
1.8
2  
2.2
2.4

Vs
 (k

m/
s)

1  50 100 150 200 250 300 350 400
CDP Number

1600

1800

2000

2200

Tim
es

 (m
s)

2.1

2.2

2.3

2.4

2.5

2.6

2.7

De
ns

ity
 (g

m/
cc

)



12

Multitask Weighted Adaptive Prestack Seismic Inversion

P-velocities is 0.90, that between the predicted and true 
S-velocities is 0.8523, and that between the predicted 

and true densities is 0.8736.

Figure 11. Comparison of real results (black curves), traditional inversion results (blue curves), and multitask inversion results 
(red curves) at (a) CDP 64 location in training well and (b) CDP 12 location in test well.

Conclusion

Considering a DL seismic inversion algorithm, we 

attempt to use MTL for prestack elastic parameter 
inversion and propose a weight-adaptive DL prestack 
seismic inversion method that combines the advantages 
of CNNs and Bi-GRUs. The following findings and 
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conclusions are obtained from tests performed on 
synthetic and real data.

The proposed method uses MTL for high-accuracy 
prestack inversion and can maintain the rock physics 
relationships among diff erent elastic parameters during 
the inversion process. It has a high accuracy for diff erent 
elastic parameters and strong adaptability.

The weight-adaptive prestack inversion method uses a 
loss function based on homoscedastic uncertainty, which 
can automatically balance the loss weight of different 
elastic parameter inversion tasks during the MTL 
process, reduce uncertainty in the inversion process, and 
improve inversion accuracy.

Notably, although the proposed method has achieved 
good results, it does not consider the distinguishing 
effect of elastic parameters on different geological 
bodies. Both geological facies and elastic parameters 
describe the same underground reservoir from diff erent 
angles. In the future, geological facies can be introduced 
as prior information into neural network training to form 
a phase-controlled prestack inversion, thereby further 
improving the elastic parameter prediction accuracy. In 
addition, the main parameters in this present study are 
P-wave velocity, S-wave velocity, and density. In the 
future, the MTL method can be expanded to include 
additional parameters. By exploiting the correlation 
among diff erent parameters, suitable network structures 
can be designed to achieve joint predictions of multiple 
parameters using MTL, thereby further improving the 
accuracy of diff erent prestack parameter predictions.
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