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Abstract: Microseismic monitoring technology is widely used in tunnel and coal mine safety production. 
For signals generated by ultra-weak microseismic events, traditional sensors encounter limitations in terms 
of detection sensitivity. Given the complex engineering environment, automatic multi-classification of 
microseismic data is highly required. In this study, we use acceleration sensors to collect signals and combine 
the improved Visual Geometry Group with a convolutional block attention module to obtain a new network 
structure, termed CNN_BAM, for automatic classification and identification of microseismic events. We 
use the dataset collected from the Hanjiang-to-Weihe River Diversion Project to train and validate the 
network model. Results show that the CNN_BAM model exhibits good feature extraction ability, achieving a 
recognition accuracy of 99.29%, surpassing all its counterparts. The stability and accuracy of the classifi cation 
algorithm improve remarkably. In addition, through fine-tuning and migration to the Pan II Mine Project, 
the network demonstrates reliable generalization performance. This outcome refl ects its adaptability across 
diff erent projects and promising application prospects. 
Keywords: Microseismic; Convolutional Neural Networks; Multi-classification; Attentional mechanism; 
Transfer learning

Introduction

In today's exploration of the Earth’s depths, humans 
increasingly realize the vast resources and space in 
the subsurface [1,2]. Microseismic analysis is rapidly 
developing as a crucial technology in disaster monitoring 
and early warning; it is widely used in the capitalization 
of subsurface space [3,4,5]. With advancements in 

sensing and computer technologies, researchers can 
collect more signals from highly sensitive sensors and 
then manually classify and label the data to localize 
events using mathematical algorithms [6,7,8,9]. 
Microseismic data processing is divided into three main 
steps: waveform identification, microseismic arrival 
detection, and event location.

Precise categorization of microseismic data can fi lter 
out valid events requiring localization. Microseismic 
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monitoring in geotechnical engineering entails a long 
construction period and accumulates a large amount of 
data, necessitating substantial manual effort and time 
for engineers to calibrate. Therefore, many algorithms 
have been developed for automatic classification 
[10,11,12,13]. In practical engineering, construction 
conditions are complex and multichannel- microseismic 
signals (MSs) are usually mixed with various background 
noises [14], prompting the development of denoising 
algorithms [15,16,17]. Traditional algorithms may not 
fully utilize the raw data; therefore, existing automatic 
classification methods continue to need engineering 
assistance. More powerful and advanced techniques must 
be urgently developed. Some researchers have tackled 
this challenge by incorporating neural networks [18, 
19]. They have selected certain parameters to replace the 
waveform as the input for neural network classifi cation. 
By feeding 11 extracted features into CNN, Peng et 
al. [20] achieved an astounding 98.2% accuracy in 
categorizing five signals. As deep learning techniques 
become more widely used and computer technology 
develops, researchers are increasingly using the original 
waveform data as input to prevent potential information 
loss. For instance, Lin et al. [21] classifi ed multichannel 
microseismic waveforms with an accuracy of 91.13% 
using a deep convolutional neural network (CNN) with 
spatial pyramid pooling (DCNN-SPP). Additionally, 
Zhang et al. [22] investigated the use of CNN-MDN 
on raw microseismic data. They demonstrated the low 
sensitivity of CNN-MDN to noise of various intensities 
by examining semi-synthetic data. These results 
demonstrate that deep learning is a promising approach 
to microseismic data processing. However, most datasets 
used for academic research are selected only for MSs 
with high signal-to-noise ratios (SNRs) and typical noise 
signals (NSs), which can be easily categorized.

In practical engineering, especially in the initial stages 
of construction or when data availability is limited, 
manual calibration of data and collection of high-quality 
data require considerable time and physical labor. In 
addition, the reusability of the model for other projects 
remains problematic because of the large differences 
between different datasets. In recent years, researchers 
have proposed a migration learning approach that 
can be used to address these challenges. Tang et al. 
[23] introduced a unified transfer learning strategy 
aimed at transferring knowledge for microseismic 
identification across various items with different levels 
of difficulty. Similarly, Zhang et al. [24] proposed a 

fine-tuning approach for the full convolution U-Net 
architecture model after pre-training. The experimental 
results highlight the effectiveness of knowledge 
transfer for downhole microseismic data obtained from 
different sources. In other words, pre-trained models 
can be fine-tuned to perform well on new datasets, 
thus demonstrating the potential and versatility of 
transfer learning. However, the networks constructed 
by most researchers are overly complex and rely on 
hyperparameter tuning.

In this study, we collected a dataset containing typical 
microseismic waveforms and highly deceptive noise 
waveforms from the Hanjiang-to-Weihe River Diversion 
Project (HW). Subsequently, based on the improved 
VGG13 network, we proposed a basic CNN that may be 
best suited to identify microseismic events. Additionally, 
we employed the attention module in place of traditional 
denoising algorithms, which enables the network to 
handle multchannel signal processing effectively and 
greatly enhances network performance. The model was 
successfully adjusted and used to assess the network’s 
suitability and dependability in real-world engineering 
applications, such as the Pan II Mine Project. The 
network’s resilience, capacity for generalization, and 
potential for practical use were all validated by the 
experiments.

Preliminaries

1 Project Introduction and Data Description
The HW, also known as the South-North Water 

Transfer Project in Shaanxi, straddles the Yellow River 
and Yangtze River basins. It channels water from a 
designated source into the Han River, then through the 
Wei River water transfer tunnel, and eventually to the 
Huangchi Gorge water transfer project supplying water 
to the Guanzhong region. To prevent the risk of rock 
explosion, a microseismic monitoring system is used to 
monitor microseismic activities in the tunneling process 
during construction. For the monitoring configuration, 
A30 acceleration sensors are used to monitor cracks 
within the rock mass. Fig. 1(a) shows the layout of the 
sensor array with every two sensors 50 m apart, three on 
the right wall and the others on the left wall. The fi eld 
experiment is shown in Fig. 1(b), and Fig. 1(c) shows the 
sensor collecting data by coupling the grout to the rock 
mass. The captured MSs can be efficiently transmitted 
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to the transceiver using fi ber optic cables. These signals 
are then converted to digital waveforms. Fig.2 illustrates 
the waveforms for six channels, with Fig. 2(a) and 2(f) 

representing the first and sixth channel waveforms, 
respectively.

Fig. 1. (a) Topology diagram of the microseismic monitoring system, (b) fi eld experiment diagram, 
(c) sensor installation diagram.

When observ ing  F igs .  2 (d) ,  2 (e ) ,  and  2( f ) , 
distinguishing whether the signals are generated by 
rock fracture is challenging. Some examples of typical 

microseismic and atypical waveforms are given in Fig. 3. 
Fig. 3(a) shows a typical microseismic waveform. Figs. 
3(b) and 3(c) show segments of low SNR signals that 
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merge with the microseismic waveform and interfere 
with machine recognition. Fig. 3(d) is a highly deceptive 

noise, which can seriously aff ect the accuracy of signal 
identifi cation in this case.

Fig. 2. Examples of multichannel microseismic data. (a), (b), (c), (d), (e), 
and (f) represent the waveforms acquired by six channels.

Fig. 3. Examples of microseismic waveform. (a) Typical waveform; (b), (c), and (d) atypical waveforms.
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Fig. 4. Various types of signal waveforms. (a), (c), (e), (g), (i), and (k) are MSs, blasting signals, rockburst signals, borehole 
signals, mechanical vibration signals and electromagnetic interference signals, respectively. (b), (d), (f), (h), (j), and (l) are the 

corresponding time frequency domain features.

In practical engineering, many interference signals 
exist besides MSs. For example, Figs. 4 (a), 4(c), 

4(e), 4(g), 4(i), and 4(k) depict MSs, blasting signals, 
rockburst signals, drilling signals, mechanical vibration 
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signals and electromagnetic interference signals, 
respectively, Figs. 4 (b), 4(d), 4(f), 4(h), 4(j), and 4(l) 
represent the corresponding time frequency domain 
characteristics. MS and drilling signals are similar to 
the waveform, with their peaks suddenly appearing 
and attenuating, and their peaks are relatively close. 
Rockburst and explosion signals have higher peaks 
and decay more slowly. Mechanical vibration signals 
present a disorganized waveform image, electromagnetic 
interference signals and micro-vibration signal 
waveforms are alike. These specific noises tend to 
interfere with machine recognition, so collecting a 
diverse range of waveforms in the dataset enables the 
model to learn from various scenarios.

1DCNN

As MS is typically 1D the networks must be converted 
to 1D versions so that they can be easily combined with 
the network modules proposed in this study. Therefore, 
the second dimension of the 1DCNN (vertical or 
horizontal dimension in the visualization) is set to 1. The 
CNN is mainly composed of the following structures:

(1) Convolution layer
The convolutional layer is performs feature extraction 

on the input data. Each neuron is connected to multiple 
neurons in a similarly located region in the previous 
layer, and the weight of that part of the line is constant. 
Moreover, each convolutional layer takes the input from 
the previous layer. By using different convolutional 
kernels after performing operations before inputting 
to the next layer, this process can be expressed by the 
following equation:

1
1

0
y ,

m
l l
i i p i

i
f w y   (1)

where wi denotes the weight of the position in the fi lter, 
yl-1 represents the output of the previous layer, p+i 
denotes the position of the convolution kernel applied in 
the convolution operation, and f denotes the activation 
function, usually the tanh function. 

(2) Pooling layers
The pooling layer is sandwiched between successive 

convolutional layers and it involves feature selection 
and information fi ltering. Although some information is 
lost in the process, the parameters and computation are 
reduced, fi nding a balance between model eff ectiveness 

and computational performance. 
(3) Activation function
Each neuron node in a neural network accepts the 

output value of the neuron in the previous layer as the 
input value of that neuron and passes the input value to 
the next layer. A functional relationship exists between 
the output of the previous layer and the input of the 
nodes in the next layer, and this function is called the 
activation function. The tanh activation function used in 
the model, which converges faster, can be expressed by 
the following equation:

exp( ) exp( )tanh( ) ,
exp( ) exp( )

x xx
x x

  (2)

(4) Dropout
Dropout is a regularization method to prevent model 

overfitting, and it is widely used in deep learning. The 
layer temporarily removes some neurons randomly 
during the training to reduce the complexity and 
parameters of the neural network, thus effectively 
avoiding the overfi tting problem.

3 Attention Mechanism
Diverse different signals have different durations, so 

we introduce an attention mechanism to empower the 
network with adaptive learning capabilities. 

The CBAM is a lightweight general-purpose module 
that can be seamlessly integrated into any CNN 
architecture using two main independent attention 
mechanisms, namely channel attention and spatial 
attention. The basic principles of the attention mechanism 
draw their inspiration from the human tendency to show 
a high degree of attention when processing information. 
Through its ability to learn on its own, the attention 
mechanism recognizes and assigns different levels of 
importance to various pieces of information [25]. In this 
study, we mainly use the channel attention mechanism to 
perform feature reconstruction on the input features. We 
then use the spatial attention mechanism to reconstruct 
the reconstructed features again to obtain the final 
features. Fig. 5 shows the structure of CBAM.

The channel attention mechanism plays a vital role 
in recognizing important features. It first performs 
average and maximum pooling on the input elements. 
Two features are combined through a fully connected 
network. A sigmoid activation function is then applied, 
ensuring that the weights assigned to each feature 
component sum to 1. Subsequently, the resulting weight 
matrix is multiplied by the feature matrix, effectively 
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assigning weights to diff erent parts of the feature matrix. 
When analyzing multichannel waveform data, one can 
learn to selectively emphasize the more meaningful 
features.

Spatial attention focuses on recognizing the most 
informative region or portion of the input, thus 
complementing the channel attention mechanism. The 

signals collected in the field inevitably carry highly 
deceptive noise and contain small informative parts. 
The attention mechanism can effectively suppress 
the effect of noise, and to a certain extent can replace 
the traditional denoising algorithm while avoiding 
information loss from noise removal.

Fig. 5. Structure of the attention module.

Network Construction and Model 
Training

The VGG network is a deep CNN proposed by the 
Visual Geometry Group at the University of Oxford 
[26]. It stands out because of its well-structured network, 
making it highly compatible with hardware acceleration 
techniques.

1 Model Overview
The network model in this study is an improved 

network structure on the standard VGG13. Fig.6 shows 

the network structure: the convolutional layers are 
eight, and data features are extracted by convolutional 
computation. Setting the convolution kernel to 3 requires 
fewer parameters and speeds up training when the 
sensory fi eld is the same. The use of the tanh activation 
function and dropout (0.25 in this study) after every 
two convolutional and pooling layers helps mitigate 
overfitting and enhance the generalization ability of 
the model. The Adam optimizer is selected, and the 
learning rate is set to 0.001. Softmax activation function 
is used to ensure that the outputs of each category form a 
probability distribution. Unlike VGG13, this study uses 
a global mean pool instead of a fully connected layer. It 
reduces the complexity of the model and improves the 
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outputs, the convolutional kernel size, the activation 
function and the parameters.

2 Experimental Study and Analysis
To verify the feasibility and effectiveness of the 

network, we fed the datasets collected in the fi eld into the 
network for multiple classifi cation identifi cation. In this 
study, six types of datasets consisting of 1272 MSs, 486 
blasting signals, 349 rock blasting signals, 566 drilling 
planning noises, 1042 mechanical vibration noises 
and 505 electromagnetic disturbances were selected. 
We divided them into two parts according to the ratio 
between the training set and the validation set, which is 

8:2. All networks in this study were implemented using 
the TensorFlow framework. The PC (with i5-11400 
CPU, Intel(R) UHD Graphics 730 and 8 GB RAM) fully 
distributes the computer’s resources so that the model is 
capable of full learning. In Fig. 7, the accuracy and loss 
of CNN_BAM iterations on the training and validation 
datasets are shown. Accuracy refl ects the probability of 
correctly detecting a waveform, whereas loss indicates 
the effectiveness of model learning. Lower loss values 
indicate better training results.

Fig. 7. Model training process and results. (a) Variation of accuracy with the epochs; (b) variation of loss with the epochs. The 
blue and red lines represent the accuracy and loss of the training and validation datasets, respectively.
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overall performance. Table 1 provides the parameters for 
each layer, which include the different layers and their 

Table 1. Parameters of each layer
Layer Output Kernel Activation function Parameters
Conv1 (None,4001,32) 3 tanh 608
Conv2 (None,4001,32) 3 tanh 3104
Maxp1 (None,2000,32) 2 0
Conv3 (None,2000,64) 3 tanh 6028
Conv4 (None,2000,64) 3 tanh 12352
Maxp2 (None,1000,64) 2 0
Conv5 (None,1000,128) 3 tanh 24704
Conv6 (None,1000,128) 3 tanh 24704
Maxp3 (None,500,128) 2 0
Conv7 (None,500,256) 3 tanh 98560
Conv8 (None,500,256) 3 tanh 196864
CBAM (None,250,256) 16398

Global Avepl (None, 256) 0
Dense (None, 6) softmax 1542

The results show that as the number of iterations 
increases, the model converges to a steady state at 
roughly 120 iterations, which indicates that the model 
is finally close to fitting. At this stage, the model 
achieves an accuracy of roughly 99.8% with a loss of 
approximately 0.01 in the training set and an accuracy of 
roughly 99.29% with a loss of approximately 0.09 in the 
validation set. The model clearly demonstrates excellent 

performance in the training and validation phases.

3 Comparative Analysis
A n  e f f e c t i v e  m o d e l  s h o u l d  e x h i b i t  s t r o n g 

generalization ability. In addition, standardized metrics 
are crucial for assessing the generalization ability of 
various classification models. Different tasks require 
diverse performance metrics, and commonly used 
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metrics such as precision, recall, and F1-score are used to 
evaluate how well a model generalizes to a classifi cation 
task. The multi-classification is made, in which the 
category is a positive category, and all other categories 
form an inverse category. The predicted results can be 
classified into four categories: true positive (TP), false 
positive (FP), true negative (TN), and false negative 
(FN). Precision is the proportion of correct predictions, 
and recall is the proportion of correct predictions in the 
actual positive sample (both TP and FN). F1-score is 
used to assess the overall performance of the model. The 
higher the F1-score, the better the performance of the 
model. MSs and NSs are positive and negative examples 
in signal classification, corresponding to TP and TN, 
respectively. They can be correctly identified by the 
learner and expressed by the following equation:

,TP
P

TP FP
 (3)

,TP
R

TP FN
 (4)

21_score= ,P RF
P R

 (5)

To verify the stability and generalization ability of the 
network, we compare it with diff erent networks. Among 
them, ResNet [27], as a deep residual network, has the 
ability to learn more complex features. AlexNet [28] is a 
classical deep CNN, which achieved a notable victory in 
the ImageNet image classifi cation competition in 2012. 
SVM [29] and RF [30] are classical machine learning 
models. The former performs classification by finding 
an optimal hyperplane in the feature space, and the 
latter constructs multiple decision trees to handle a large 
number of features and samples. The results show that 
our proposed model achieves an accuracy of 99.29% on 
the validation set. Compared with other models, CNN_
BAM outperforms other networks in all evaluation 
metrics of MSs, as shown in Table 2.

Table 2. Comparison between different networks
Methods Validation Accuracy Precision Recall  F1-Score

CNNBAM 99.29 0.99 1.00 0.99
CNN 97.99 0.96 1.00 0.98

ResNet 93.48 0.98 0.93 0.96
AlexNet 92.00 0.98 0.91 0.94

SVM 52.13 0.45 0.52 0.44
RF 91.94 0.93 0.80 0.86

CNN_BAM and CNN are selected for comparison of 
different signals. As shown in Table 3, the evaluation 

metrics of CNN_BAM multi-classification outperform 
those of the other networks.

Table 3. Comparison of the two methods on a validation dataset
CNN_BAM

Classes Precision Recall F1_score Reported Runtime
MS 0.99 1.00 0.99

4.4h

Blast 0.97 0.99 0.98
Rock blast 0.97 0.94 0.95

Drilling and planning 0.95 1.00 0.98
Mechanical vibration 1.00 0.98 0.99

Electromagnetic interference 0.95 0.99 0.97

CNN
Classes Precision Recall F1_score Reported Runtime

MS 0.95 0.98 0.97

3.6h

Blast 1.00 0.99 0.99
Rock blast 0.98 0.97 0.98

Drilling and planning 0.97 0.99 0.98
Mechanical vibration 0.97 0.99 0.98

Electromagnetic interference 1.00 0.86 0.92
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Migration Learning and Reusability

Differences in geological conditions, construction 
methods, and monitoring equipment lead to variability 
between diverse rock projects. To save considerable 
labor and time, we would like the network structure to be 
trained without having to start from scratch, using only 
a limited number of labeled data samples from the new 
project. This technique is known as transfer learning. It 
starts from trained models and trains methods for new 
related domains. One of the common solutions is the 
fine-tuning technique, which learns from the original 
task and adapts to the specifi c requirements of the new 
task [31]. This approach has proven its eff ectiveness in 
practical applications. 

1 Model Overview and Analysis of Results
Owing to the small size of the new two datasets, 

to avoid overfitting, we train only the classifier of the 
network, keeping all other layers unchanged. As shown 
in Fig. 8, we add a fully connected layer and change 
the last layer of the network to binary classification. 
All the other layers are frozen, keeping the pre-trained 
parameters.

Two sets of data are input: the first set of data HW 
project of different periods and the second set of data 
from the PJ-2. A total of 250 sets of MSs and 250 
sets of NSs are selected for the two sets of data. PJ-2 
is located in the northern part of the Huaihe River 
and in the eastern part of the Huainan Mining Area. 
To effectively monitor the impact of the bottom slab 
mining damage zone on the gray rock aquifer and the 
change of stratum stress during the working face back 
mining, a microseismic monitoring system is used to 
collect the MSs caused by the rock layer rupture of the 
working face bottom slab during the mining process. 
Through precise calculation, the damaged location of the 

Fig. 8. Schematic of the structure of the fi ne-tuning network.

Fig. 9. Fine-tuning model training process and results.
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microfracture and the area that may be aff ected can be 
determined to improve the safety and efficiency of the 
mine production. The classifi cation results are shown in 
Fig. 9. At a learning rate of 0.0005, Fig. 9(a) shows the 
superior performance of the fi rst dataset (96% accuracy). 

Data for PJ-2 are collected in coal mines owing to 
differences in geological conditions, construction 
methods and monitoring confi gurations. The PJ-2 dataset 
is less similar to the main dataset, and Fig. 9(b) shows an 
accuracy rate of approximately 92%, as shown in Table 4.

Table 4. Fine-tuned results of the network generalization ability validation in datasets
HW

Precision Recall  F1-Score  Accuracy
MS 0.94 0.96 0.95

0.96
NS 0.96 0.94 0.95

PJ-2
Precision Recall  F1-Score  Accuracy

MS 1.00 0.84 0.91
0.92

NS 0.86 1.00 0.93

2 Discussion
Through model training and validation, CNN_

BAM shows better performance in microseismic multi-
classification than other networks. When variability 
between two datasets is inevitable, and the data amount 
is minimal, the optimized CNN_BAM network model 
demonstrates superiority in information transfer across 
various engineering contexts. It still has the following 
drawbacks. (1) Training samples are crucial for neural 
networks to function properly. The model is prone 
to overfitting and inadequate training if the samples 
available are insuffi  cient for the network to completely 
learn the features of the categorized subjects. The 
environment of geotechnical engineering is complicated, 
so gathering datasets with a variety of waveform patterns 
is diffi  cult. (2) For the fi ne-tuning model proposed in this 
study, future work should increase the signal samples 
of various waveform signals from diff erent regions and 
improve the network structure through further training. 
Doing so can enhance the intelligence of automatic 
classification and subsequent analysis of microseismic 
data, saving labor and time costs.
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Conclusion

On the basis of CNN and attention mechanism in deep 
learning, this study proposes a new lightweight network 
structure for efficient recognition of microseismic 
multichannel events. The classification performance is 
evaluated by combining CNN_BAM with several state-
of-the-art networks. CNN_BAM outperforms other 
networks in terms of precision, recall, and F1-score, 
demonstrating its eff ectiveness and robustness. By fi ne-
tuning the network structure, knowledge migration 
under diff erent projects is achieved, which successfully 
solves the problem that the deep learning model cannot 
be repurposed among diff erent microseismic monitoring 
projects in diverse geological settings. This capability 
greatly saves time and fi nancial resources and improves 
the efficiency of researchers in different projects. The 
network can be utilized for intelligent monitoring in 
diff erent applications related to rock engineering because 
of its generality and versatility. As neural network 
algorithms continue to progress, the network is expected 
to handle diff erent kinds of data and carry out a variety 
of tasks. This progression is poised to contribute to the 
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fi eld of intelligent monitoring in rock engineering.
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