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Abstract: Laplace–Fourier (L-F) domain finite-difference (FD) forward modeling is an 
important foundation for L-F domain full-waveform inversion (FWI). An optimal modeling 
method can improve the effi  ciency and accuracy of FWI. A fl exible FD stencil, which requires 
pairing and centrosymmetricity of the involved gridpoints, is used on the basis of the 2D 
L-F domain acoustic wave equation. The L-F domain numerical dispersion analysis is then 
performed by minimizing the phase error of the normalized numerical phase and attenuation 
propagation velocities to obtain the optimization coefficients. An optimal FD forward 
modeling method is fi nally developed for the L-F domain acoustic wave equation and applied 
to the traditional standard 9-point scheme and 7- and 9-point schemes, where the latter two 
schemes are used in discontinuous-grid FD modeling. Numerical experiments show that the 
optimal L-F domain FD modeling method not only has high accuracy but can also be applied 
to equal and unequal directional sampling intervals and discontinuous-grid FD modeling to 
reduce computational cost.
Keywords: Laplace–Fourier domain, 2D acoustic wave equation, finite difference, and 
optimization coeffi  cients.

Introduction

Full-waveform inversion (FWI), which is an important 
method for detecting the structure of the earth, can 
be implemented in the time domain (e.g., Tarantola, 
1984; Bleistein et al., 1987; Yang et al., 2015; Choi and 
Alkhalifah, 2011), frequency domain (e.g., Pratt and 
Worthington, 1988; Pratt et al., 1998; Song et al., 1995; 
Pratt, 1999; Sirgue and Pratt, 2004), the Laplace domain 
(e.g., Shin and Cha, 2008; Bae et al., 2010; Ha et al., 

2012) and Laplace–Fourier (L-F) domain (e.g., Shin 
and Cha, 2009; Shin et al., 2010). Time- and frequency-
domain FWIs are widely studied, and each domain has 
its advantages and disadvantages (Vigh and Starr, 2008; 
Virieux and Operto, 2009). Laplace and L-F domain 
FWIs are essentially expanded from the frequency-
domain FWI. These two FWIs are proposed to solve 
the failure of the conventional frequency-domain FWIs 
to recover large-scale subsurface structures due to the 
limited low-frequency information. Frequency-domain 
FWI uses the full real-frequency components of the 
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elastic or acoustic wavefield. This inversion cannot 
converge to the real model when the initial model has a 
considerable difference from the real model. Laplace-
domain FWI fi rst introduces the damping wavefi eld and 
uses only the zero frequency component of the damped 
wavefi eld to reconstruct the long wavelength structure. 
L-F domain FWI further uses full frequency components 
of the damped wavefield, including the low-frequency 
components. The preliminary large-scale structure can 
provide an initial model for subsequent high-frequency 
inversion, thus increasing the stability of the inversion 
process and providing accurate results (Shin et al., 2010). 
L-F domain FWI not only includes the advantages of 
the frequency-domain FWI but also improves the low-
frequency information to increase the convergence 
during the inversion. Their essential diff erence lies in the 
use of real and complex frequencies by the frequency 
and L-F domains (Cao and Chen, 2014).

FD modeling plays an important role in FWI. For 
frequency-domain finite-difference (FDFD) modeling, 
many researchers have proposed FDFD optimal 
methods, such as rotated FDFD operators (e.g., Jo et al., 
1996; Hustedt et al., 2004; Cao and Chen, 2012; Operto 
et al., 2007; Operto et al., 2009; Operto et al., 2014), 
weighted-average method (e.g., Min et al., 2000; Gu et 
al., 2013; Yang and Mao, 2016), the average derivative 
method (ADM) (e.g., Chen, 2012; Chen and Cao, 2016, 
2018; Tang et al., 2015; Zhang Heng et al., 2014), and 
general optimized FDFD operator, which can work with 
different FDFD stencils (Fan et al., 2017; Fan et al., 
2018). Considering L-F domain FD modeling, which 
is also the key computational kernel of L-F domain 
FWI, the early approach was directly adapting the 
corresponding frequency-domain FD operators (Shin 
and Cha, 2009). However, the dispersion analysis of the 
L-F domain schemes is more complex than that of the 
frequency-domain (Um et al., 2012). Dispersion analysis 
in frequency-domain FD modeling usually involves 
the substitution of a plane wave into the wave equation 
discretized by FDFD schemes to derive the expression 
of numerical phase velocity and then minimize it  obtain 
the optimization coeffi  cients and the minimum number 
of sampling points per wavelength (Jo et al., 1996; Chen, 
2012). For dispersion analysis in the Laplace domain, 
Chen (2014b) used numerical attenuation propagation 
velocity instead of numerical phase velocity to determine 
the optimization coeffi  cients and the minimum number 
of sampling points per pseudo-wavelength. Moreover, 
for the dispersion analysis in L-F domain modeling, the 

numerical phase and numerical attenuation propagation 
velocities are employed to determine the optimization 
coeffi  cients and the minimum sampling points for each 
wavelength and pseudo-wavelength (Chen, 2014a, 
2016). Therefore, implementing the dispersion analysis 
of the L-F domain FD operator before the L-F domain 
FWI is necessary.

An optimal FD method with flexible stencil is 
developed in this study to solve the 2D L-F domain 
acoustic wave equation. The optimal method can work 
not only with a rectangle grid with diff erent aspect ratios 
but also with a spatially discontinuous grid to reduce 
the computation cost. The optimization coefficients 
are obtained by performing the L-F domain dispersion 
analysis proposed by Chen (2014a). Finally, three 
numerical experiments are presented to validate the 
optimal FD modeling method in the L-F domain.

Theory

Finite-difference operator
The 2D Laplace–Fourier (L-F) domain acoustic wave 

equation can be expressed as
2 2 2

2 2 2 0P P s P
x z v

,                    (1)

where P is the displacement, s = σ+iω is the complex 
frequency during L-F transformation, and v is the 
acoustic velocity. As shown in Figure 1, a flexible 
FD stencil is used to approximate the equation, 
and the involved gridpoint requires pairing and 
centrosymmetricity. The traditional standard 9- and 
25- point schemes can be regarded as special cases of 
Figure 1 (Fan et al., 2021). At gridpoint P0,0, ∂2P/∂z2 and 
∂2P/∂x2 can be approximated using surrounding Nx×Nz 
gridpoints by
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w h e r e , = ,m nP P m x n z  a n d  i t s  l o c a t i o n 
is shown in Figure 1. Δx  and Δz  are the spatial 
sampling intervals  in  the x-  and z-direct ions, 

respectively.    0  ,  if   0
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weighting coefficients for the spatial derivatives and 

satisfy ,
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d , respectively. 

The mass acceleration term can be approximated by
2 2
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where ,
0  

1= 2
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b  (bm,n ≥  0). Equations (2) and 

(3) are then substituted into (1), and the following is 
obtained:
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Let R = ∆x/∆z be the aspect ratio, am,n = cm,n + R2dm,n, 
and the above equation turns into
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Figure 1. Schematic of 2D L-F domain FD stencil

Dispersion analysis
The optimization coeffi  cients are calculated following 

the L-F domain dispersion analysis of (Chen, 2014a). 
An attenuating plane wave sin cos

0, , i kx kzP x z k P e  is 
substituted into Equation (5), where k = kr + iki is the 
wavenumber, kr = ω/v is the real wave number, ki = σ/v is 
the pseudowavenumber, and θ is the propagation angle. 
The discrete dispersion relation is obtained as
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where Tm,n = cos[2π(m sinθ + n cosθ/r)(1/Gr+1/Gi)], Gr 

and Gi are the numbers of gridpoints per wavelength and 
per pseudo-wavelength, respectively. When Δx ≠ Δz, 
the defi nitions of Gr  and Gi are related to the maximum 
sampling interval max(Δx, Δz). If R ≥ 1, that is, Δx ≥ Δz, 
then Gr = 2π/(kr Δx) and Gi = 2π/(ki Δx). If R < 1, that is, 
Dx < Δz, then Gr = 2π/(kr Δz) and Gi = 2π/(ki Δz). Only 
the case of R ≥ 1 (Δx ≥ Δz) is investigated in this paper 
because the dispersion analysis for the case of R < 1 is 
similar to that of R ≥ 1. The optimization coefficients 
for R < 1 can be analyzed by exchanging the x- and 
z-directions of the case of R ≥ 1 (Chen, 2014a; Fan et 
al., 2017).

The square root of equation (6) is taken. Let Fr and   
Fi represent the real and imaginary parts of the term with 
square root, respectively, and the following can then be 
obtained:
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Therefore, the normalized numerical phase velocity 
and numerical attenuation propagation velocity can be 
respectively expressed as follows:

=
2
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The above equations represent the numerical 
dispersion of real- and pseudo-wavelength components. 
Finally, the coefficients am,n and bm,n are determined by 
minimizing the following velocity error:
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,  (9)

where 1r rk G  and 1i ik G . The range of rk  and ik  
depends on the number of involved gridpoints and their 
distribution in the scheme. The involvement of additional 
gridpoints requires the use of a large range. Given an FD 
scheme, the range of rk  and ik  are set by considering 
the tradeoff  between the wavenumber coverage and the 
allowed phase-velocity error as well (Chen, 2014; Fan et 
al., 2017). Meanwhile, the range of  θ is always [0, θ/2].

In addition, cm,n and dm,n must be determined due to 
the implementation of absorption boundary conditions, 
such as PML. They can be obtained by minimizing the 
following objective function (Fan et al., 2017):
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The ranges of kr, ki, and θ are the same with equation 

(9).
The essential difference between the L-F, frequency, 

and Laplace domains lies in the difference in complex 
frequency (Cao and Chen, 2014). The frequency and 
Laplace domains can be regarded as special cases of 
the L-F domain. When the complex frequency satisfi es 
σ = 0, ω ≠ 0 (i.e., s = iω), then the above optimization 
method in the L-F domain becomes that in the frequency 
domain. Only Gr exists and Gi disappears During 
dispersion analysis. When σ ≠ 0, ω = 0, (i.e., s = σ), the 
above optimization method becomes that in the Laplace 
domain. Meanwhile, only Gi exists and Gr disappears 
during the dispersion analysis.

The L-F domain-optimal FD method can include a 
previous L-F domain FD scheme as special cases. The 
following can be assigned:

0,0 1,0 1,1 0,1 1,12 3 2 3, 1 6 , 1 3 1 6 ,c c c c c  

0,0 1,0 1,1 0,1 1,12 3 1 3 1 6 2 3 1 6 ,d d d d d  

0,0 1,0 1,1 0,1 1,11 2 0 0 0 0,b b b b b  

      

Equation (4) becomes the L-F domain FD scheme 
adopted by Shin et al. (2002) and Shin and Cha (2009). 
Compared with the ADM scheme in Chen (2014a), the 
following can be assigned:

0,0 1,0 1,1 0,1 1,1, , 1 2 , 1, 1 2 ,Chen Chen Chen Chen Chenc c c c c

0,0 1,0 1,1 0,1 1,1, 1, 1 2 , , 1 2,Chen Chen Chen Chen Chend d d d d  

0,0 1,0 1,1 0,1 1,12, , , , ,Chen Chen Chen Chen Chenb c b d b f b d b f

 
    

where αChen, βChen, cChen, dChen and f Chen are the optimization 
coeffi  cients in Chen (2014a), and Equation (4) becomes 
the ADM scheme in Chen (2014a). Therefore, the two 
previous L-F domain FD schemes can be derived from 
equation (4) as special cases.

L-F domain optimal FD operator
Three types of L-F domain FD schemes (Figure 2), 

including the traditional standard 9-point scheme (Jo et 
al., 1996), 7-point scheme (Fan et al., 2018), and 9-point 
scheme (Fan et al., 2021), are considered. The latter two 
FD schemes are mainly used in discontinuous-grid FD 

modeling with a grid spacing ratio of N = 2 and N = 3 
respectively. No matter in. Regardless of the frequency 
or L-F domain, the key issue of discontinuous-grid 
FD modeling is dealing with the wavefield in the 
transition region of the fine-to-coarse grid, where 
artifi cial refl ections may be generated without proper FD 
schemes. Details can be found in Fan et al. (2018) and 
Fan et al. (2021).

According to the optimization method in the previous 
section, am,n and bm,n are fi rst determined by optimizing 
equation (9) and cm,n and dm,n are identifi ed by optimizing 
equation (10). All the optimization coefficients are 
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calculated in this paper using the constrained nonlinear 
optimization function fmincon in MATLAB. For 
the traditional standard 9-point scheme, the range of 
propagation angle   is [0, π/2] and that of   and   are 
both [0,0.15]. Given the different R = 1.0 and 2.0, 12 
independent coeffi  cients of the standard 9-point scheme 
are obtained, as shown in Table 1. The dispersion 

curves of R = 1.0 and 2.0 are shown in Figures 3 and 4, 
respectively. The left and right columns are normalized 
numerical phase velocity surfaces vr/v  and vi/v
 normalized numerical attenuation propagation velocity 
surfaces , respectively. Each row from top to bottom 
represents diff erent propagation angles.

Figure 2. Three types of L-F domain FD scheme: (a) standard 9-point scheme, (b) 7-point scheme used in discontinuous-grid 
modeling with N = 2, and (c) 9-point scheme used in discontinuous-grid modeling with N = 3

Only the case of R = 1.0 is considered for 7- and 
9-point schemes that are used in discontinuous-grid FD 
modeling. rk  and ik  are set within [0, 0.10] and [0, 0.08], 
respectively. The resulting optimization coefficients 
are shown in Tables 2 and 3, and the corresponding 
dispersion surfaces are presented in Figures 5 and 6. The 
7-point scheme has high accuracy because the involved 
gridpoints in the 7-point scheme are evenly distributed 
and close to the central gridpoint. In addition, regardless 
of the 7- or 9-point scheme, the dispersion error along 
the x-axis (i.e., θ = 90˚) is smaller than that along 

Table 1. Optimized coeffi cients for standard 9-point L-F FD 
operators with different R values.

R 1.0 2.0 
b1,0 8.08469167884408E-02 7.71428796302654E-02
b0,1 8.08469167976356E-02 7.93314493514118E-02
b1,1 1.41531741254217E-09 6.17863506001517E-09
b-1,1 3.11961627591611E-03 6.86999278161673E-03
c1,0 8.42727716796900E-01 8.79555711326816E-01
c0,1 -1.54664414471238E-01 -1.18767513169156E-01
c1,1 7.79803151005666E-02 6.00277549629858E-02
c-1,1 7.81498802136955E-02 5.74611945463850E-02
d1,0 -1.54664251764376E-01 -1.54628497601172E-01
d0,1 8.42727879499684E-01 8.44941639790144E-01
d1,1 7.79802222748798E-02 7.73591224866439E-02
d-1,1 7.81498476639072E-02 7.80782162165015E-02

Table 2. Optimized coeffi cients for 7-point L-F FD 
operators with R=1.0 (Δx=Δz).

R 1.0 
b1,0 8.94138245623699E-03
b1,2 4.26312120638903E-02
b-1,2 4.26312120638903E-02
c1,0 9.93952211862394E-01
c1,2 9.39952712675884E-04
c-1,2 9.39952712675884E-04
d1,0 -2.43619026037833E-01
d1,2 1.24055968646330E-01
d-1,2 1.24055968646330E-01

Table 3. Optimized coeffi cients for 9-point L-F FD 
operators with R=1.0 (Δx=Δz).

R 1.0 
b1,0 7.90153933735926E-01
b2,0 2.92253643104417E-02
b1,3 2.66922360527131E-02
b-2,3 6.19832512659083E-02
c1,0 -3.18375148152123E+00
c2,0 1.04480922957390E+00
c1,3 4.86295404413319E-04
c-2,3 3.27969634340508E-04
d1,0 -2.31732710677734E-01
d2,0 3.55951478988712E-03
d1,3 7.34796852868217E-02
d-2,3 3.69264435072868E-02

1,1-1,1

1,0 1,0 1,0

1,3-2,3

2,0

1,2-1,2

0,1

standard 9-point 9-point for
dicontinuous-grid

7-point for
dicontinuous-grid

(a) (b) (c)
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the z-direction due to the involvement of additional 
gridpoint nodes in the x-direction by the 7- and 9-point 

FD stencils in Figures 2b and 2c.

Figure 3. Dispersion surfaces for the traditional standard 9-point scheme when R = 1.0. x- and y-axes denote the number of 
gridpoints per wavelength (Gr) and per pseudo-wavelength (Gi), respectively. (a), (c), and (e) are the normalized numerical phase 
velocity (vr/v) surfaces and (b), (d), and (f) are normalized numerical attenuation propagation velocity (vi/v) surfaces. Three rows 
from top to bottom denote propagation angles of  θ = 0˚, 45˚, 90˚.
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Figure 4. Dispersion surfaces for the traditional standard 9-point scheme when R = 2.0. (a–f) are similar to Figures 3a–3f.
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Figure 5. Dispersion surfaces for the 7-point scheme when R = 1.0, which is usually used in discontinuous-grid modeling 
with N = 2. (a–f) are similar to Figures 3a–3f.

Figure 6. Dispersion surfaces for the 9-point scheme when R = 1.0, which is usually used in discontinuous-grid modeling 
with N = 3. (a–f) are similar to Figures 3a–3f.
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Numerical Experiments

Three numerical experiments are presented to validate 
the three aforementioned types of L-F domain FD 
schemes. The fi rst is a homogenous model, which adopts 
the standard 9-point scheme. The second one is a layered 
model, in which the discontinuous-grid FD method 
is used with 7- and 9-point schemes in the transition 
region. The last one is a complex model, and the optimal 
method is compared with ADM (Chen, 2014a). All three 
numerical tests are implemented under a single complex 
frequency point, and the source is a 25 Hz Ricker 
wavelet. PML is used as the four absorption boundaries.

Homogeneous Model
First, the L-F domain standard 9-point scheme is 

validated in a homogenous model. The model has a size 
of 6000 × 6000 m, a source at (3000, 3000) m, and a row 
of receivers at depth z = 1800 m. The acoustic velocity is 
v = 2100 m/s. The model is discretized by either a square 
or a rectangle grid. The former uses equal grid space 
with ∆x = ∆z = 30 m (R = 1.0), and the resulting grid is 
201 × 201. The second uses a rectangular grid with ∆x = 
30 m, ∆z = 15 m (R = 2.0), and the resulting grid is 201 
× 401. The L-F domain optimization coeffi  cients listed 
in Table 1 are used, and the simulation is implemented 
under a single complex frequency of σ = 10π, ω = 5π. 
Next, the waveforms recorded by a row of receivers are 
compared with that from the analytical solution (Chen, 
2014a). The comparisons are shown in Figure 8, where 
the blue and green curves denote the results from R = 

Figure 7. Homogeneous model has a size of 6000 × 6000 m 
and an acoustic velocity of v = 2100 m/s. The star denotes 
the source located at (3000, 3000) m, and the inverted triangle 
indicates a row of receivers at a depth of z = 1800 m.

Figure 8. Waveform comparison in the L-F domain in the 
homogeneous model. The blue and green curves indicate 
the simulated waveforms using the standard 9-point scheme 
with square and rectangle grids, respectively. The red curve 
indicates the analytical waveform.

1.0 and R = 2.0, respectively, and the red curve is the 
analytical solution. The comparison results reveal that 
the three waveform results are highly consistent.

Layered Model
The L-F domain discontinuous-grid FD modeling 

method is verified in a flat three-layer model in the 
second numerical experiment. The 7- and 9-point FD 
schemes with N = 2 and N = 3 are used in the fi ne-to-
coarse grid transition regions, respectively. The model 
is shown in Figure 9 with a size of 3000 × 6300 m 
and acoustic velocities of 1000, 2000, and 6000 m/
s in three different layers. Two velocity interfaces are 
located at depths of 1475 and 3250 m (dashed lines in 
Figure 9), and the source is located at (1500, 1000) m. 

The model is discretized by uniform and discontinuous 
grids. The former uses a small grid spacing of ∆x = ∆z 
= 5m in the entire model, and its simulated waveforms 
are regarded as the benchmark to verify the results from 
discontinuous-grid modeling. The latter uses a small 
grid spacing of ∆x = ∆z = 5m m in the shallow part, a 
large grid spacing of 2Δx and 2Δz in the middle part, 
and the largest grid spacing of 6Δx and 6Δz in the deep 
part (i.e., discontinuous-grid spacing ratio N = 2 for the 
first interface and N = 3 for the second interface). The 
thickness of the three diff erent grided regions are 1500, 
1800, and 3000 m (denoted by the solid lines in Figure 
9), and the resulting gridpoints of each region are 601 × 
301, 301 × 180, and 101 × 100, respectively. Three rows 
of receivers are placed at a depth of z = 400, 2500, and 
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5400 m in diff erent layers. The L-F domain simulation is 
performed under the single complex frequency of σ = 10 

π, ω = 5 π, and the resulting waveforms from uniform- 
and discontinuous-grid modeling are shown in Figure 
10. The waveforms from the L-F domain uniform- and 
discontinuous-grid modeling have high consistency, but 
those recorded in shallow parts have high consistency.

Figure 9. Flat three-layer model has a size of 3000 × 6300 m 
and acoustic velocities of 1000, 2000, and 6000 m/s in each 
layer. Two dashed lines indicate velocity interfaces located 
at depths of 1475 and 3250 m. Two solid lines indicate 
discontinuous-grid interfaces located at depths of 1500 and 
3300 m. The star denotes the source at (1500, 1000) m, and 
three rows of inverted triangles denote receivers at depths of 
400, 2500, and 5400 m.

Figure 11. Marmousi model

Figure 12. L-F domain wavefi eld snapshots at single complex frequencies of (a) s = π + 5πi and (b) s = π + 20πi.

Figure 10. Waveform comparisons between uniform- and 
discontinuous-grid modeling in the L-F domain in the three-
layer model. (a), (b), and (c) are received waveforms by three 
rows of receivers in different layers in Figure 9. The red 
and blue curves result from the L-F domain uniform- and 
discontinuous-grid modeling, respectively.

Complex Model
The Marmousi model is chosen for the latest test 

to compare the optimal method with the ADM FD 
modeling of Chen (2014) in the L-F domain. The model 
is shown in Figure 11 with a size of 5000 × 2800 m, 
and the source is located at (2500, 50)m. The entire 
model uses a uniform grid with a spacing of ∆x = ∆z = 
5 m. A row of receivers is placed at a depth of z = 50 m. 
The wavefield is computed at two complex frequency 
points of s = π + 5πi and s = π + 20πi, where Figure 

12 shows wavefield snapshots in the L-F domain. 
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Figure 13. L-F domain seismograms at a row of receivers, 
which is located at depth z = 50 m. The complex frequency of 
(a) is s = π + 5πi and (b) is s = π + 20πi. The red solid lines 
are due to the ADM 9-point scheme, and the blue dashed 
lines are obtained from the proposed method in this paper.

Figure 13 demonstrates the seismograms recorded by 
a row of receivers at the same depth as the source. The 
seismograms are compared with the results of the ADM 
9-point scheme of Chen (2014a) to validate its accuracy. 
Figure 13 shows the red solid and blue dashed curves, 
which are the results from the ADM 9-point scheme and 
the proposed method, respectively. The two L-F domain 
seismograms are highly consistent, which proves that the 
optimal method has approximate accuracy with the ADM 
9-point scheme. However, the L-F domain FD scheme 
has a flexibility stencil; therefore, it can be applied to 
discontinuous-grid modeling to reduce computation 
costs.

Conclusion

An opt imal  FD scheme wi th  a  f lex ib le  and 
centrosymmetric-gridpoint stencil is developed on the 
basis of the 2D L-F domain acoustic wave equation. The 
optimization coeffi  cients of the L-F domain FD operator 
can be determined using the L-F domain dispersion 
analysis method (i.e., minimizing the phase error of the 
normalized numerical phase and attenuation velocities). 
The optimal L-F domain FD method can work with 
traditional standard 9-point scheme and 7- and 9-point 
schemes, which are typically used in discontinuous-
grid modeling. The optimization coefficients for these 
schemes are presented, and the accuracy is validated 
in three numerical experiments. These experiments 

demonstrate that the optimal L-F domain FD method 
not only has high accuracy but can also adapt to 
square, rectangle, and discontinuous grid to reduce the 
computation cost.
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