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Abstract: Seismic data typically contain random missing traces because of obstacles and 
economic restrictions, influencing subsequent processing and interpretation. Seismic data 
recovery can be expressed as a low-rank matrix approximation problem by assuming a 
low-rank structure for the complete seismic data in the frequency–space (f–x) domain. The 
nuclear norm minimization (NNM) (sum of singular values) approach treats singular values 
equally, yielding a solution deviating from the optimal. Further, the log-sum majorization–
minimization (LSMM) approach uses the nonconvex log-sum function as a rank substitution 
for seismic data interpolation, which is highly accurate but time-consuming. Therefore, this 
study proposes an effi  cient nonconvex reconstruction model based on the nonconvex Geman 
function (the nonconvex Geman low-rank (NCGL) model), involving a tighter approximation 
of the original rank function. Without introducing additional parameters, the nonconvex 
problem is solved using the Karush–Kuhn–Tucker condition theory. Experiments using 
synthetic and field data demonstrate that the proposed NCGL approach achieves a higher 
signal-to-noise ratio than the singular value thresholding method based on NNM and the 
projection onto convex sets method based on the data-driven threshold model. The proposed 
approach achieves higher reconstruction effi  ciency than the singular value thresholding and 
LSMM methods.
Keywords: Seismic data reconstruction, low rank, Geman function, nonconvex, Karush–
Kuhn–Tucker condition

Introduction

Due to limitations, such as environmental interference 
and instrument conditions, collected seismic data are 
frequently irregular or incomplete and can severely 
aff ect the subsequent data processing and interpretation 
(Fu et al., 2018; Liu et al., 2017a). Therefore, missing 
data reconstruction has been incorporated into seismic 
exploration technology, and improving its accuracy is 
crucial for interpretation.

Several seismic data reconstruction methods have 

been proposed, such as sparse transform methods 
employing interpolation in a transform domain such as 
Radon (Kabir and Verschuur, 1995), Fourier (Zhang et 
al., 2016), Curvelet (Wang et al., 2015a), Dreamlet (Wang 
et al., 2015b), and Seislet (Liu et al., 2017b). Prediction 
filter methods recover seismic data via predictive 
filters, achieving superior antialiasing performance 
(Biondi et al., 1998). Wave equation approaches exploit 
the underground medium’s velocity information for 
reconstructing seismic data, which is computation 
intensive (Witten and Shragge, 2015). Machine learning 
(ML) techniques automatically learn the mapping 
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between incomplete and complete data (Fang et al., 2021; 
Liu et al., 2021). Consequently, they can interpolate 
the missing trace and are more efficient than traditional 
methods. However, ML approaches require a large amount 
of data for optimal performance.

Rank-reduction (RR) approaches are also popular for 
seismic recovery (Chen et al., 2017; Gao et al., 2017; Zhang 
et al., 2017). In these approaches, complete and noise-free 
seismic data have a low-rank structure, whereas missing 
traces increase the rank or slow the decay of singular values. 
Therefore, missing traces can be interpolated using RR 
techniques. Trickett et al. (2010) proposed Cadzow fi ltering 
via a truncated singular value decomposition method, but 
it is computation intensive. Therefore, Oropeza and Sacchi 
(2011) proposed a multichannel singular-spectrum analysis 
method based on the random singular value decomposition 
(SVD) algorithm, decreasing the computation time. Yang 
et al. (2013) introduced the nuclear norm as the rank 
function’s convex approximation and Ma (2013) extended 
it to a three-dimensional (3D) situation.

Because the nuclear norm is the rank function’s convex 
approximation, convex optimization methods can solve 
the nuclear norm minimization (NNM) method. These 
include singular value thresholding (SVT) (Cai et al., 
2010), accelerated proximal gradient (Toh and Yun, 2010), 
augmented Lagrangian multiplier (Yang and Yuan, 2013), 
and fixed-point continuation (Ma et al., 2011). However, 
NNM involves minimizing the sum of singular values, 
different from rank minimization, providing a suboptimal 
solution to the optimization problem.

The nonconvex function has been widely employed as a 
rank function surrogate because of its rank approximation 
superiority. Zhang et al. (2020) proposed a truncated 
nuclear norm regularization method for adequate seismic 
reconstruction; however, it requires estimating the 
matrix rank and two-layer SVD steps, making it time-
consuming. They also achieved seismic interpolation via 
a nonconvex function log-sum majorization–minimization 
(LSMM) framework (Zhang et al., 2019), with additional 
regularization parameters introduced in the corresponding 
optimization method. However, the algorithm converges 
slowly by minimizing the surrogate function, and choosing 
a reasonable parameter is challenging.

This study uses the nonconvex Geman function to 
approximate the original rank function and applies 
the Karush–Kuhn–Tucker (KKT) condition theory to 
iteratively solve the problem. This approach requires no 
additional parameters, eliminating the time required for 
tuning parameters. Experimental results showed that the 
proposed method (the nonconvex Geman low-rank (NCGL) 
method) outperforms classical methods, such as the SVT 
and projection onto convex sets (POCS) based on sparse 
transform (Gao et al., 2013) in terms of reconstruction 

accuracy, ensuring a better reconstruction effect. 
Further, NCGL significantly improves the seismic 
data reconstruction effi  ciency compared to SVT and 
LSMM approaches.

Seismic data reconstruction based 
on the low-rank theory

A two-d imens iona l  ( 2D)  s e i smic  r eco rd
( ) ( 1 1 )M N

t t,x t ,...,M ,x ,...,NZ Z i n c l u d e s  N 
traces and M time-sampling points at each trace. 
Let  ( ) M N

f ,xZ be the data in the f–x domain 
obtained by applying the Fourier transform to each 
trace of Zt. The fixing frequency is ω = ωj (ωj is a 
certain frequency value), and each frequency slice 
vector of Zf is expressed as (Oropeza and Sacchi, 
2011)

1( ( ,1), ( ,2),..., ( , ))
j
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f j f j f j N ,z Z Z Z (1)

and can be rearranged into a Hankel matrix as
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where  1: N m n
hP denotes the Hankel transform 

operator, ( 2 +1)m floor N . floor(·) is the integer 
down function, and n =N − m + 1. Thus, the Hankel 
matrix approximates a square matrix and m ≥ n.

The Hankel matrix at a given frequency slice of 
complete seismic data is of low rank. If seismic 
records are missing or corrupted by noise, the 
Hankel matrix’s rank increases or produces slow-
decaying singular values (Oropeza and Sacchi, 2011). 
Therefore, seismic data recovery can be solved 
using rank minimization. Figure 1 shows the basic 
procedure for seismic recovery based on the Hankel 
pretransform.

First, we acquire a 2D dataset Zf in the f–x domain 
using a 1D Fourier transform of the original seismic 
data Z t. Each frequency slice

j
z ( [ , ]j l h ) 

of data Zf is rearranged into a Hankel matrix
j

M , 
followed by calculating the low-rank approximation 
m a t r i x  

j

*X o f
j

M u s i n g  r a n k  m i n i m i z a t i o n 
algorithms. We then obtain the recovery frequency 
slice vector 1

j

* Nz , expressed as

  1( ).
j j

* *
hPz X (3)
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Accordingly, the inverse Hankel transform operator   
1 1: m n N

hP t r a n s f o r m s  t h e  r e c o v e r y  2 D 
matrix  

j

*X into a 1D frequency slice vector  
j

*z . Finally, 
by reconstructing each slice  

j

*z , seismic records *
tZ

in the t–x domain are recovered using the 1D inverse 

Fourier transform of the data  * M N
fZ (with *

fZ
containing  

j

*z ), yielding the following transformation 
operator

 ( ).* *
t fifftZ Z (4)

According to the above theory, we model each 
frequency slice of observed data as

 min ( )        rank s.t.
X

X W X M ,         (5)

where Xω is the matrix to be restored. rank(Xω) is the 
rank function of Xω (the number of nonzero singular 
values). Mω is the Hankel matrix constructed from 
the frequency slice, and  represents the matrix’s 
Hadamard product. The variable  ( ) m nPW M can 
be expressed as

   1 ( )
0 ( )ij
if i, j

,
if i , j

W (6)

where  : m n m nP represents the masking operator 
and Ω denotes an index subset corresponding to the 
observed entries of  Mω.

The rank function is nonconvex and discontinuous, 
making solving equation (5) diffi  cult. Yang et al. (2013) 
used the nuclear norm substitute rank, which resulted 
in the relation of the rank minimization model into the 
NNM model, given as

min * s.t.
X

X W X M ,             (7)

where  
1

( )( 1 )
n

i*
i

i ,...,nX X and σi(Xω) is the ith 

largest singular value of  Xω.
In the NNM approach, the sums of the singular values 

are simultaneously minimized, ignoring the diff erences 
between the singular values that frequently leads to a 
biased solution.

Considering that the data matrix’s rank corresponds 
to the number of nonzero singular values, the rank 
minimizat ion problem equates  to  the s ingular 
value vectors’ l0 norm minimization. Conventional 
compressive sensing uses the l1 norm as a surrogate l0 
norm to effi  ciently solve the convex problem. However, 
the l1 minimization solution is typically suboptimal 

relative to that involving the original l0 minimization 
because the former is a loose approximation of the latter. 
Many nonconvex surrogates have been proposed for the 
l0 norm, and nonconvex sparse optimization numerically 
outperforms convex models in signal recovery, error 
correction, and image processing (Candès et al., 2008). 
This study employs the nonconvex Geman function as 
a surrogate rank function instead of the nuclear norm 
(l1 norm of matrix singular value vectors) for seismic 
reconstruction.

Figure 1. Flowchart for seismic data reconstruction based on 
the Hankel transform approach. 
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Nonconvex Geman function-based 
approach for seismic reconstruction

Nonconvex Geman function
The continuous, diff erentiable, and nonconvex Geman 

function (Geman and Yang, 1995) can be expressed as

 ( ) = ( 0)xf x , x ,
x

(8)

where γ is a constant. The Geman function is often used 
as an l0 norm surrogate function. According to many 
studies, rank is approximated better using this function; 
thus, it is widely applied in image processing and signal 
recovery (Geman and Yang, 1995; Lu et al., 2016).
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Figure 2 shows that the Geman function approximates 
rank closer than the nuclear norm, comparing its results 
at diff erent γ ( γ = 1 and 10) with those from the nuclear 
norm. The horizontal axis displays the singular values, 
and the vertical axis represents the corresponding 
function values. The black starred line represents the true 
rank, fixed at 1. The lines with red asterisks and blue 
circles exhibit the Geman function’s contribution when   
γ = 1 and 10 for varying singular values, respectively, 
and the line with green triangles depicts varying nuclear 
norm results with singular values. The nonconvex 
Geman function results are closer to the true rank 
regarding the variation of the singular values, whereas 
the nuclear norm results display significant deviation 
from the true rank.

 
0 5

0 5
1

min
n .

i
.
ii

s.t.
X

W X M .        (11)

However, the optimization problem based on 
equation (11) remains NP-hard because the equation is 
nonconvex. We use the KKT condition of equation (11) 
to obtain a solution for the nonconvex regularizer by 
formulating a corresponding Lagrangian function.

The Lagrangian function of equation (11) is given as

 
0 5

0 5
1

( ) = ( ( ))
n .

Ti
.
ii

L , Tr ,X Y Y W X M (12)

where Y denotes the Lagrangian multiplier and Tr(·) is 
the matrix’s trace function.

Let ( ) = ( ( ))TT TrX Y W X M .The KKT condi-
tion of equation (11) produces the following equations. 
The optimal local solution to equation (11) satisfies 
equations. (13) and (14).
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 .W X M (14)

Then, we simplify equation (13). According to the 
matrix differentiation property, equation (13) can be 
rewritten as
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.
X

X X 0
X X

(15)

Due to the relationship between the symmetric 
matrix’s eigenvalues and the corresponding eigenvectors 
(Magnus, 1985), we can obtain equation (16),
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where  1niu is the corresponding eigenvector of the 
ith eigenvalue of h(Xω).

Equation (15) can be updated as
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1
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i ii
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.

u u X
X 0

X X
(17)

Figure 2. Plot of γ versus singular values showing rank 
approximation involving the Geman function and nuclear 

norm, for a true rank of 1.
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If the Geman function is used as a surrogate rank 
function, the optimization problem can be formulated as

1

( )min
( )

n
i

ii

s.t.
X

X W X M
X

.      (9)

However, because equation (9) represents a nondeter-
ministic polynomial time (NP)-hard problem, this study 
uses the KKT condition theory to derive an iterative 
approximate solution to the original optimization 
problem.

NCGL algorithm
The left-hand side of equation (9) can be expressed as

    
0 5

0 5
1 1

( ) ( ( ))
( ) ( ( ))

n n T .
i i

T .
i ii i

,
X X X

X X X
(10)

where ( )i is the matrix’s ith eigenvalue. For notation 
ease, we replace  ( )T

i X X and  T n nX X with λi and 
h(Xω) , respectively. Then, equation (9) can be rewritten 
as
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Let

    0 5 0 5
1

[ ]
2 ( )

n
T

i i. .
i ii

,D u u U v U (18)

where uj is the ith column of n nU , [v] = diag(v) is a 
diagonal matrix, and

1 0 5 0 5
1[ ] ( = 2 ( ) 1 ).n . .

n i i iv ,...,v v , i ,...,nv

Based on the definition of D, equation (17) can be 
reduced to

    ( ( )) ( )TTr h T
.

D X X 0
X X

(19)

Then, equation (19) can be rewritten as

    2 .X D W Y 0 (20)

Finally, equation (13) is simplifi ed to equation (21) as

    11 ( )
2

.X W Y D (21)

In summary, optimal local solutions Xω and Y to 
equation (11) satisfy equations (21) and (14). Because 
the definition of   D relies on Xω, equation (21) 
represents a fi xed equation that can be solved iteratively. 
Therefore, in the kth iteration, if Dk is fi xed, 1kX and Yk+1 
can be iteratively calculated using equations (22) and (23)

    
 11 ( )( )

2
k ,X W Y D (22)

  
 .W X M (23)

It is necessary to ensure that Dk is a positive defi nite 
matrix. Therefore, we set ( ) = Th X X X I , where ε= 
0.0001||diag(Mω

T Mω)||∞.
Further, based on equations (22) and (23), we derive

    11 (( )( ) ).
2

kM W W Y D (24)

For equation (24), we cannot directly calculate Y; 
therefore, we update the rows of Y individually. We 
write the row vector form of equation (24) as (j is the 
number of rows)

   1 11 1( ) ( ) [ ] = [ ]( ) [ ]
2 2

k k
j j j j j j ,m W Y D w y w D w (25)

where mj is the jth row of mω, wj denotes the jth row of 
w, yj represents the jth row of Y, and [wj] = diag(wj)(j = 
1,···,m)  is a diagonal matrix.

Let 1[ ]( ) [ ]k k
j jA w D w , and we obtain

 1
2

k
j jm y A .                           (26)

wj has zero values; therefore, Ak represents a singular 
matrix, and mj is not directly solvable using equation 
(26). We obtain the nonzero subvector  jm̂ by obtaining 
nonzero elements of mj and nonzero submatrix  kÂ by 
obtaining nonzero elements of  Ak. Then, we obtain

12 ( )kj j
ˆˆŷ m A ,                       (27)

where  jŷ is a nonzero subvector corresponding to the 
nonzero elements of yj.

The Lagrangian multiplier Yk+1 is obtained using 
equation (27). Further, we obtain

    1 1 11 ( )( )
2

k k kX W Y D (28)

Algorithm 1 outlines the seismic data reconstruction 
procedure based on the NCGL method.

Algorithm 1: Nonconvex Geman low-rank (NCGL) 
method for seismic data reconstruction
Input: Original seismic records Zt, γ, err = 1e − 4, ε,  

K = 300, ωl, ωh  
1. ( )f tfftZ Z ,
2. for ω =ωl : ωh

3. ( )hPM z , 1X M , ( )PW M , 
4. for k =1:K 
5. [ [ ] ] = ( ( )) = (( ) + )k k k k k T k, , svd h svdU λ U X X X I , 

, 1[ ]k k k
n,...,λ

6. , 0 5 0 5 ( 1 )
2( ) (( ) + )

k
i k . k .

i i
v i ,...,n

7. Calculate Dk using equation (18):
[ ]( )k k k TD U v U , 1( = [ ])k k k

nv ,...,vv
8. Update the rows of Yk+1 individually using 
    equation (27),
9. Update 1kX  using equation (28),

10. if  1( )k k

k

o o err
o

break (where ok denotes the    

      objective function value at the kth iteration)
11. end for
12. , 1( )*

hPz X
13. end for
Output: Reconstructed seismic records ( )* *

t fifftZ Z
               (with  *

fZ containing *z ).



190

Effi  cient seismic data reconstruction based on Geman function minimization

From Algorithm 1, in each iteration, the matrix to 
be recovered Xω is updated using the current weighted 
matrix D, which is updated using the updated Xω. 
Finally, we used the operators 1

hP  and iff t to transform 
the restored low-rank matrix Xω into the reconstructed 
seismic data *

tZ  . Furthermore, the only parameter 
requiring tuning in Algorithm 1 is γ, performed 
empirically to achieve the best results. Appendix A 
presents the convergence analysis of Algorithm 1.

Experiments

We consider a synthetic seismic dataset comprising 
three curving events and a fi eld prestack dataset to verify 
the proposed reconstruction approach’s performance. 
To evaluate the NCGL method’s results, we define the 
signal-to-noise (SNR) as

    

2

10 210 ( )F

*
t F

SNR log ,
Z

Z Z
(29)

where  Z represents the complete and noiseless data, 
and *

tZ  is the recovered data. A high SNR value indicates 
a better reconstruction performance. Furthermore, the 
POCS, SVT, and LSMM methods were also used for 
comparison.

We selected parameters that could yield the best results 
in our experiments. Therefore, for the NCGL method, 
we selected the Geman function with γ belonging to the 
set {10, 20, 30, 40, 50}, with the convergence error set 
to 1e − 4. Conversely, for the LSMM method, we varied 
the ε, tol, and λ0 parameters within previous studies’ 
recommendations (Zhang et al., 2019). For the SVT 
method, we set the regularization parameter τ = 200. 
For the POCS method, we set Pi = 98, Pi = 1, and N = 
100. Further, we empirically selected the best parameter 
values for all methods.

Synthetic data example
Figure 3(a) shows the synthetic seismic dataset 

comprising 200 traces, with 600 temporal sampling 
points for each trace, a temporal sampling interval 
of 4 ms, and a spatial sampling interval of 10 m. The 
corresponding corrupted data were characterized by 60% 
of the traces missing, with randomly selected indices 
between 1 and 200 [Figure 3(b)]. The missing trace 
values were set to zero, and the NCGL algorithm was 
applied to each frequency slice’s Hankel matrix of the 
2D data.

Figures 4(a), (b), (c), and (d) show the POCS, 
SVT, LSMM, and the proposed NCGL methods’ 
reconstruction results, respectively. The reconstructed 
seismic data’s SNR values are 20.68, 22.97, 25.73, 
and 25.83 dB, respectively. Figures 4(e)–(h) show the 
corresponding reconstruction errors, illustrating the 

Figure 3. Images showing (a) original seismic data and (b) the corresponding corrupted data with 60% of traces missing.
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diff erences between the original and reconstructed data, 
and the areas in the red box highlight the differences 
between the NCGL approach and the other three 
approaches. The reconstruction images, errors, and 
SNR values demonstrate a more accurate reconstruction 
using nonconvex regularization than convex relaxation 
methods.

To illustrate the reconstruction performance of our 
approach, we compared the images of 198th trace with 
complete seismic data and the reconstruction results 
using the diff erent methods [Figures 5(a)–(d)]. The solid 
green lines represent the complete data, whereas the 
solid blue lines denote the reconstruction results. Figures 

Figure 4. Reconstructed results for 60% randomly missing traces using (a) POCS (SNR = 20.68 dB), (b) SVT (SNR = 22.97 dB), 
(c) LSMM (SNR = 25.73 dB), and (d) NCGL (SNR = 25.83 dB), (e–h) Reconstructed errors for (e) POCS, (f) SVT, (g) LSMM, and (h) 

NCGL.

5(e)–(h) show the diff erences between the 198th trace of 
the complete and reconstruction data. Figures 5(a)-(h) 
demonstrate improved reconstruction performance using 
our method compared with the SVT approach and POCS 
approach, and are comparable to the LSMM method.

Figure 6 shows the variations of the reconstruction 
data’s SNR values using the different methods against 
percentages of missing traces varying from 40% to 
80%. For all approaches, the higher the missing ratios 
are, the worse the reconstruction results, although the 
NCGL method still exhibits better results than the other 
methods.
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reconstruction errors.
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Field data example
We evaluated three methods’ performance on a field 

prestack seismic dataset, comprising 120 traces with 
512 sampling points for each trace, a temporal sampling 

Figure 7. Images displaying (a) original prestack seismic data, (b) corrupted data with 50% randomly missing traces, (c) 
reconstructed results using POCS (SNR = 4.22 dB), (d) SVT (SNR = 7.24 dB), (e) LSMM (SNR = 8.11 dB), and (f) NCGL (SNR = 8.21 

dB); (g–j) Reconstructed errors for (g) POCS, (h) SVT, (i) LSMM, and (j) NCGL.

Figure 6. Plot comparing the SNR values for reconstruction 
based on the POCS, SVT, LSMM, and NCGL methods, 

respectively, for percentages of missing traces.

interval of 4 ms, and a spatial sampling interval of 25 m. 
Figure 7(a) shows the complete seismic data, and Figure 
7(b) shows the corresponding corrupted seismic data 
with 50% of the traces randomly removed. Figures 7(c), 
(d), (e), and (f) show the reconstruction results for the 
POCS, SVT, LSMM, and NCGL methods, respectively. 
Additionally, Figures 7(g), (h), (i), and (j) show the 
methods’ reconstruction errors, respectively, and their 
corresponding SNR values are 4.22, 7.24, 8.11, and 
8.21 dB, respectively. Furthermore, we compared the 
97th trace of the original and reconstructed data for the 
POCS, SVT, LSMM, and NCGL methods [Figures 8(a), 
(b), (c), and (d), respectively]. Figures 8(e)–(h) show 
the differences between the 97th trace of the original 
data and in the reconstructions. Figure 9 shows the 
reconstruction performance based on the POCS, SVT, 
LSMM, and NCGL methods for missing traces varying 
from 10% to 50%. The experimental results reveal that 
our approach outperforms the convex relaxation method, 
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Figure 8. Reconstruction results for an original seismic dataset with 50% missing traces showing (a)–(d) 
comparison of the 97th trace reconstructed using the POCS, SVT, LSMM, and NCGL methods, respectively, 

and (e)–(h) the corresponding reconstruction errors.

highlighting a better reconstruction performance of the 
nonconvex regularization methods. We demonstrate 
that the NCGL approach’s reconstruction efficiency is 

better than the LSMM method in computation time and 
convergence speed comparisons.
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Computation time and convergence speed 
comparisons

Table 1 shows the computational complexity of the 
primary steps in Algorithm 1.

Figure 9. Plots of SNR values associated with 
reconstruction using three methods versus the 

percentage of missing traces.

Table 1: Summary of the computational complexity of the 
primary steps in Algorithm 1

Primary steps Computational complexity
Step 5 O(n3) 
Step 7 O(n3)  
Step 8  m(O((ηn)3)) (0 < η < 1)
Step 9 O(n2m)  

  
In Step 5, SVD is conducted, and the computational 

complexity is O(n3), whereas Step 7 is for updating Dk, 
including only the matrix products, with computational 
complexity represented as O(n3). In Step 8, Yk+1 is 
updated by updating the rows 1k

jy  (j,...,n) of Yk+1 
successively, and the computational complexity 
depends on the nonzero numbers of mj. Therefore, 
the average computational complexity in Step 8 is 
expressed as m(O((ηn))3) when summing the missing 
ratios η(0<η<1). The calculation method involves the 
for loop in MATLAB, which can be replaced by parallel 
computing in practice to reduce time. In Step 9, 1kX , 
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which involves a computational complexity represented 
by O(n2m), is updated in each iteration.

After a comprehensive analysis, the algorithm 
converges within J  i terations; then, the NCGL 
method’s computational complexity is expressed as 
Jmax(O(n2m),m(O((ηn)3))). Figures 10(a) and (b) show 
that the root-mean-square error (RMSE) of the adjacent 
iteration values  kX and 1kX  varies with the number of 
iterations when the synthetic and fi eld data are fi xed at a 
certain frequency slice. From the fi gures, NCGL method 
can converge to a smaller J value faster than LSMM and 
SVT methods. Therefore, the algorithm presented in this 
study has lower computational complexity. The POCS 
method is based on the Fourier transform and excludes 
the Hankel pretransform. Therefore, this study only 
compares the convergence speed and time consumption 
of SVT, LSMM, and NCGL methods.

Furthermore, we evaluated the proposed NCGL 
method’s reconstruction efficiency by ascertaining the 
time consumed in reconstructing the synthetic and real 

Figure 10. Based on different approaches, the root-mean-square error contributions 
of  kX and 1kX  for varying iteration numbers when fi xed at a certain frequency 
slice: (a) experimental results of synthetic data, (b) experimental results of fi eld 

data.

Figure 11. Reconstruction time comparison for three methods based on different 
data involving varying percentages of missing seismic traces: (a) experimental 

records on synthetic data; (b) experimental records on fi eld data.
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seismic data. Figure 11 shows the time consumed using 
each reconstruction approach for varying percentages 
of missing traces. The proposed method achieved the 
highest computational effi  ciency compared with the SVT 
and LSMM.

Conclusions

This study proposed a nonconvex regularization 
method based on the Geman function for reconstructing 
missing traces in seismic data. The proposed method 
provides more accurate reconstruction data than 
conventional convex nuclear norm-based models 
because the Geman function approximates rank better. 
Due to its nonconvexity, we developed an efficient 
optimization model to provide the solution. Further, we 
used the KKT condition to obtain an iterative solution of 
the original optimization problem without introducing 

additional parameters, which is 
more advantageous than existing 
nonconvex methods because of the 
reduced time for tuning parameters. 
Experiments on synthetic and field 
data demonstrated that the proposed 
method has a faster convergence 
speed and better reconstruction 
effi  ciency than SVT and LSMM.
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Before describing our theoretical proof, we introduce 
two Lemmas. Lemma 1 (Marshall et al., 1979): 
Assuming X,  n nY are two Hermitian matrices with 
eigenvalues in identical order, we can consider that the 
following inequality is valid
  

 1
1 1

( ) ( ) ( ) ( ) ( )
n n

i n i i i
i i

Tr ,X Y XY X Y (30)

Further, equality exists if, and only if, two orthogonal 
matrices U and V satisfying T T,X YUΛ V X UΛ V Y
can be found, where  XΛ and  YΛ are the ordered 
eigenvalue matrices.

Lemma 2: The  1kX and Yk+1 in equation (28) satisfy 
the KKT condition of the following convex optimization 
problem

 min (( ) ( ))          k TTr h s.t.
X

D X W X M .    (31)

Theorem: In the kth iteration of Algorithm 1, 
assume kX  is the kth iterative optimal solution, and we 
obtain

                  
1

1
1 1

( ) ( )
( ) ( )

n nk k
i i
k k

i ii i

.X X
X X

 
Proof: By adding Lemma 2, assuming  1kX is the 

(k+1)th iterative solution, we obtain

 1(( ) ( )) (( ) ( )).k T k k T kTr h Tr hD X D X ,         (32)
that is, 

1 1 1( [ ]( ) [ ]( ) ) ( [ ]( ) [ ]( ) ).k k k T k k k T k k k T k k k TTr TrU v U U λ U U v U U λ U
(33)

Considering λ1 ≥ λ1 ≥ ··· ≥ λn, according to the Geman 
properties, we obtain v1 ≥ v1 ≥ ··· ≥ vn. Further, according 
to Lemma 1 and equation (33), the following inequality 
is valid,

   1 1 1 1 1

1

1

([ ][ ]) ( [ ]( ) [ ]( ) )

( [ ]( ) [ ]( ) ) = ([ ][ ]) =

n
k k k k k k k T k k k T
i i

i

n
k k k T k k k T k k k k

i i
i

Tr Tr

Tr Tr .

v λ U v U U λ U

U v U U λ U v λ

(34)

The Geman function is nonconvex, therefore,

    1 0 5 0 5
1

1 0 5 0 5
( ) ( ) ( ).

( ) ( )

k . k .
k k ki i
i i ik . k .

i i

v  (35)

Then,

     
1 0 5 1 0 5

1
1 0 5 1 0 5

1 1 1 1

( ) ( )
( ) ( )

n n n nk . k .
k k k ki i
i i i ik . k .

i ii i i i

v v .

(36)

Further, based on equations (35) and (36), we obtain

1 0 5 0 5

1 0 5 0 5
1 1

( ) ( )
( ) ( )

n nk . k .
i i

k . k .
i ii i

.,                 (37)

which can be rewritten as
    

 
1

1
1 1

n nk k
i i

k k
i ii i

, (38)

where  ki denotes the ith singular value of kX  .
Theorem demonstrates that Algorithm 1 monotonically 

reduces the objective function value, making the 
algorithm convergent.
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Appendix 
Convergence proof of the proposed NCGL


