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Abstract: Seismic imaging of complicated underground structures with severe surface undulation (i.e., double 
complex areas) is challenging owing to the diffi  culty of collecting the very weak refl ected signal. Enhancing 
the weak signal is diffi  cult even with state-of-the-art multi-domain and multidimensional prestack denoising 
techniques. This paper presents a time–space dip analysis of off set vector tile (OVT) domain data based on 
the τ-p transform. The proposed N-th root slant stack method enhances the signal in a three-dimensional τ-p 
domain by establishing a zero-off set time-dip seismic attribute trace and calculating the coherence values of a 
given data sub-volume (i.e., inline, crossline, time), which are then used to recalculate the data. After sorting, 
the new data provide a solid foundation for obtaining the optimal N value of the N-th root slant stack, which is 
used to enhance a weak signal. The proposed method was applied to denoising low signal-to-noise ratio (SNR) 
data from Western China. The optimal N value was determined for improving the SNR in deep strata, and the 
weak seismic signal was enhanced. The results showed that the proposed method eff ectively suppressed noise 
in low-SNR data. 
Keywords: N-th root, Weak seismic signal, τ-p, OVT

Introduction

In China, seismic imaging for oil and gas exploration 
in locations such as the Gobi Desert and Loess Plateau 
has reached double complex areas with a complex 
surface and complex subsurface. The complicated 
underground geological conditions of double complex 
areas make the signal-to-noise ratio (SNR) of the 
seismic data very low, which greatly aff ects the imaging 
accuracy. Difficulties with calibrating and tracking 
seismic horizons increase the uncertainty of the structural 
model and limit exploration and development (Guo et 
al., 2013). To increase the accuracy of seismic imaging 
in double complex areas, some experts have focused on 
developing methods to enhance a weak signal. Diff erent 
approaches can be used to eliminate noise depending 

on the characteristics of the seismic signal and noise 
distribution (Mu, 2012; Liu and Zhang, 1996; Hu and 
White, 1993). For example, the denoising method in 
the one-dimensional frequency domain and filtering 
method in the f-k domain exploit differences in the 
frequency and apparent velocity of the signal and noise. 
However, denoising in the f-k domain also generates 
false frequencies, which damages the signal fi delity. The 
f-x predictive filtering method (Zhao et al., 1998) uses 
inversion to predict noise and false events. However, 
the assumption of linear events is rather harsh, and the 
method has difficulty dealing with nonlinear events. 
The hyperbolic filtering method in the time domain 
uses the theory of least-squares fi ltering and the chaotic 
matrix algorithm to suppress random noise in the shot 
record and eff ectively improve the SNR of seismic data. 
However, the amplitude spectra of the processed signal 
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easily produce the phenomenon of a “notch frequency.” 
In addition, the method has low computational 
efficiency, and it is poor at reducing noise from 
irregular events. Time–frequency peak fi ltering (TFPF) 
is independent of the signal waveform and involves 
modulating the collected signal to an analytic signal 
with an instantaneous frequency and then estimating 
the signal from the time–frequency distributions. It 
off ers the advantages of fewer instantaneous constraints, 
and it effectively suppresses strong background noise. 
However, TFPF does not consider the actual direction 
of events during the denoising process. Empirical mode 
decomposition (EMD) is an adaptive frequency noise 
suppression method based on the Hilbert transform, 
which decomposes the signal to obtain several inherent 
modal functions that contain details of the signal in 
different frequency segments, which often change 
according to the signal. EMD is relatively effective 
at noise suppression, but obtaining the components 
of the inherent modal functions results in the mode 
aliasing phenomenon. This increases the difficulty of 
processing late signals, which are inevitable during noise 
suppression.

Various methods have been applied to eliminate 
surface waves, multiples, random noise, and coherent 
noise in seismic data, including the curvelet transform 
(Donoho et al., 1993, 2002; Li et al., 2007), wavelet 
transform (Liu and Zhang, 1996), regional filtering 
(Hu et al., 2016), and cross-sectional filtering (Xue, 
2019). The curvelet transform involves determining the 
denoising threshold by combining the corresponding 
statistical values of the curvelet coefficients because 
the signal and noise coeffi  cients are located in diff erent 
decomposition layers and have diff erent characteristics. 
It is effective at denoising but has strict requirements 
to achieve a suitable threshold value. The wavelet 
transform is a multiscale analysis method that transforms 
the data into the frequency domain while retaining the 
time characteristics so that the frequency characteristics 
of the signal can be presented at different scales. The 
angular resolution is not high (Mallat, 1989), and this 
method cannot express the directional features of image 
edges well (Mu, 2012; Liu and Zhang, 1996). Fan et 
al. (2008) proposed combining the wavelet transform 
and multiple autocorrelation to extract weak signals 
from a background of strong white or colored noise. 
However, while the wavelet transform is effective at 
local time–frequency analysis of one-dimensional data, 
it has limited applicability to processing data in two 

dimensions or higher. The two-dimensional wavelet is 
simply the tensor product of one-dimensional wavelets, 
so it is able to describe point-like singularities in two-
dimensional signals but cannot accurately describe the 
characteristics of edge noise, such as straight lines. Thus, 
it is not effective for processing weak seismic signals. 
Regional filtering exploits differences in the velocity 
and off set range of the surface wave and signal to obtain 
the maximum frequency of the signal, which is used to 
suppress the surface wave. However, this method loses 
precision and accuracy when the high-frequency part of 
the surface wave overlaps with the low-frequency part of 
the signal.

Other methods have focused on both suppressing 
noise and extracting weak signals with varying degrees 
of success, such as the S-transform (Liu, 2018), fast 
Fourier transform K-L transform (Peng et al., 2007), 
singular value decomposition (Lu, 2006), polynomial 
fitting (Zhong et al., 2006), nonlocal mean filtering 
(Hu, 2014), and chaotic system detection (Gao et al., 
2006). The rise of artificial intelligence led Yang et 
al. (2020) to apply a residual convolutional neural 
network to suppress random noise. Yang et al. (2021) 
later improved upon the method by using an adaptive 
convolutional neural network instead. Zheng et al. (2021) 
applied residual learning to suppress random noise in 
microseismic data (Zheng et al., 2021). However, these 
artificial intelligence methods require large amounts 
of training data and do not have strong generalization 
ability, so their applicability to processing actual data is 
currently limited.

The above denoising methods have generally used 
the time–frequency, frequency, and other transformation 
domains to suppress noise and extract weak signals, or 
they have combined traditional denoising methods with 
signal processing and applied mathematics to improve 
the denoising performance. Some of these methods 
have been applied to actual seismic data, and they 
have demonstrated their effectiveness in suppressing 
noise. However, when the seismic data contains strong 
random noise, the weak signal is often lost, and existing 
denoising methods are ineffective. In this paper, the 
N-th root slant stack method is combined with analytical 
methods for array data (Kanasewich et al., 2012; 
Muirhead and Datt, 1976; McFadden et al., 1986) to 
suppress noise and enhance the weak signal in seismic 
data to effectively solve the problems with seismic 
imaging in double complex areas.
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Method

The slant stack is commonly used to suppress random 
noise in seismic data. The τ-p transformation is used 
to perform a local stack, which strengthens the signal 
and weakens random noise to suppress noise. For weak 
seismic signals, the N-th root slant stack can be used to 
improve the suppression of strong noise, which greatly 
improves the SNR and enhances the signal clarity 
of the processed data. The conventional slant stack 
is usually applied to denoising in the shot gather or 
common midpoint (CMP) gather rather than in a three-
dimensional data volume. In this paper, the N-th root 
slant stack is applied to denoising seismic data in the 
off set vector tile (OVT) domain.

N-th root slant stack
The N-th root slant stack addresses the shortcomings 

of the linear slant stack, which has difficulty with 
extracting very weak seismic signals. The N-th root 
slant stack is a nonlinear fi lter applied to a single sample 
of prestack seismic data that can handle the nonlinear 
characteristics of seismic noise. The N-th root slant stack 
can be considered a τ-p transformation that is defined 
as follows (Muirhead and Datt, 1976; Zang and Zhou, 
2002):

1( )( ) ( )
( )

NN g tG t g t
g t

, (1)

where g(t) is the input data and GN(t) is equivalent 
to the N-th root of g(t). GN(t) and g(t) can both be 
positive or negative. When N > 1, the dynamic range 
of the data is compressed, which means that the N-th 
root of each sampling point is stacked. When N < 1, 
the transformation expands the dynamic range of the 
data. This means that N is set as the reciprocal of the 
corresponding value in the positive transformation. Then, 
the N-th root slant stack can be defi ned as (Muirhead and 
Datt, 1976; Zang and Zhou, 2002)
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. Thus, the N-th root slant 

stack is a nonlinear transformation function depending 
on the N value.

Although the signal in seismic data has a very weak 
signal, it has a certain coherence like signals with strong 

energy. In contrast, random noise in seismic data is 
usually not coherent. Thus, the slant stack can enhance 
the energy of a weak signal relative to random noise to 
improve the SNR of seismic data. For seismic data with 
a very low SNR, a large N value is selected to compress 
the dynamic range of the data, as given in equation (1), 
which increases the energy of the signal relative to the 
noise. The energy of the signal can be further increased 
by using the slant stack as given in equation (2). For 
seismic data with a high SNR, selecting a small N value 
can increase the energy of the signal and weaken the 
energy of the noise.

Offset vector tile domain
The offset vector tile (OVT) was conceived to sort 

data before migration and generate a new domain. The 
OVT domain is an extension of the cross-arranged 
gather and can be considered as a subset of this gather. 
The OVT domain can be combined with the N-th root 
slant stack to enhance weak seismic imaging signals for 
oil and gas exploration. Two specific methods can be 
applied to noise suppression.

First, based on the similarity between the OVT domain 
and post-stack data (Li et al., 2015), the N-th root slant 
stack and its τ-p transform (Zang and Zhou, 2002) 
can be applied to the data volume in the OVT domain 
to suppress noise and enhance the signal. In the data 
analysis stage, the coherence values of the x-t domain 
are calculated using either the conventional coherence 
method or a similar coherence method. The conventional 
coherence method is given by (Li et al., 2015)
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where τ-p is the conventional coherence at the position 
L, Aij is the amplitude of the j-th sampling point and i-th 
trace in the data volume, t is the number of sampling 
points in the time window, n is the total trace number of 
the child data volume, and Kj is the valid trace number 
of the j-th sampling point.

A similar coherence method is given by (Li et al., 
2015)
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The coherence values are usually calculated by using 
the conventional coherence method. As shown in Figure 
1, after the coherence value of a given child data volume 
is calculated, the coherence value of the next child data 
volume is calculated according to a given increment in 
a given spatial direction. To obtain a smoothing effect, 
there needs to be some overlap between two adjacent 
child data volumes.

Figure 1. Movement between two child data volumes.

Figure 2. Sorting and grouping coherence values.

Second, the calculated coherence values can be sorted 
to optimize the sequencing of the corresponding OVT 
gathers. Alternatively, the grouping of the coherence 
values of the OVT gathers can be optimized. The 
mathematical heap sort method (Fan, 2008; Li et al., 
2017; Yu et al., 2016) is used to sort the calculated 
coherence values in an orderly manner to make the 
dataset more coherent, as shown in Figure 2. This makes 
the sorted results more conducive to the selection of N. 
If   is the data to be sorted, then the detailed sorting steps 

are as follows:
1. A large root heap is built on the raw data to serve as 

the initial disordered region.
2. Exchange the top elements of the heap (i.e., 

OVT[1] and OVT[n]) to obtain a new disordered region 
OVT[1...n−1] and ordered region OVT[1...n] while 
satisfying OVT[1...n−1] ≤ OVT[n].

3. Adjust OVT[1...n] to make a new heap.
4. Exchange OVT[1] with the last data of the 

disordered region again to obtain the new disordered 
region OVT[1...n−2] and ordered region OVT[n−1...n] 
while still satisfying OVT[1...n−1] ≤ OVT[n−1...n].

The sorting process continues by repeating steps 
3 and 4 until there is only one element OVT[1] in 
the disordered region. Sorting makes the data more 
coherent, which helps narrow the selection range of N 
values for the N-th root slant stack. This reduces the 
number of tests needed to select the N value, which 
greatly reduces the computation time and is especially 
helpful for processing 3D data. During the sequencing 
process, the relationship between a coherence value 
and its corresponding OVT gather must be clear to 
achieve noise suppression. Simply sorting the coherence 
values without considering the OVT gathers would 
be meaningless. In other words, the coherence values 
should be evaluated to determine the optimal N value for 
suppressing noise.

Noise suppression
Most methods for denoising seismic data are multi-

domain techniques that consider the shot domain, 
receiver domain, offset domain, etc. Multi-domain 
denoising takes advantage of the diff erent representation 

forms of noise in different domains. However, the 
conversion of data between diff erent domains can cause 
distortion, which makes subsequent data processing 
difficult when a partial gather (or shot gather) is 
accompanied by a maximum value. Thus, alternative 
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Range of medium coherence values

Range of small coherence values

 

Overlap 

Cell 
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Figure 3. Noise suppression process with the N-th root slant stack.

processes are being developed to suppress diff erent types 
of noise in seismic data. Figure 3 shows the concept 

behind using the N-th root slant stack in the OVT 
domain to suppress noise in seismic data.

Seismic data volume 

Calculate coherence values 
of the OVT domain data

Data in OVT domain 

Sort 

Data merge 

Noise suppressed data 
(CMP or shot gather)

Selection of N values for 
the N-th root slant stack 

OVT domain data with large 
coherence values 

Sequence of coherence values and 
corresponding OVT domain data

OVT domain data with medium 
coherence values

OVT domain data with small 
coherence values 

Selection of N values for 
the N-th root slant stack 

Selection of N values for 
the N-th root slant stack 

Sort 

Pre-stack migration 

Group sorted 

The N-th root slant stack is mainly used to suppress 
random noise, and the parameters used to calculate the 
coherence values are designed for refl ected waves. There 
is a large diff erence between the dips of surface waves 
and reflected waves, so some energy of the surface 
waves is suppressed by the denoising process. Therefore, 
the N-th root slant stack can not only improve the SNR 
of reflected waves but also suppress the energy of 
surface waves to some extent.

Application and results

In Western China,  the surface topography is 
undulating, and the underground faults and steep 
structures are very developed, which produces 
complicated refl ection paths and weak refl ection signals. 
The complex surface results in a narrow frequency band 
and low SNR for the received data, which makes seismic 
imaging difficult to carry out effectively. To improve 
the image quality, noise suppression is necessary before 
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Figure 4. Original data: (a) shot gather, (b) CMP gather, and (C) stacked section. Blue arrows: surface waves. Red arrows: 
signals. Orange arrows: random noise.

Figure 5. Multi-domain denoising results: (a) shot gather, (b) CMP gather, and (C) stacked section. Blue arrows: surface waves. 
Red arrows: signals. Orange arrows: random noise.

prestack migration. The proposed N-th root slant stack 
method was applied to denoising prestack data of the W 
working area in Western China, and the performance was 
evaluated by comparison to a multi-domain denoising 
method.

Figure 4 shows the original data. The SNRs of 
the original shot gather (Figure 4a) and CMP gather 
(Figure 4b) were low, and the signal was completely 
submerged in the noise, which made it difficult to 
identify. In addition, the continuity and resolution of 
events in the original stacked section were poor (Figure 
4c). Figure 5 shows the denoising results of the multi-
domain denoising method, which improved the SNR. 

However, some noise was still present, and the refl ection 
information was very vague, so the energy of the 
weak reflection signal needs to be further increased. 
Figure 6 shows the denoising results of the proposed 
method. Figure 6a shows the shot gather after coherent 
sequencing in the OVT domain and the N-th root slant 
stack with N = 2. In contrast with the original shot 
gather (Figure 4a) and the shot gather after processing 
by the multi-domain denoising method (Figure 5a), the 
weak signal was enhanced, and the SNR was greatly 
improved. The proposed method also obtained a much 
better CMP gather (Figure 6b) than the multi-domain 

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tim
e (

s)

(a)
0 50 100 150 200 250 0 50 100 150 200 0 50 100 150 200 250 300

(b) (c)
Trace Number

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tim
e (

s)

(a)
0 50 100 150 200 250 0 50 100 150 200 0 50 100 150 200 250 300

(b) (c)
Trace Number



7

Xie et al.

Figure 6. N-th root slant stack denoising results: (a) shot gather, (b) CMP gather, and (C) stacked section. Blue arrows: surface 
waves. Red arrows: signals. Orange arrows: random noise.

denoising method (Figure 5b). These results show that 
the proposed method improves the quality of low-

SNR data, which will be helpful for processing seismic 
imaging data.

Conclusion

The proposed N-th root slant stack method eff ectively 
enhances a weak seismic signal while suppressing 
random noise. OVT domain data and the corresponding 
coherence values are sorted to select the optimal N value 
for the N-th root slant stack to suppress noise. Critically, 
the sequencing process considers the OVT gather and 
corresponding coherence value as a new data body. The 
proposed method can satisfy the unsteady and nonlinear 
characteristics of seismic imaging signals by using 
diff erent N values to suppress the maximum values and 
strengthen a weak seismic signal. If a suitable N value is 
not chosen, the signal becomes distorted.
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