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Abstract: Characterizing reservoir porosity is crucial for oil and gas exploration and reservoir 
evaluation. Due to the increasing demands of oil and gas exploration and development, characterizing 
reservoir porosity to the required precision using current methods is challenging. Therefore, this study 
proposes a Pearson correlation–random forest (RF) scheme to select optimal seismic attributes for 
predicting reservoir porosity and a one-dimensional convolutional neural network–gated recurrent unit 
(1D CNN–GRU) joint model for reservoir porosity prediction based on well logs and seismic attribute 
data. First, Pearson correlation–RF is used to select the optimal combination of seismic attribute data 
suitable for network training. The model learns the nonlinear mapping between porosity logs at well 
sites and seismic attribute data. It can precisely predict three-dimensional porosity volumes by extending 
these mappings to nonwell areas. By performing tests near a tight sandstone reservoir, the predicted 
porosities of the proposed 1D CNN–GRU joint model were a better fi t for true porosity values than those 
of single-network models. Furthermore, the proposed model obtained a laterally contiguous description 
of the shape and porosity distribution of the tight sandstone reservoir. By integrating advanced machine 
learning techniques with seismic data analysis, this method provides new approaches and ideas for wide-
area porosity predictions for tight sandstone reservoirs using seismic data and opens up possibilities for 
more detailed and accurate subsurface mapping.
Keywords: Porosity prediction; attribute selection; random forest; convolutional neural network; gated 
recurrent unit 

Introduction

Porosity is an important parameter for reservoir 
characterization because it directly indicates the ability 
of a reservoir to store hydrocarbons. Moreover, porosity 
prediction is important in delineating, characterizing, and 
evaluating reservoirs and well site selection. Therefore, 
accurate estimation of reservoir porosity is crucial.

Currently, the most commonly used methods for 
reservoir porosity characterization are petrophysical tests 
on core samples and linear equation–based and artifi cial 
intelligence (AI)-based porosity prediction. Bakhorji 
et al. (2012) and Agbadze et al. (2022) suggested 
that petrophysical tests provide the most accurate 
assessments of porosity because geological factors, such 
as tectonic settings and lithological variations, easily 
influence reservoir porosity. However, this approach 
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is impractical for large-scale applications because the 
acquisition costs of core samples are exceptionally high 
and performing porosity measurements on core samples 
is challenging (Haskett, 1988; Farquhar, 1994). Because 
porosity is intrinsically related to pore-throat radius and 
seismic velocity, predicting reservoir porosity using well 
logs is possible (Zhang, 2023). Empirical equations are 
used in this approach to extract empirical parameters 
from density, acoustic, and compensated neutron logs 
based on local conditions (Jaf, 2015). This approach has 
been extensively studied inside and outside of China. For 
instance, Wyllie et al. (1956) proposed a time-average 
equation for predicting reservoir porosity; however, it is 
only suitable for geologically simple regions. Raymer et 
al. (1980) improved this time-average equation, enabling 
its use in more complex geological conditions. Hampson 
et al. (2001) used multivariate regression to predict the 
porosity of geologically simple sandstone reservoirs, 
yielding a respectable level of predictive accuracy. Based 
on acoustic impedance inversion and seismic attributes, 
Pramamik et al. (2004) used multilinear regression to 
analyze the porosity of ordinary sandstone reservoirs. 
However, due to the advances in oil and gas exploration 
technology, porosity predictions based on linear 
regression are no longer considered suffi  ciently accurate 
to meet today’s requirements. Therefore, determining 
reasonable nonlinear mappings between seismic data and 
porosity is necessary to address this problem.

Recent advances in AI have made using machine 
learning for reservoir parameter prediction possible. 
The algorithm learns the nonlinear relations between 
porosity and other inputs to predict reservoir porosity. 
The machine learning algorithms used for this purpose 
are simple shallow networks, such as random forest (RF) 
(Zou, 2021), support vector machines (Al-Anazi, 2012; 
Na’imi, 2014), backpropagation (Hamidi, 2012; Zhang, 
2021), and artificial neural networks (Duan, 2016; Al 
Moqbel 2011; Liu 2022). Currently, these models are 
used by scholars worldwide for porosity predictions.

Recently, deep learning has increasingly been used 
for reservoir porosity prediction, and deep learning 
algorithms have outperformed traditional machine 
learning algorithms in this field. Currently, multiple 
studies on porosity prediction are being performed using 
deep learning networks. For instance, Srisutthiyakorn 
(2016) combined petrographic thin sections with deep 
learning to develop a porosity estimation method. Feng 
et al. (2020) used a convolutional neural network (CNN) 
model to predict reservoir porosity. Chen et al. (2020) 

and An et al. (2019) used the long short-term memory 
(LSTM) network to predict reservoir porosity from well 
logs and demonstrated that LSTM is highly robust and 
accurate for time-series predictions. Wang et al. (2020) 
and Zhang et al. (2021) used gated recurrent unit (GRU) 
networks to estimate porosity from well logs, enabling 
feature extraction from the logs of adjacent wells. Yang 
et al. (2023) used the LSTM network with a transformer 
to predict reservoir porosity from well logs. Anh et 
al. (2023) combined digital elevation model data with 
LSTM to predict the porosity of riverbed material. Song 
et al. (2023) used a weighted ensemble of deep neural 
networks to predict underground porosity from seismic 
attributes.

To improve the extraction of lateral spatial and 
time-series features, a one-dimensional (1D) CNN–
GRU network was used to learn the complex nonlinear 
relationships between seismic data and reservoir porosity 
using well-log porosities as labels. In this joint network, 
1D CNN demonstrates an aptitude for discerning 
localized patterns and features within the data, rendering 
it well-suited for extracting lateral characteristics from 
seismic data. Conversely, GRU exhibits heightened 
sensitivity to temporal dependencies within the data 
owing to its inherent memory functionality. This 1D 
CNN–GRU network improved the accuracy and range of 
reservoir porosity predictions.

Seismic attribute selection using 
Pearson correlation–RF

When predicting reservoir parameters based on 
seismic attributes, selecting the seismic attributes that 
considerably correlate with the reservoir parameter 
that needs to be predicted is necessary. This is usually 
achieved by elimination; all seismic attributes that could 
correlate with reservoir parameters are selected, and the 
less relevant attributes are successively eliminated. This 
approach ensures that all information in the seismic data 
is used, improving predictive accuracy and reducing the 
tendency of reservoir predictions to produce multiple 
solutions.

1.1 Pearson correlation analysis
Pearson correlation analysis is used to search for 

relations between a pair of variables, which can be used 
to detect linear correlations between sample data. The 
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mathematical expression of Pearson correlation analysis 
is as follows:
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where xi and yi represent the input datasets for 
correlation analysis, ρ represents the Pearson correlation 
coefficient, x and y represent the mean values of 
the input datasets. In general, the Pearson correlation 
coeffi  cient lies in the range [−1, 1], with negative values 
indicating a negative correlation and 0 indicating an 
absence of linear correlation.

1.2 Feature importance calculations using the 
RF algorithm

RF is an ensemble algorithm in which multiple 
decision trees are used to randomly sample a dataset 
and learn their nonlinear relations. Finally, each tree 
votes according to its prediction, and the majority vote 
becomes the fi nal prediction. RF can be used for feature 
selection because it can compute the importance of 
each input attribute (feature) for a target parameter, i.e., 
feature importance.

When the RF algorithm solves a regression problem, 
feature importance is obtained from calculating out-
of-bag (OOB) errors. In a dataset with m samples, 
OOB refers to data not sampled after each decision 
tree performed m rounds of random sampling with 
replacement. For each decision tree i, its OOB set, 
OOB1i, is used as input to calculate its OOB error, 
errorOOB1i. When calculating the importance of 
attribute K, IK, random noise is added to the numerical 
values of K within OOB1i to produce OOB2i, the OOB 
set with perturbed K. OOB2i is then inputted into the 
trained RF model to obtain errorOOB2i for each tree i.

If there are N decision trees in the RF model, then IK is 
obtained as follows:

1
( )N
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k

errorOOB2 errorOOB1
I

N
.               (2)

Finally, all IK values are normalized to obtain the fi nal 
feature importance values.

1.3 Seismic attribute selection based on 
Pearson correlation–RF

Tight sandstone reservoirs are strongly heterogeneous, 
resulting in strong nonlinear correlations between 

porosity and certain seismic attributes. First, we used 
Pearson correlation analysis to perform a preliminary 
screening for candidate seismic attributes because 
directly searching for nonlinear relations between 
porosity and seismic attributes is challenging. Typically, 
nonlinear relation analysis is performed using neural 
network models; however, using neural networks to 
directly find mappings between seismic attributes and 
porosity would be ineffi  cient. Therefore, we used RF to 
select the most relevant attributes and then used these 
attributes as training data for a deep learning model. 
Consequently, a Pearson correlation analysis–RF scheme 
for seismic attribute selection was established (Fig. 1).

Fig. 1 Attribute selection fl ow chart.

(1) Pearson correlation analysis calculated the Pearson 
correlation between each input seismic attribute. The 
attributes were ranked by their correlation with the 
porosity curve, and the attributes that strongly correlated 
with each other and poorly correlated with porosity were 
excluded. The attributes that remained after excluding 
redundant attributes were the initial set of selected 
attributes.

(2) RF calculated feature importance for the attributes 
selected in Step (1), ranked by importance. Based 
on stepwise regression, the attributes were grouped 
according to their importance rankings, and the dataset 
was partitioned into n parts using n-fold cross-validation. 
To train the model, the n−1 datasets were the training 
sets, one after another, whereas the last dataset was 
the validation set. Finally, the average validation error 
was treated as the generalized error, and the group of 
attributes with the lowest error was selected as the 
dataset for this study.

Pearson correlation analysis

Random forest

Rank attributes by importance

Stepwise regression Cross-validation

Optimal set of attributes

Eliminate redundant attributes
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Reservoir porosity prediction based 
on the 1D CNN–GRU model

2.1 CNN
The CNN model, proposed by Lecun et al. in 1998, 

is a powerful feature extraction model. It is one of the 
most used deep learning networks for classification 
and regression prediction. Since the CNN architecture 

has shared weights and local connections, it has fewer 
parameters and lower complexity than other deep 
learning networks.

CNNs can be classified as 1D, two-dimensional 
(2D), and three-dimensional CNNs, depending on the 
dimensionality and directions of their convolutions. In 
a 1D CNN, the kernel only moves in one direction; in 
2D and 3D CNNs, the kernel moves in two and three 
directions, respectively (Fig. 2). Currently, regression 
predictions are primarily performed using 1D CNNs.

Fig. 2 Illustration of convolutions.

2.2 GRU
Cho et al., in 2014, proposed the GRU network, which 

is an improved version of the LSTM network. An LSTM 
unit comprises forget, input, and output gates, allowing 
the network to decide the time-series information stored 
and thus control the cell state of the unit (Shi, 2023). In 
the GRU unit, the three gates of LSTM are replaced by 
two gates, the reset and update gates.

Fig. 3 Architecture of a GRU cell.

Figure 3 depicts the unit structure of a GRU network. 
The reset gate, r, determines the amount of information 
from the previous instant in time that should be 
forgotten, thus helping the network capture short-term 

dependencies in time-series data. The closer its value 
is to 1, the less the amount of previous information that 
is forgotten. This can be mathematically expressed as 
follows:

1( )rt r t r t br W x U h .                    (3)

The update gate, z, determines how much of the 
input from the previous state should be used to update 
the current state, thus helping to capture long-term 
dependencies in time-series data. The mathematical 
expression of the update gate is as follows:

1( )zt z t z t bz W x U h .                    (4)

Because a GRU cell cannot explicitly determine 
whether the hidden state should be updated, it uses a 
candidate hidden state, which is expressed as follows:

1)tanh( ( )t ht t t bh Wx U r h .                  (5)

The current hidden state, ht, is generated by the 
candidate hidden state and update gate, z, with the 
latter controlling the ratio of information in ht from the 
previous state ht−1 and (new) candidate hidden state th . 
After all the information is summed, the fi nal output of 
the GRU is obtained as follows:

1 1 tt t tth z h z h ,                       (6)

Update gate
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Sigmoid Tanh

ht-1

xt

ht

ht
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rt
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Fig. 4 Architecture of the 1D CNN–GRU model.

where x represents the input vector, σ represents the 
sigmoid activation function, and ht−1 represents the 
hidden state of the GRU cell at time t – 1. The weight 
matrices W∈Rd×n and U∈Rn×n are obtained from the 
training model, with d and n being the number of input 
samples and hidden units, respectively. The current 
output of the GRU cell is ht, and b is the bias term.

Because a GRU network can store information from 
the previous time step and use it as input for the current 
instant, it can learn from sequential data and obtain 
relations between adjacent sampling points at different 
depths in a well log. GRU networks have a simpler and 
lighter architecture and fewer network parameters than 
LSTM networks; therefore, they generally have better 
training effi  ciency than LSTM networks.

2.3 1D CNN–GRU joint model
Single deep learning models cannot adequately capture 

the lateral variation trends of the relation between 
the input seismic attributes and porosity values with 
varying depths. CNN is a powerful extractor of local 
spatial features from input vectors owing to its shared 
weights and local receptive fields. In contrast, GRU is 
adept at extracting long-term dependencies because it 

can selectively retain and forget information according 
to the sequence characteristics of data. Therefore, we 
used a 1D CNN–GRU joint model (Fig. 4) for porosity 
prediction. The 1D CNN fi rst extracts the lateral spatial 
features of the seismic attributes (well-side seismic 
data), and the GRU network then extracts their vertical 
time-series features to obtain spatiotemporal features 
from seismic data.

In the 1D CNN of our model, modifications were 
made to the traditional CNN architecture. The sequential 
data were processed by replacing the convolutional 
layers in the CNN with 1D convolutions, which are 
responsible for extracting the multidimensional spatial 
characteristics of the input features. In a conventional 
CNN, the pooling layer reduces the dimensions of the 
high-dimensionality data obtained from convolutions, 
thereby reducing the amount of data that must be 
computed and improving training efficiency. However, 
during mean or max pooling, the location of each feature 
was not recorded, resulting in the loss of ordering 
information; the ordered data subsequently became 
disordered. Furthermore, the fully connected layer, 
which is meant to map dimension-reduced features from 
the pooling layer to the label space, disrupts the order of 
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data and renders it challenging for the GRU network to 
extract sequence features.

To address these problems, the pooling and fully 
connected layers of the 1D CNN were discarded, 
whereas the 1D convolutional layer, containing extracted 
spatial features, was retained and placed in front of the 
GRU network. This modification allows the 1D CNN 
to extract lateral spatial features from the data without 
disrupting their vertical (temporal or depth-wise) order, 
similar to optimizing the training attribute data for 
the GRU network. Consequently, this modification 
considerably improved the predictive performance of the 
1D CNN–GRU model.

3 Real-world example

3.1 Overview of the study area
Work Area W is in Shenfu, near the eastern edge of 

the Ordos Basin. It has a classic loess hill landscape 
with complex terrain and several ravines and gullies. 
The shape of this region is an NS-trending strip, 
whose boundaries are defined by the EW-trending 
Qinling, Yinshan mountain ranges to its south and 
north, and the NS-trending Shanxi Rift. Therefore, the 

tectonic deformations of the study area are primarily 
controlled by NS-trending tectonics. No major tectonic 
deformations are present in this area. Work Area W is 
an NS-trending west-dipping monocline with small NS-
trending folds and a relatively straightforward tectonic 
structure. Its strata are relatively flat and even, and no 
faults are observed in the area.

3.2 Attribute selection based on Pearson 
correlation–RF

Work Area W contains 12 wells named Jing-
1, Jing-2, …, and Jing-12. This study performed 
porosity predictions for the 1300–2020 m depth 
range, corresponding to the seventh member of the 
Shihezi Formation to the second member of the Benxi 
Formation, in the middle of the well-log deflections 
using 800–1160 ms seismic data. The well logs for Jing-
1–Jing-9 were the training data, and the logs of Jing-10–
Jing-11 were the validation set. The well log of Jing-12 
was the blind set to evaluate the effi  cacy of the porosity 
predictions of the network.

Twenty-one seismic attributes were extracted from 
the target area, including root-mean-square amplitude 
(RMS Amp), instant phase, and instant frequency (Instant 
Freq). Twenty-two initial attribute datasets were created 
using the original seismic data.

Fig. 5 Pearson correlation coeffi cient matrix.
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Pearson correlation analysis was used to calculate the 
linear correlation between each attribute and the porosity 
logs. If a group of attributes strongly correlated with 
each other (Pearson correlation > 0.8), the attribute with 
the highest correlation with the porosity log in this group 

was retained, whereas the remainder were considered 
redundant and, thus, excluded. Preliminary selection was 
performed according to the steps above, producing the 
results in Table 1.

Table 1 Initially selected attributes from Pearson correlation analysis
No. Features_name Correlation coeffi  cient
1 P-impedance 0.42
2 Absorb factor 0.40
3 Dominant Freq 0.39
4 Instant Q 0.35
5 Half Energy 0.33
6 Instant Freq 0.28
7 E-W Instant Freq 0.18
8 RMS Amp 0.17
9 Mono Freq 10 Hz 0.04
10 Variance 0.04
11 Mono Freq 70 Hz 0.03
12 Instant Phase 0.01
13 T-layer Induction 0.01
14 Mono Freq 30 Hz 0.01
15 Mono Freq 50 Hz 0.01
16 Mono Freq 40 Hz 0.01

Through this analysis, it can be surmised that the 
seismic attributes only have weak linear correlations with 
the porosity log. Therefore, if one attempts to predict 
porosity using only one or a few seismic attributes, the 
results will be ambiguous. However, too many attributes 
would result in an overly complex network. Therefore, 
RF was used to calculate the importance of the seismic 
attributes selected via Pearson correlation analysis.

Figure 6 shows the ranking of importance of the 

Fig. 6 Ranking of attributes by importance using the RF algorithm.

attributes obtained from RF. Acoustic impedance 
(P-impedance), obtained from seismic waveform 
indicator inversion, has the highest importance (0.276), 
followed by RMS Amp (0.08) and Mono Freq 10 Hz 
(0.062). Since the P-impedance accounts for 28% of the 
total importance, it is the most crucial factor for reservoir 
porosity prediction. Although establishing a precise 
importance threshold from this result is impossible, 
we consequently chose the optimal combination of 
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attributes; ranking attributes by importance provides 
important clues for selecting an optimal feature set.

The optimal set of attributes was obtained using 
stepwise regression to group the 16 seismic attributes 
according to their RF-generated feature importance 
values, i.e., Attribute Set 1 was defi ned as P-impedance, 
Attribute Set 2 as P-impedance and RMS Amp, and 
Attribute Set 3 as P-impedance, RMS Amp, and Mono 
Freq 10 Hz. Sixteen sets were created, which were 
subsequently used as inputs for RF. For each attribute 
set, 70% of the attribute data were randomly sampled 
to create the training set of the RF model, whereas 
the remaining data were used as the validation set. 
Elevenfold cross-validation was performed to ensure 
correspondence with the logs of the 11 wells. In each 
instance, one was the validation well, whereas the 
remaining were training wells. Finally, the “goodness” 
of each attribute set was evaluated by averaging the 
11 RMS errors (RMSEs), and the attribute set that 
minimizes the average error was chosen as the optimal 
attribute set.

Figure 7 shows the average errors of the attribute sets 
obtained from 11-fold cross-validation. The average 
error decreased with the number of attributes included in 
the attribute set, up to nine attributes, where the average 
error reached its minimum (1.129). Further increases in 
attributes increased the average error, which eventually 
stabilized. This result indicates that overfi tting occurred 
in the RF model after nine attributes. Therefore, too 
many features will decrease predictive performance, 
increasing computational complexity and wasting time. 

Hence, the fi rst nine attributes were selected (Table 2).

Fig. 7 Results of cross-validation.

Table 2 Final set of attributes
No. Features_name Importance
1 P-impedance 0.276 
2 RMS Amp 0.080 
3 Mono Freq 10 Hz 0.062 
4 Variance 0.060 
5 Mono Freq 40 Hz 0.056 
6 Mono Freq 30 Hz 0.055 
7 Half engery 0.051 
8 Absorb factor 0.050 
9 Mono Freq 70 Hz 0.047

Table 3 Hyperparameter settings of the 1D CNN–GRU model
Layer_name Parameters

1D CNN in_channels = 9; out_channels = 128; stride = 1; kernel_size = 1
1D CNN in_channels = 128; out_channels = 64; stride = 1; kernel_size = 1; Dropout = 0.2
GRU-1 input_size = 64; hidden_size = 64; Seq_lenth = 8
GRU-2 input_size = 64; hidden_size = 64; Seq_lenth = 8
GRU-3 input_size = 64; hidden_size = 64; Dropout = 0.4; Seq_lenth = 8

FC Layer in_features = 64; hidden_size = 64; out_features = 1

3.3 1D CNN-GRU porosity prediction model
The nine selected seismic attributes were used to train 

the 1D CNN–GRU joint deep learning network. The 
deep learning neural network used in this study was 
based on the Pytorch framework. The risk of overfi tting 
was reduced using the dropout function to tune the 
number of neurons in the hidden layer. Dropout layers 
were placed at the last layer of the 1D CNN and after the 
GRU layer. The hyperparameters of the 1D CNN–GRU 
network were optimized using the Adam optimizer, 
which implements the Adam algorithm, to search for 
the global optimum for training the network. Since 
this optimizer can adaptively tune the learning rate of 
the network, a high learning rate can be used initially, 
decreasing by some ratio after a specific number of 
epochs. Therefore, the initial learning rate was 0.001, 
ensuring the network converges quickly without missing 
the global optimum. After a few training rounds, the 
network converged around 200–300 epochs. Therefore, 
the maximum number of epochs was 500. The remaining 
hyperparameter settings of the 1D CNN–GRU model for 
reservoir porosity prediction (number of neurons, layers 
in the 1D CNN network, and hidden layers in the GRU) 
were determined from repeated trials and our previous 
experience. Table 3 shows the fi nal confi guration of the 
model.

The average 11-fold cross-validation RMS error
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A detailed explanation of the layers and parameters of 
the model is provided below.

(1) The input layer processes the attribute data into 
datasets to train the model. Since nine attributes were 
chosen, “in_channels” was set to 9.

(2) The 1D CNN layer extracts the lateral spatial 
features from the input attribute sequences, functioning 
as input data for the subsequent GRU layer. The 1D 
CNN was set as two layers to ensure that the lateral 
spatial features were thoroughly extracted. Disrupting 
the order of data was prevented using a small kernel size 
(kernel_size = 1) with a stride of 1.

(3) GRU layer: the spatial information captured by 
the 1D CNN was used as input for the GRU layer to 
continue the extraction of time-series features from the 
data. Based on our previous experiences and multiple 
trials, three GRU layers were used to thoroughly extract 
features corresponding to the vertical sequences and 
depth-wise changes of the seismic attributes and well 
logs. Furthermore, a dropout layer with a dropout 
parameter of 0.4 was placed after the last GRU layer to 

prevent overfi tting.
(4) Fully connected layer and output layer: a fully 

connected layer was placed at the end of the network 
to combine the spatial features extracted by the 1D 
CNN and sequence features captured by the GRU, thus 
completing the mapping of spatiotemporal features to 
porosity logs. The fully connected layer is connected to 
the output layer, which outputs the predicted porosity 
values of the network.

3.4 Experimental results and analysis
(1) Reservoir porosity predictions of the 1D CNN–

GRU model
The performance of the proposed method was 

evaluated by performing porosity prediction using the 
1D CNN–GRU, 1D CNN, and GRU networks with the 
nine selected seismic attributes as input. The results are 
shown in Fig. 8. 

Table 4 compares the training and validation errors of 
the 1D CNN, GRU, and 1D CNN–GRU models in terms 

Table 4 Comparison of the porosity predictions by each model

Network model
Training error Validating error

MAE RMSE MAE RMSE
1D CNN 0.050 0.078 0.052 0.076

GRU 0.038 0.055 0.043 0.053
1D CNN–GRU 0.025 0.042 0.022 0.041

Fig. 8 Comparison of the porosity prediction results.
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of mean absolute error (MAE) and RMSE to evaluate 
their predictive performance. The results show that the 
1D CNN–GRU model outperforms 1D CNN and GRU 
in all of these metrics.

Figure 9 shows actual porosity vs. predicted porosity 
scatter plots for the 1D CNN–GRU, 1D CNN, and GRU 
models. The 1D CNN–GRU model exhibits considerably 

better predictive performance than the 1D CNN and 
GRU models because its predictions have a tighter 
spread around the diagonal. Furthermore, its accuracy is 
considerably higher in the high- and low-porosity areas. 
In summary, the porosity predictions of the 1D CNN–
GRU model are considerably closer to the true porosities 
than those of the 1D CNN and GRU models.

Fig. 9 Comparison of porosity prediction effi cacy among the 1D CNN, GRU, and 1D CNN–GRU models.

Fig. 10 Porosity profi le predicted by the 1D CNN–GRU model for Jing-12 (Xline orientation).

(2) Prediction of porosity profi les for tight sandstone 
reservoirs and validation of results

The well log of Jing-12, which was not used for model 
training or validation, was used as the blind dataset to 
evaluate the predictive performance and accuracy of the 
1D CNN–GRU model. Profi le data were extracted along 
the Xline and Inline directions of Jing-12 and processed 
(e.g., dimension transformation) to convert the data into 

suitable inputs for the model. Subsequently, the data 
were divided into batches to train the network and obtain 
the porosity profi le of Jing-12.

Figures 10 and 11 correspond to the porosity profi les 
predicted by the 1D CNN–GRU model for Jing-12 in the 
Inline and Xline directions, respectively. The predicted 
porosities are a good fit for the porosity log, proving 
that the predictive performance and accuracy of the 1D 
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Fig. 11 Porosity profi le predicted by the 1D CNN–GRU model for Jing-12 (Inline orientation).

Fig. 12 3D porosity volume predicted by the 1D CNN–GRU model.

CNN–GRU model are adequate. Furthermore, because 
the porosity profile predicted by the 1D CNN–GRU 
shows good continuity in the lateral space, it eff ectively 

reveals the shape and extension of the spatial distribution 
of the tight sandstone reservoir.

(3) Predicting the 3D porosity volume of the tight 
sandstone reservoir

Using 3D seismic attribute volumes as input, the 1D 
CNN–GRU model, which was trained on data from 
well sites, was extended to nonwell regions. Thus, the 
3D porosity volume was predicted for the study area 

(Fig. 12), revealing the location of the tight sandstone 
reservoir in the study area and its approximate extension. 
Therefore, 3D porosity volume predictions by the 1D 
CNN–GRU model can be used as a reference for studies 
on tight sandstone reservoirs and their porosities.

Conclusions

a. Because seismic attributes are linked to porosity 
by complex nonlinear relations that are challenging 
to identify using conventional means, a Pearson 
correlation–RF scheme was proposed for selecting the 

seismic attributes best suited for predicting porosity.
b. Compared to the 1D CNN and GRU models, the 

proposed 1D CNN–GRU model reduces the predictive 
error by 50% and 23%, respectively. Therefore, joint 
model networks hold a considerable advantage over 
single-model networks in porosity predictions.

c. Combining a 1D CNN network and a GRU network, 
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we constructed a 1D CNN–GRU model that fuses the 
vertical and horizontal spatiotemporal features of well 
log and seismic attribute data. Therefore, the predictions 
of this model have high resolution in the vertical and 
horizontal dimensions.
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