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Abstract: Seismic stochastic inversion method has received much attention because of its 
considerable advantage of having higher vertical resolution than deterministic inversions. 
However, due to the lack of cross-well data, the inversion results typically exhibit poor lateral 
continuity. Furthermore, the inversion efficiency is low, and the inversion result is highly 
random. Therefore, this study proposes a geostatistical seismic inversion method constrained 
by a seismic waveform. The correlation coefficient of seismic data is used to measure the 
similarity of the seismic waveforms, replacing the traditional variogram for sequential 
Gaussian simulation. Under the Bayesian framework, the Monte Carlo–Markov Chain 
(MCMC) algorithm is combined with the constraints of seismic data to randomly perturb 
and optimize the simulation results for obtaining the optimized parameter inversion results. 
The model data tests show that the initial model based on seismic waveform constraints can 
accurately describe the spatial structure of the subsurface reservoir. In addition, perturbing 
and optimizing initial model can increase the convergence speed of the Markov chain 
and effectively improve the accuracy of the inversion results. In this paper, the proposed 
geostatistical inversion method is applied to the actual seismic data of an oil field. Under 
the constraints of the stochastic simulation process and objective function, the geological 
information contained in the seismic waveforms is fully mined, and a theoretical foundation is 
provided for realizing the multidata joint-constrained seismic inversion.
Keywords: seismic waveform correlation coeffi  cient, sequential Gaussian simulation, initial 
model, Monte Carlo–Markov Chain algorithm

Introduction

Seismic inversion has been widely used for the 
exploration and development of thin reservoirs of oil 
and gas to obtain the elastic parameters of subsurface 
media and describe the changes in the reservoir 
spatial structure. Limited by the seismic frequency 

band, deterministic seismic inversion cannot meet the 
requirements of high-resolution exploration. Logging 
data is used as conditional data for stochastic inversion 
to improve the vertical resolution of inversion results 
(Wang et al., 2018). However, such inversion results 
often encounter problems of strong randomness and 
low lateral continuity (Sams and Saussus, 2008, 2010; 
Yin et al., 2014). Hence, research on how to maximize 



187

Ni et al.

the use of reservoir parameter information carried by 
seismic data has become an important direction for 
realizing high-resolution exploration. Taking seismic 
data and geostatistical characteristics as constraints  
and prior information, respectively, multiple reservoir 
parameter models can be built using geostatistical 
inversion methods to combine stochastic simulation with 
stochastic inversion (Durrani et al., 2021). Statistical 
analyses of these models can improve the prediction 
accuracy of their inversion results and further describe 
the thin reservoir structure characteristics in detail. 
Although stochastic inversion (Hass and Dubrule, 1994) 
was eff ectively utilized to improve the vertical resolution 
of inversion results using the strategy of channel-by-
track simulation, the calculation effi  ciency of inversion 
results was not high. Therefore, simulated annealing 
(Debeye et al., 1996), Monte Carlo (Kane et al., 1999), 
and genetic algorithms (Azevedo et al., 2015) were 
successively introduced to randomly perturb simulated 
results for obtaining globally optimal inversion results. 

To stimulate the three parameters of P-wave 
velocity, S-wave velocity, and density, Contreras et 
al. (2005) prestack seismic data need to be combined 
with geostatistical simulation, which enables the 
development of the stochastic inversion from post- 
to prestack, providing more information on the fine 
description of the subsurface structure and prediction 
of reservoir parameters. Escobar et al. (2006) proposed 
a fast prestack stochastic inversion method based on 
the sequence grid, greatly improving computational 
effi  ciency of stochastic inversion. Based on the spectrum 
simulation proposed by Francis (2006a, 2006b), Wang 
et al. (2015) adopted a fast Fourier transform moving 
average (FFT-MA) spectrum simulation algorithm to 
construct prior information in the frequency domain. 
When FFT-MA algorithm is combined with the gradual 
deformation method, the computational efficiency is 
improved. Yang and Mrinal (2016) combined a very fast 
simulated annealing algorithm with greedy annealed 
importance sampling to improve the inversion accuracy 
and increase the convergence speed.

Meanwhile, the application of seismic data has 
developed rapidly in recent years. For example, Pereira 
et al. (2019) built a more accurate prior model based on 
the lateral continuity of seismic data to make up for poor 
lateral continuity of logging data. The employment of 
seismic data as constraints can reduce the uncertainty in 
the solution space of the stochastic inversion (Dubrule 
et al., 1998; Wang and Zhao, 2010) and improve the 

accuracy of inversion results. Following the Bayesian 
framework, Buland and Omre (2003) applied prestack 
seismic data for constructing the likelihood function 
and obtained the three parameters of P- and S-wave 
velocities and density through direct inversion. Zhang 
et al. (2016) realized the classification of seismic 
waveforms and identification of seismic phases, while 
Song et al. (2019) proposed dynamic sub-windows 
matching as a new similarity measure to classify seismic 
waveforms. To obtain a subsurface lithofacies model and 
realize reservoir prediction, Abdel-Fattah et al. (2020) 
further excavated the information contained in seismic 
data and combined seismic attribute information with 
stochastic inversion results. Chen et al. (2020) proposed 
a seismic meme inversion method and analyzed the 
intrinsic relation between the seismic waveform and 
high-frequency logging information to realize the thin 
inter-reservoir prediction in continental basins. Zhou et 
al. (2021) established an initial model with waveform 
indications using the similarity of seismic waveforms. 
By using the Metropolis–Hastings (M–H) sampling 
algorithm, the initial model was perturbed multiple times 
randomly, following which the best inversion results 
were obtained. In addition, the seismic meme inversion 
method has been widely applied to actual work areas for 
achieving the accurate prediction of thin inter-reservoirs 
(Gao et al., 2017; Li et al., 2017; Wang et al., 2022; Chen 
et al., 2022). In this paper, a certain geophysical mapping 
relation between the low-frequency seismic waveform 
and high-frequency logging information is determined 
based on the correlation between logging curves and the 
seismic waveform in similar sedimentary environments. 
Additionally, a method has been proposed for using the 
lateral variation of seismic waveforms to guide high-
frequency logging information, i.e., the correlation 
coefficient of seismic waveforms is used to guide the 
logging data modeling. Following the principles of the 
ordinary Kriging interpolation, we derived a sequential 
Gaussian simulation method based on the seismic 
waveform similarity. The initially constructed model 
with the seismic waveform indication can overcome the 
smoothness problem commonly found in the Kriging 
interpolation. Further, we used the MCMC algorithm to 
perturb and optimize the initial model and combined the 
results of the algorithm with seismic data constraints to 
effectively improve the lateral continuity of inversion 
results and enhance the accuracy and efficiency of 
stochastic inversion.
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Theory and method

Mapping relationship between seismic 
waveform and reservoir parameters

Abundant geological information can be found in 
seismic waveforms, and its variation information, 
such as amplitude, phase, and frequency, indicates the 
characteristics of subsurface reservoirs (Hu et al., 2018). 
At present, the refl ection wave is most commonly used 
in seismic inversion with a frequency range of 30–70 
Hz. The frequency of seismic waves decreases gradually 
from the shallow layer to the middle and deep layers 
due to the absorption and attenuation of the formation, 
while the frequency of logging data can reach several 
kilohertz. As shown in Figure 1, the spectrum analysis 
of the single-trace seismic data reveals that its frequency 
is concentrated within 100 Hz, which is far smaller than 
the frequency range of the logging data. Therefore, the 
similarities of seismic waveforms can be used to guide 
the interpolation of logging curves. First, the mapping 
relationship between seismic waveform and the reservoir 
aspects that they characterize is defined, after which a 
suitable frequency range of the logging curves is selected 
to match the seismic and logging data.

Figure 1. Spectrum of seismic records.

Figure 2. Schematic of seismic forward and inversion 
process.

An objective mapping relationship can be observed 
between the seismic records obtained in practice and 
the relevant parameters of the reservoir, based on 
which the seismic waveform similarity simulation can 
be conducted. Theoretically, seismic records can be 
expressed as the convolution of seismic wavelets and 
formation reflection coefficients. “Seismic inversion” 
refers to the inverse process of forward modeling and 
is the origin of the sequence of the formation refl ection 
coefficients. The coefficient sequence can be obtained 
using the wave impedance information of a reservoir, 
after which the physical parameters of the subsurface 
medium can be solved. Figure 2 presents a schematic 
of the seismic forward and inversion process, which 
also reveals the objective relationship between the 
seismic waveform and reservoir physical property 
parameters. Therefore, using the similarities of seismic 
waveforms, the interpolation simulation of inter-well 
physical parameters is guided, which can then lead to the 
parameter model with better lateral continuity.

Simulating method of seismic waveform 
similarity based on SGS

The traditional seismic inversion method considers 
logging data as a known factor and reflects the spatial 
variation of inter-well reservoir parameters through 
variogram. Seismic data do not participate in guiding the 
construction of the initial model; hence, the information 
carried by the seismic waveform cannot be fully utilized. 

Based on the convolution model, the lateral variation 
of seismic waveforms can reflect changes in reservoir 
parameters. Therefore, seismic waveform and high-
frequency logging information can be used constructing 
initial models.

The key to realizing the seismic waveform similarity 
simulation is to complete the similarity optimization 
of seismic waveforms and determine the optimal 
sample and its corresponding weight coefficient. The 
algorithm for seismic meme indication inversion uses 
Kriging interpolation, which is based on the principle 
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of calculating the weight coefficient of some elastic 
or physical property parameter according to its partial 
measurement value for estimating the attribute value 
at a specific location. However, this method has a 
smoothing eff ect and is not suitable for reservoirs with 
severe lateral changes. To address this issue, we consider 
a sequential simulation algorithm for sampling random 
fi elds. The lateral variation of the seismic waveform is 
used to simulate the spatial inhomogeneity for effi  ciently 
realizing the reservoir parameters.

Figure 3 is a schematic of estimating the attribute 
value at a specific location using seismic waveform 
similarity simulation (Gao et al., 2017). Red represents 
the known positions, while purple represents the 
predicted positions. First, we compare the seismic 
waveform at the location to be predicted with all 
known locations. Subsequently, we obtain the seismic 
waveform correlation coefficient, in which the higher 
the seismic waveform correlation coefficient, the more 
similar the subsurface sedimentary characteristics at 
the two locations. Such sedimentary characteristics 
refl ect the specifi c properties of reservoir parameters to 
a certain extent. Therefore, to complete the interpolation 
calculation of unknown reservoir parameters, the 
inherent relation between the seismic waveform and 
reservoir parameters can be used for guiding logging 
information. As shown in Figure 3, according to the 
seismic waveform correlation coefficient, the well 
samples at three locations are selected as known 
information and diff erent weights are given to the well 
samples. This facilitates the calculation of the unknown 
parameters at the position to be predicted, in which there 
are two key steps:

1. Selecting the optimal well samples. First, we used 
a fi xed time window to process the logging and seismic 

Figure 3. Schematic of similar simulation of seismic 
waveforms. (quoted from Gao, 2017).

data and then establish the well and seismic data sample 
sets. Further, we calculated the correlation between the 
seismic waveform of the trace to be identifi ed and that of 
the side trace of each well. Finally, we selected the well 
samples with high correlation as the eff ective statistical 
samples by ranking the correlation coeffi  cients from high 
to low.

2. Building the initial model. The selected well-sample 
curves are taken as known data to construct the initial 
model using sequential Gaussian simulation (SGS). The 
seismic waveform similarity coefficient is used instead 
of the variogram to describe the spatial structure changes 
in the reservoir. Therefore, the inversion results are more 
in line with the geological rules (Gao et al., 2017).

According to the comparison between the Kriging 
interpolation and SGS algorithm proposed by Zhao et al. 
(2010), after mathematical transformation, we fi nd that 
the SGS value is equivalent to the sum of the Kriging 
interpolation result and a random deviation. Therefore, 
starting from the ordinary Kriging algorithm, we derive 
the formula for seismic waveform similarity simulation 
based on SGS. Here, we use the correlation coeffi  cient 
of the seismic waveform instead of the variogram to 
complete the modeling of reservoir parameters.

The ordinary Kriging interpolation formula is as 
follows:

 0
1 1

( ) ,
n n
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X Xi i i i

i i
x x x (1)

where  0
okx is the data to be predicted;  X is the mean 

value of the variable X, which is unknown; ωi is the 
Kriging weight; and xi is the known measurement value. 

Given that Kriging interpolation satisfies unbiased 
estimation, it must satisfy the constraint that the sum of 
weights is 1:
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The expression for the estimated variance is as 
follows:
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where  ( , )ij i jCov x xC represents the covariance matrix 
of the two variables, and σ2 is the variance within the 
region.

known data to be predicted
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The formula for solving the similarity coefficient of 
the seismic waveform of two sets of data is as follows:

 / ( ( ) ( )),ij ij i jr D x D xC (4)

where rij represents the similarity coefficient of the 
seismic waveform at xi and xj, which is brought into 
Formula (3). Then, the variance is simplifi ed as:

 2 2 2

1 0 1

2 .
n n n

i j ij i ij
i j i

J r r (5)

We use the similarity coefficient of the seismic 
waveform to obtain the weight coefficient, that is, to 
fi nd the solution of xj when the variance is the smallest, 
by combining this with the constraints of unbiased 
estimation. The objective function is constructed as 
follows:
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where φ is the Lagrangian multiplier, and the objective 
function takes a derivative with respect to ωi and φ, 
respectively. The matrix is constructed as follows:
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By solving the coefficient matrix, the weight 
coefficient based on the similarity coefficient of the 
seismic waveform can be obtained, which is inputted into 
Formula (1) to obtain the Kriging interpolation result. 
The addition of a random deviation to the interpolation 
result yields an implementation of SGS. This random 
deviation is the product of the standard deviation of the 
conditional distribution, in which the prediction should 
be made, and a random number that follows a standard 
normal distribution. This is expressed as:

 '
0 0 0( ),ok

mx x l S x (8)

where lm is a random number that obeys the standard 
normal distribution, and S(x0) is the Kriging error 
variance, the formula for which is given by: 

 2
0 0

1

( ) .
n

i i
i

S x C (9)

The steps of the seismic waveform similarity 
simulation method based on SGS are as follows:

1. Set a random path and use the similarity coeffi  cient 
of the seismic waveform to select well samples for each 
location to be predicted. 

2. Use the similarity coefficient of the seismic 
waveform to calculate the weight coefficient of well 
samples at the position to be predicted and obtain the 
Kriging value and error variance.

3. To obtain the simulation value, add a random 
deviation based on the Kriging value.

4. Add the simulated value to a known sample set and 
combine it with the well sample at the next location to 
be predicted to obtain a new well-sample set.

5. Repeat Steps 2–4 according to the random path 
until the realization of SGS is obtained.

Markov chain–Monte Carlo (MCMC) algorithm
Based on the Bayesian framework, seismic inversion 

utilizes prior information and likelihood functions to 
obtain the posterior probabilities of inversion parameters. 
However, in actual seismic inversion, it is difficult to 
find the analytical solution of the posterior probability 
distribution. The MCMC inversion algorithm proposed 
in this paper is one such probabilistic inversion method. 
It has been widely used in seismic inversion due to its 
advantages, such as its ability to obtain the samples of 
the parameter posterior distribution through random 
sampling, avoid complicated calculations, and perform 
the uncertainty analysis of the inversion results (Sams et 
al., 1999; Hansen et al., 2006).

Furthermore, the MCMC algorithm connects the 
parameter distribution characteristics of the current 
moment with the previous moment by constructing a 
Markov chain. The model obtained using the similarity 
simulation of the seismic waveform is used as the 
initial distribution of parameters, and new parameter 
distribution characteristics are obtained through random 
perturbation and optimization. The convergence speed of 
the MCMC algorithm depends on the initial distribution, 
such that if the initial distribution is close to the 
distribution characteristics of the parameters, the Markov 
chain can quickly converge to a stable state. If the initial 
distribution is inaccurate, the inversion results may 
fall into a local minimum. Here, we use the simulation 
results obtained using seismic waveform similarity 
as the initial distribution of the MCMC optimization 
algorithm, which is more accurate than conventional 
low-frequency models. It is also benefi cial for increasing 
the convergence speed of the Markov chain and avoiding 
local minima. 

When constructing the Markov chain, it is assumed 
that the parameter distribution characteristics of the 
current moment are only related to the previous moment. 
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Therefore, the transition matrix can be simplifi ed as:
     

,,, 002211 jtjtjt sXsXsXsXP
   

      ),( 11 jtjt sXsXP                                 (10)

where X(t)  is regarded as a random variable, and sj 

represents the parameter distribution characteristics of 
state j.

Here, we use P(t+1,t) to denote the transfer of the 
parameter distribution characteristics from t+1 to t, 
which is called the “proposal distribution”. Therefore, 
the parameter distribution characteristic πt+1 at t+1 can 
be expressed by the proposal distribution and parameter 
distribution characteristics πt at t as follows:

 1 ( 1, ) .t tt tP (11)

If the proposed distribution remains constant, the 
relationship between πt+1 and the initial distribution π0 
of the parameters can be established using the following 
recursion method:
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To avoid the inversion result falling into a local 
minimum, we use the acceptance probability formula 
to assess whether to transfer to a new parameter state. 
Let the acceptance probability formula α(0<α<1) of 
transitioning from state θ to state υ be:

 ( , ) min 1, ( , ) / ( ( , )) ,P P (13)

where πθ and πυ respectively indicate the parameter 
distribution characteristics of state θ and state υ, and 
P(θ,υ) and P(υ,θ) respectively indicate the proposal 
distribution from state θ to state υ and from state υ 

to state θ. Let us assume that a random number μ 
between 0 and 1 is generated and the size of μ and 
θ is compared. If  μ < α, the new state υ is accepted; 
otherwise, the new state is not accepted. The refl ection 
coeffi  cient is calculated using reservoir parameters after 
perturbation, following which the synthetic seismogram 
is obtained. Further, the least square errors of the 
synthetic seismogram and observed seismogram are 
calculated as the objective function. The Markov chain 
is considered stable, and a dynamic representation of 
the posterior probability distribution can be realized 
when the maximum number of iterations is reached or 
if the objective function is less than the threshold value. 
Finally, multiple stochastic simulations are performed on 
the initial model with seismic waveform indications, and 
the posterior mean is taken as the optimal solution of the 
inversion result.

Model tests

Parameter settings
We selected a 2D impedance model for testing to 

verify the simulation theory of seismic waveform 
similarity. Aside from 80 traces of model data, the time 
range was 1150–1550 ms, and the data sampling interval 
was 1 ms. We extracted four traces of impedance data 
as pseudo-well data, segmented the data with a time 
window of 40 sampling points, and divided each trace 
of data into 10 samples. We used the impedance data to 
obtain the reflection coefficient and convolved it with 
the Ricker wavelet with a dominant frequency of 30 Hz 
to obtain synthetic data. Figure 4 shows the impedance 
model, the synthetic data with a signal-to-noise ratio of 2, 
and four traces of pseudo-well data.

Figure 4. Impedance model data. 
(a) Impedance model, (b) synthetic data with a signal-to-noise ratio of 2, and (c) four traces of pseudo-well data.
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Figure 5. Simulated results. (a) Seismic waveform similarity simulation based on SGS and (b) comparison of the waveform 
similarity between the simulated and wave impedances at the well location (the 30th trace is selected).

Simulation results
Based on the generated random path, we calculated 

the similarity coefficient of the seismic waveforms 
between the simulated and pseudo-well locations using 
Formula (4). Formula (7) is used to solve the weight 
coeffi  cient, which is then incorporated into Formula (1) 
and Formula (8) to derive simulation results. Figure 5(a) 
presents the simulation results obtained using the inter-
well interpolation based on the similarity of the seismic 
waveforms. The simulation results roughly reflect the 
basic shape of the impedance model, where a thin layer 
is relatively clear, and a low impedance feature at 1225 

ms is obvious (marked by a black dashed oval in Figure 
5(a). Figure 5(b) presents the comparison between the 
simulation result of the wave and real impedances of 
the 30th trace (marked by a black arrow in Figure 5(a)), 
where the waveform similarity coefficient of the wave 
impedance is 98.25%. This fi nding demonstrates that the 
simulation results can refl ect the real model well when 
the lateral strata show minimal changes. Here, we use 
the simulation to obtain the initial model of the MCMC 
optimization algorithm, the initial model of the algorithm 
mitigates the low effi  ciency of stochastic inversion.

Inversion results
We used the MCMC algorithm to perturb and 

update the results of the seismic waveform similarity 
simulation. The maximum number of iterations was 
set to 800. When the minimum square error of seismic 
records before and after the perturbation is less than 
1e-6, the Markov chain is considered stable, and the 
final inversion result is obtained. Figure 6(a) presents 
the impedance inversion result. In 1350–1450 ms, thin 
layer inversion results are clear and lateral continuity is 

good (marked by a black dashed oval in Figure 6(a)). 
Figure 6(b) presents the comparison of the waveform 
similarity between the wave impedance inversion results 
of the 30th trace (marked by a black arrow in Figure 
6(a)) and real wave impedance, where the waveform 
similarity coefficient reaches 99.14%. Compared with 
the wave impedance simulation results, the inversion 
results present a more accurate characterization of thin 
reservoirs (marked by a black dashed oval in Figure 
6(b)). Figure 6(c) is the logarithmic error box plot of 

Figure 6. MCMC inversion result and error graph. (a) Impedance inversion result obtained using the MCMC algorithm, (b) 
comparison of the waveform similarity between the inverted wave impedance and wave impedance at the well location (the 30th 

trace is selected), and (c) logarithmic error box plot of the inversion result and impedance model.
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the inversion result and impedance model. This plot 
indicates that the inversion results are highly consistent 
with the impedance model, and the error between the 
synthetic and the actual seismic record is very small. 
Furthermore, model testing reveals that the initial model 
based on the seismic waveform similarity simulation 
has a relatively high lateral resolution. Application of 
the MCMC algorithm can quickly stabilize the Markov 
chain and effectively improve the computational 
effi  ciency of the stochastic inversion and the accuracy of 
the inversion result. This method could also realize the 
full utilization of the seismic waveform. Therefore, by 
applying this method to the actual seismic data, we can 
obtain the inversion results with high lateral continuity 
and solve the problem of missing inter-well data.

Application of fi eld data

Cut-off frequency test of the logging curves
The section of the work area is  in a similar 

sedimentary environment. It has a total of 119 traces 
of seismic data with a time window range of 900–1100 
ms and a sampling interval of 2 ms. Figure 7 shows the 
2D section of the work area and two wells, A and B. We 
fi nd that the frequency band of seismic data is typically 
within 100 Hz (Figure 1). However, the frequency band 
range of logging data can reach several thousand Hertz, 
making it diffi  cult for us to realize the seismic waveform 

Figure 7. 2D seismic section of the work area

similarity simulation of actual seismic data. Therefore, 
we must filter the logging data to find the best cut-off 
frequency before applying the actual seismic data. 

We extracted the near-wellbore seismic data from 
wells A and B and conducted Pearson linear correlation 
analysis on their waveform. Pearson’s formula is as 
follows:

 (14)

where rXY  represents the strength of the linear 
relationship between variable X and variable Y, and the 
value range is [−1,1]. When it is greater than 0, the value 
indicates that the two variables are positively correlated; 
furthermore, the greater r is, the stronger the linear 
relationship is. In addition, cov(X, Y) represents the 
covariance of the two variables, and σX and σY represent 
the standard deviations of the two variables, respectively. 
Through calculation, the waveform similarity coeffi  cient 
of seismic data reaches 76.3%, as shown in Figure 8. 
This result indicates that the seismic waveform has 
a positive linear correlation in a similar sedimentary 

environment. Thus, the intrinsic relationship between 
the seismic waveform characteristics and the subsurface 
sedimentary characteristics is proven from the side.

We performed the same linear correlation analysis 
on the waveform of the wave impedance of the two 
wells, as shown in Figure 9(a). The results show that 
the waveform similarity coefficient is 68.61%, which 
is much lower than the waveform similarity coeffi  cient 

Figure 8. Comparison of seismic waveform similarities at two 
wells.
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Figure 9. Comparison of the waveform similarities of the wave impedances of two wells at different cut-off frequencies.

of the seismic data. This is because the logging curves 
are full-band, high-frequency components that tend to 
reduce their correlation coefficient. Due to the need 
to filter the logging curves to improve the waveform 
similarity coeffi  cient of the wave impedance of the two 
wells, we selected fi lters with cut-off  frequencies of 500, 
400, 300, 200, and 100 Hz to fi lter the logging curves. 

The waveform similarities of the wave impedance are 
calculated as shown in Figure 9 (b–f), which include 
71.19%, 71.52%, 72.13%, 74.05% and 77.79%, 
respectively.

Figure 9 shows that high-frequency components in the 
logging curves are filtered out as the cut-off frequency 
decreases step by step. The correlation coefficients of 

the P-wave impedance curves increase continuously, 
which tends to be consistent with the seismic waveform 
similarity. Therefore, before using seismic waveform 
similarity simulation, filtering of logging curves is 
necessary for determining the best cut-off frequency. 
When the cut-off frequency is 100 Hz, the correlation 
coefficient of the P-wave impedance curves of the 
two wells is close to the seismic waveform similarity. 
Therefore, we can establish the relation between 
the seismic waveform and high-frequency logging 
information. Seismic waveform characteristics can 
reflect subsurface sedimentary characteristics and then 
indicate changes in reservoir parameters. Furthermore, 
an initial model refl ecting the subsurface spatial structure 
and reservoir parameter changes can be obtained by 

guiding the interpolation simulation of the P-wave 
impedance curves with seismic waveform.

Simulation results
We simulated and inverted the 2D seismic section in 

fi gure 7 after determining the optimal cut-off  frequency 
of logging curves. Additionally, we calculated the 
seismic waveform similarity coefficient between the 
location to be simulated and the well location, thereby 
solving the weight coefficients of different wells. 
Further, we integrated this into Formula (1) and Formula 
(8) to obtain simulation results. Figure 10(a) shows 
that good results of the lateral continuity of the seismic 
waveform similarity simulation are obtained, verifying 
the feasibility of the simulation method in the actual 

1.5

1

0.5
0

(a)
x107

20 40 60 80 100 120

Im
pe

da
nc

e (
kg

/(s
m2 ))

(c)

Im
pe

da
nc

e (
kg

/(s
m2 ))

B wellA well 1.5

1

0.5
0

(b)
x107

20 40 60 80 100 120
Im

pe
da

nc
e (

kg
/(s

m2 )) B wellA well

12

10

8

6
0

(d)
x106

20 40 60 80 100 120

Im
pe

da
nc

e (
kg

/(s
m2 )) B wellA well

12

10

8

0

(f)
x106

20 40 60 80 100 120

Im
pe

da
nc

e (
kg

/(s
m2 )) B wellA well

12

10

8

0

x106

20 40 60 80 100 120

B wellA well

(e)

Im
pe

da
nc

e (
kg

/(s
m2 )) 12

10

8

0

x106

20 40 60
Sampling point Sampling point

80 100 120

B wellA well

the original curves

cut-off frequency  400 Hz

cut-off frequency  500 Hz

cut-off frequency  300 Hz

cut-off frequency  100 Hzcut-off frequency  200 Hz



195

Ni et al.

working area. Figure 10(b) presents the comparison 
between the simulated wave impedance and on well 
locations at the thirteenth trace and the thirty-ninth trace, 
where the correlation coefficients reach 87.08% and 
88.96%, respectively. Furthermore, the results obtained 
from the seismic waveform similarity simulation based 
on SGS have high reliability, can be used as the initial 
model of the MCMC algorithm to facilitate rapid  
convergence of  the impedances to a stable state.

Figure 10. Seismic waveform similarity simulation based 
on SGS. (a) Wave impedance simulation results and (b) 
comparison of the wave impedance at the well location and 
simulated wave impedance.

Figure 11. Wave impedance inversion results based on the 
seismic waveform similarity simulation. (a) Wave impedance 
inversion results, (b) comparison of wave impedance at the 
well location and inverted wave impedance, and (c) statistical 
histogram comparison of inversion results (left) and well data 
(right).

Inversion results
The simulation results are considered as the initial 

model, which was perturbed by the MCMC algorithm. 
We set the maximum number of iterations to 800 and 
the threshold to 1e-6. When the minimum square errors 
of the seismic records before and after the perturbation 
are less than this threshold value, the Markov chain is 
considered stable, as shown in the inversion results in 
Figure 11(a). Figure 11(b) shows the similarity between 
the inverted wave impedances and wave impedances 
on well locations at the thirteenth trace and the thirty-
ninth trace, with similarity coefficients of 93.05% 
and 94.04%, respectively. The statistical histogram of 
inversion results and wave impedance logging curves 
in Figure 11(c) reveals that the inversion results are 
consistent with the distribution of the wave impedance 

logging curves. These findings indicate that the spatial 
structure and trend of the inversion results are consistent 
with the lateral variation of the seismic waveform. 
These inversion results are in line with the subsurface 
sedimentary characteristics and the prior information of 
logging curves. A comparison of the inversion results 
with the simulation results reveals that the inversion 
results of thin layers are clearer at 1050–1100 ms. The 
inversion results are also consistent with the histogram 
distribution law of the well data, proving the feasibility 
of the stochastic inversion method based on the seismic 
waveform similarity. 
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waveform constraints is proposed in this paper to solve 
the problem of poor lateral continuity of inversion 
results due to a lack of inter-well data. First, we used the 
convolution model to demonstrate the internal relation 
between the seismic waveform and reservoir parameters, 
reflecting the spatial structure of subsurface media. 
Subsequently, we analyzed the best cut-off frequency 
of logging curves, following which a new method 
for calculating the weight coefficient of the seismic 
waveform was proposed. We used the lateral variation 
of the seismic waveform to drive high-frequency 
logging information and subsequently establish an initial 
model with waveform indication, which describes the 
spatial distribution of the underground reservoir more 
accurately. 

Under the Bayesian framework, we used the MCMC 
stochastic inversion method to construct the posterior 
probability distribution function of the co-constraint of 
the seismic waveform and logging curve. Further, we 
introduced the M–H sampling algorithm to randomly 
simulate the initial model parameters multiple times and 
then the posterior mean is used as the optimal solution of 
the model parameters. This method eff ectively improves 
the computation speed of the inversion method and 
the lateral continuity of inversion results while also 
realizing high-resolution inversion. Additionally, the 
model and actual data inversion results demonstrate 
that the seismic waveform similarity simulation based 
on SGS can effectively overcome the smoothness 
of the Kriging interpolation and improve the lateral 
continuity of simulation results. Finally, the initial 
model with waveform indication can make the Markov 
chain converge quickly. Meanwhile, the accuracy of the 
stochastic inversion is improved.
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