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Abstract: Based on the CNN-LSTM fusion deep neural network, this paper proposes a seismic 
velocity model building method that can simultaneously estimate the root mean square (RMS) 
velocity and interval velocity from the common-midpoint (CMP) gather. In the proposed 
method, a convolutional neural network (CNN) Encoder and two long short-term memory 
networks (LSTMs) are used to extract spatial and temporal features from seismic signals, 
respectively, and a CNN Decoder is used to recover RMS velocity and interval velocity 
of underground media from various feature vectors. To address the problems of unstable 
gradients and easily fall into a local minimum in the deep neural network training process, we 
propose to use Kaiming normal initialization with zero negative slopes of rectifi ed units and to 
adjust the network learning process by optimizing the mean square error (MSE) loss function 
with the introduction of a freezing factor. The experiments on testing dataset show that CNN-
LSTM fusion deep neural network can predict RMS velocity as well as interval velocity more 
accurately, and its inversion accuracy is superior to that of single neural network models. 
The predictions on the complex structures and Marmousi model are consistent with the true 
velocity variation trends, and the predictions on fi eld data can eff ectively correct the phase 
axis, improve the lateral continuity of phase axis and quality of stack section, indicating the 
eff ectiveness and decent generalization capability of the proposed method.
Keywords: Velocity inversion, CNN-LSTM, fusion deep neural network, weight 
initialization, training strategy

Introduction

The velocity of the subsurface media is an important 
parameter in the field of seismic exploration. Seismic 
velocity inversion methods can be broadly divided into 
two categories. One is the conventional method based on 

physical mechanisms, such as ray travel time tomography 
(Hole, 1992), wave equation tomography (Woodward, 
1992), migration velocity analysis ( Liu and Bleistein, 
1995), and full-waveform inversion (FWI, Pratt et al., 
1998), etc. For physics-driven methods, it is generally 
necessary to construct forward and adjoint operators that 
satisfy the physical propagation law of partial or holistic 
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information of seismic waves, and iteratively update the 
constructed inverse problem to obtain the final result. 
These methods, however, are typically time-consuming and 
computationally demanding (Meng and Scales, 1996; Li et 
al., 2012; Chai et al., 2018). Furthermore, they are easily 
influenced by factors like the initial model, which results 
in a local minimum (Lian et al., 2018; Guo et al., 2019; 
Biswas et al., 2020). Some researchers used regularization 
algorithms (Guitton, 2012; Lin and Huang, 2014) to 
alleviate the ill-posedness of inverse problem, improving 
the accuracy of velocity inversion.

The other is the data-driven deep learning (DL) method. 
The dominant models of DL (LeCun et al., 2015) are 
neural networks, which include convolutional neural 
networks (CNNs), deep belief networks, recurrent neural 
networks (RNNs), long short-term memory networks 
(LSTMs), generative adversarial networks, and others. 
CNNs are a type of deep feedforward neural network that 
contains convolution operators. They have the properties 
of local connectivity and weight sharing and have strong 
fine-grained feature extraction as well as classification-
recognition capabilities in image processing problems. 
LSTMs are gated RNN models developed by Hochreiter 
and Schmidhuber (1997) to address the problem of 
gradient dispersion and explosion in sequence modeling. 
LSTMs rely on the gate mechanism, forget mechanism and 
recurrence mechanism to function properly and fully utilize 
the benefits of long-term memory and recurrent memory 
(Huang, 2020). Due to the advantages in time series data 
modeling, LSTMs are widely used in natural language 
processing (Graves et al., 2004; Gulordava et al., 2018).

 Fabien-Ouellet and Sarkar (2020) adopted a deep neural 
network consisting of CNN and LSTM to estimate the 
root mean square (RMS) velocities as well as the interval 
velocities of the layered models. In addition to the purely 
data-driven methods (Li et al., 2020; Liu et al., 2021), 
combining neural networks with FWI can effectively 
improve the results of velocity inversion (Mao et al., 2019; 
Sun et al., 2020; Kazei et al., 2021). Alzahrani and Shragge 
(2021) developed a frequency-stepping approach to allow 
the neural network to progressively reconstruct complex 
velocity models. Sun et al. (2021) incorporated physical 
laws into the training process of the neural network, and at 
the same time, minimized data-driven model misfits and 
physics-based data residuals. In data-driven mode, this 
approach reduces the demand for data diversity and volume 
of the training dataset, signifi cantly improving the accuracy 
of the predicted velocity models and stabilizing wave 
propagation. Methods for building velocity models based on 

DL can be considered low-cost solutions. Although 
deep neural networks require a large number of 
computational resources to continuously update the 
network’s weights using the optimization algorithm 
during training, once the network parameter model 
with good generalization capability is successfully 
trained, the time and computational cost of testing 
can be avoided.

Based on the research work of Fabien-Ouellet and 
Sarkar (2020), this paper proposes a CNN-LSTM 
fusion deep neural network to automatically build the 
RMS velocity model and interval velocity model of 
subsurface media from the CMP gather. The CNN-
LSTM fusion network leverages CNN and LSTM 
to construct feature extractors to extract features 
in spatial and temporal dimensions, respectively, 
and then constructs a new and universal CNN 
Decoder to recover RMS velocity and interval 
velocity information from different feature vectors. 
Additionally, we compare the CNN-LSTM fusion 
network and single neural network models. To 
address the issue of deep neural network training 
difficulty, this paper investigates the effects of 
weight initialization schemes and training strategy 
on network performance. The tests are carried out 
using synthetic model data as well as fi eld data. The 
synthetic model data includes complex structures, 
and single-trace layered velocity models extracted 
from the complex structures and Marmousi model, 
in addition, testing data that is similar to samples in 
the training dataset but does not appear in the training 
dataset. The numerical experiments demonstrate the 
eff ectiveness and well generalization capability of the 
proposed CNN-LSTM fusion network.

Network architecture and theory

The conventional seismic velocity inversion 
methods obtain the velocity model parameters from 
the observed data, and the objective function can be 
expressed by equation (1):

2

2
min .V F V D J V (1)

where F(•) denotes the forward operator (e.g., wave 
equation), which simulates synthetic seismic data 
from a given velocity model V, D is the observed 
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data, V* represents the ultimate velocity model obtained 
by inversion, ||•||2 stands for L2 norm, J(V) denotes 
regularization term, and α represents the scaling factor. 
The ultimate inversion result is obtained by iteration 
through an optimization algorithm.

Seismic velocity inversion methods based on a single 
neural network model of CNN or LSTM typically exploit 
the advantages of CNN in extracting spatial features 
or LSTM in mining temporal features to establish the 
functions between seismic data (e.g., common shot 
gather, CMP gather, velocity spectra, etc.) and velocity 
(e.g., RMS velocity, interval velocity, velocity error, etc.) 
to recover velocity information of subsurface structures. 
A single network model, on the other hand, cannot 
extract all of the velocity features. As a result, as shown 
in Figure 1, we propose a CNN-LSTM fusion deep 
neural network composed of  CNN Encoder, LSTM-
RMS Encoder, LSTM-Interval Encoder, RMS Decoder, 
and Interval Decoder. In the case of unknown seismic 
wave propagation theory and underlying physical laws, 
this data-driven velocity model building method encodes 
the inversion operator into network parameters, and its 
objective function is expressed by equation (2):

   
; ,R I

i i iY =L V V Y C . (2)

where Θ stands for network parameters, YΘ(•) represents 
inversion operator, Y denotes the optimal inversion 
operator, L(•) represents a loss function, and C , V ; VR I

i i i

denotes training data pairs. Each training data pair is 
composed of CMP gather Ci, which services as the input 
of the network, time-domain 1D RMS velocity label R

iV , 
and time-domain 1D interval velocity label I

iV .

LSTM-RMS Encoder. The RMS Decoder recovers the 
output of the LSTM-RMS Encoder as the final RMS 
velocity model. In addition, an LSTM-Interval Encoder 
is used to capture richer velocity information on top 
of the feature vectors extracted by the LSTM-RMS 
Encoder, the output of which is eventually recovered as 
the interval velocity model by the Interval Decoder. The 
design details of each component are shown in Table 1. 
CNN Encoder can be represented by equation (3):

   
( 1) ( )( 2 ( )),l lx ReLU Conv d x (3)

 
  

1 2 1 22

0
0 0

m,n i- s+m- p, j s n- pi , j
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if x

(4)

where l represents the index of the network layer, 
Conv2d is 2D convolution (LeCun et al., 1989; Bouvrie, 
2006), s represents the stride of convolution, p denotes 
padding, which is used to control the number of zeros 
added to the edges of feature maps in our proposed 
network, and ReLU is rectified linear unit (Nair and 
Hinton, 2010). Moreover, RMS Decoder and Interval 
Decoder adopt the same CNN architecture, but the inputs 
to both are distinct, which satisfy equation (5):

 ( 1) ( )( ( 2 ( ))),l lx LeakyReLU BN Conv d x (5)

   , 2
( )= ( )+

+
.

0
eak ( )

0

x
BN x

x if x
L yReLU x

ax if x

(6)

where BN denotes Batch Normalization (Ioffe and 
Szegedy, 2015), LeakyReLU is a leaky rectified linear 
unit (Maas et al., 2013), μβ denotes the mini-batch mean, 

2 represents mini-batch variance, γ and β are learnable 
parameters, which represent the scaling and shift 
separately, ϵ is set to a smaller value for the stability of 
calculation. In this paper, ϵ = 1e-5, a = 0.2.

A LSTM unit (Figure 2) is used by the LSTM-RMS 
Encoder and the LSTM-Interval Encoder. The cell state 
and gate mechanism form the heart of LSTM. Cell state 
moves information from earlier time steps to later time 
steps, avoiding short-term memory. The gate mechanism 
mainly relies on the sigmoid activation function (Han 
and Morag, 1995) to map the output vector in the 

Figure 1.  Architecture of CNN-LSTM fusion deep neural 
network.
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CNN Encoder extracts the multi-scale spatial 
dimension information from the seismic waveform 
signals through fifteen “Conv2d+ReLU” modules with 
diff erent convolutional kernel sizes. Following that, the 
temporal dimension information is extracted using the 
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interval [0,1] to indicate the importance of information, 
and then multiplies the output vector with the vector 
to be controlled by element-wise to make the network 
learn which information should be retained or forgotten. 
Through the gate mechanism, information is added to or 
removed from the cell state. Graves et al. (2013) contain 

a detailed calculation procedure for the LSTM unit. 
Equation (7) can be used to express the LSTM-RMS 
Encoder and LSTM-Interval Encoder:

  ( 1) ( )( ).l lx LSTM x (7)

Table 1 Design details of CNN-LSTM fusion deep neural network

Component Input size Layers Kernel size/
Input_size

Stride/
Hidden_size Output size

CNN Encoder (B,1,2048,22) {Conv2d+ReLU}*15

15 1
1 9

*1
15 1
1 9
15 3 *7

1 2 *4

 
(1,1)*11
(1,2)*4 (B,32,2048,1)

LSTM-RMS Encoder (2048,B,32) LSTM 32 200 (2048,B,200)
LSTM-Interval Encoder (2048,B,200) LSTM 200 200 (2048,B,200)

RMS Decoder (B,200,2048,1) {Conv2d+BN+LeakyReLU}*5 [1×1,1] *5 (1,1)*5 (B,1,2048,1)
Interval Decoder (B,200,2048,1) {Conv2d+BN+LeakyReLU}*5 [1×1,1] *5 (1,1)*5 (B,1,2048,1)

* “Kernel size” and “Stride” apply to components of CNN architecture, “Input_size” and “Hidden_size” apply to components of LSTM 
architecture.

Method

Dataset construction
Our dataset contains 1232 data pairs C , V ; VR I

i i i ,
and the ratio of training sample quantities to testing 
sample quantities is 1200:32. Firstly, the 1D layered 

Figure 2. Architecture of the LSTM unit. The detailed 
calculation procedure of the LSTM unit can be found in the 

article of Graves et al. (2013).
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piecewise constant velocity models in depth-domain 
are randomly generated. The velocity model parameters 
are as follows: velocity range is from 1.50 km/s to 4.85 
km/s, the velocity of the first layer is 1.50 km/s–2.00 
km/s, the number of layers is 2–20, the position of the 
first interface is 0.5 s–0.7 s, each layer has at least 5 
grid points in thickness, and the number of vertical grid 
points is 200. Following that, the 1D depth-domain 
interval velocity models are converted to labels R

iV and 
I
iV by using Seismic Unix. Finally, the 1D depth-domain 

interval velocity models are stretched to 2D depth-
domain interval velocity models, and each velocity 
model is conducted forward process by utilizing the 
random wavelet with phase rotation to obtain CMP 
gather at the middle position. We solve the 2D acoustic 
wave equation with the time-domain finite-difference 
method. Detailed parameter settings are as follows: 
first-derivative Gaussian wavelet and Ricker wavelet 
are randomly adopted, the dominant frequency range 
is from10 Hz to 40 Hz, the phase rotation is chosen 
randomly from 0 to π, the middle position is the self-
excited self-receiving point, the sources are placed on 
the left side of this point, the receivers are placed on 
the right side of this point, there are 22 sources with an 
interval of 30 m, the number and interval of receivers 
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Figure 3. Two data pairs in the training dataset. 
(a), (d) CMP gathers. (b), (e) Labels of RMS velocity. (c), (f) Labels of interval velocity.

are the same as the sources, the time sampling interval 
is 0.001 s, and the receiving time is 2.048 s. Thus, the 
dimension of Ci is 2048*22, and those of R

iV and I
iV are 

both 2048*1. Ci, R
iV and I

iV are performed normalization. 
Figure 3 shows two training data pairs, where the CMP 
gather in the first row was obtained by first-derivative 
Gaussian wavelet with the dominant frequency of 19 Hz 
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and the phase rotation of 1/8 π, and the CMP gather in 
the second row was obtained by the Ricker wavelet with 
the dominant frequency of 38 Hz and the phase rotation 
of 1/2 π. The interval velocity mentioned below refers 
to the time-domain interval velocity unless otherwise 
stated. All experiments in this paper are implemented on 
the Pytorch framework.

Weight initialization
The weight initialization aff ects the neural network’s 

convergence speed and performance, and an incorrect 
initialization scheme affects the nonlinear model's 
learning result. Normal distribution initialization, 
orthogonal initialization (Saxe et al., 2013), Xavier 
initialization (Glorot and Bengio, 2010), Kaiming 
initialization (He et al., 2015), and Pre-train initialization 
are examples of conventional initialization schemes. 
Xavier initialization can reduce gradient dispersion, 
but it has the limitation of making the output of tanh 
activation function in the deep layer obey the standard 
Gaussian distribution; it is ineffective for the ReLU 
activation function. He et al. (2015) considered the 
influence of ReLU on the output data distribution and 
proposed Kaiming initialization to solve the above 
problem. Orthogonal initialization is commonly used 
in RNNs. As the time step increases, repeated weight 

matrix multiplication makes RNNs prone to gradient 
explosion and vanishing, while the absolute value of 
orthogonal matrix eigenvalue is equal to 1, so that 
repeated matrix multiplication will not cause gradient 
explosion and vanishing.

This paper’s neural network architecture uses ReLU in 
the CNN Encoder and LeakyReLU in the RMS Decoder 
and Interval Decoder. As a result, we compare the 
effects of normal distribution initialization, orthogonal 
initialization, and Kaiming initialization on the proposed 
network’s convergence speed and performance, where 
normal distribution initialization, Kaiming normal 
initialization, and Kaiming uniform initialization allow 
the corresponding network parameters sampled from the 
distributions in equations (8)–(10):

 (0, ),W N std (8)

  0, 2 / n ,lW N (9)
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  ~ 6 / n , 6 / .l lW U n (10)

where std denotes the standard deviation of the normal 
distribution, n=k2c, k represents the size of convolution 
kernel, and c stands for the number of the input channel.

Training strategy
The performance of a neural network not only 

depends on the architecture and weight initialization 
scheme but also is closely related to the training strategy. 
The CNN-LSTM fusion deep neural network’s training 
process aims to establish a mapping relationship 
between CMP gathers and RMS velocities, as well as 
interval velocities. We compare the eff ects of the MSE 
loss function and the SmoothL1 loss function (Girshick, 
2015) on network performance when combined with a 
freezing factor.

When the network is optimized to minimize the 
MSE loss between the target and predicted values, 
all parameters in the network are iteratively updated 
according to the MSE loss between the target RMS 
velocities and the predicted RMS velocities until 
satisfactory inversion results of RMS velocities are 
obtained. Subsequently, the neurons are responsible for 
retrieving the RMS velocities (shown in blue in Figure 
1) are frozen. Finally, the remaining active neurons 
(shown in red in Figure 1) are used to establish a 
mapping relationship between CMP gathers and interval 
velocities by minimizing the MSE loss between them. 
The equation (11) can be used to represent the objective 
function:

  (1 ) ,RMS Interval
MSE MSEL F L F L (11)

  
2

2
2

nter

2

1 V V
.

1 V V

RRMS R
MSE

II val I
MSE

L
nt B

L
nt B

(12)

where F denotes the freezing factor, which is equal 
to 0 or 1, B represents the batch size, nt denotes the 
number of samples in the time-domain, and V indicates 
the predicted velocities. Similarly, when the network 
minimizes SmoothL1 loss between target and predicted 
velocities, the objective function can be expressed by 
equation (13):

  (1 ) ,RMS Interval
SmoothL1 SmoothL1L F L F L(1 ) RMS Inte
SmoothL1 Sm(1 ))  (13)
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(14)

Inversion examples

Synthetic model data analysis
We tested the proposed method on five types of 

synthetic model data in this section. The first type is 
the 32 samples in the testing dataset. Figures 4(a) and 
4(b) are different complex synthetic models, where 
Figure 4(a) is processed by a smoothing operator. The 
second is single-trace layered models extracted from 
the position as indicated by the red lines in the models 
shown in Figures 4(a) and 4(b). The third is the complex 
undulating media shown in Figure 4(b). Figure 4(c) is 
the Marmousi model. The fourth is a single-trace layered 
model with relatively strong vertical velocity variation 
extracted from the position as indicated by the red line in 
the Marmousi model. The fi fth is 2D complex undulating 
media shown in Figure 4(d). The fi ve types of synthetic 
model data are tested with the same network parameter 
model. 

The CNN-LSTM fusion deep neural network adopts 
Scheme 1 in Table 2 to initialize the weights, which sets 
the negative slopes of rectifi ed units to zero in Kaiming 
normal initialization, that is, nonlinearity = relu. When 
establishing the mapping relationship between CMP 
gathers and RMS velocities, the network does not freeze 
the parameters, whereas when establishing the mapping 
relationship between CMP gathers and interval velocities, 
the neurons that retrieve RMS velocities are frozen. 
Throughout the training process, the adaptive moment 
estimation (Adam) algorithm (Kingma and Ba, 2014) 
is used to optimize the objective function represented 
by equation (11). In the process of establishing the two 
mapping relationships, the batch size is 30, and both 
initial learning rates are 1e-3. When the loss values no 
longer decrease, the training process is rolled back, and 
then the decay coefficient is determined from 0.1 or 
0.5 through trial and error experiment. The lower limit 
of both learning rates is 1e-6. The CNN-LSTM fusion 
network infers the RMS velocities and interval velocities 
of 32 samples in the testing dataset. Table 3 displays the 
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mean MSE losses of two types of velocity in the holistic 
receiving time and the time from 0 to receivers acquiring 
information from the fi nal refl ection interface. Although 
the velocity information in the last layer of underground 
media is not carried by the seismic waveform records, 
it is carried by both velocity labels. Furthermore, the 
neural network only learns the laws hidden in the data 
by establishing complex functions; thus, the inference 
capability of the network on the velocity of the last 
layer aff ects the performance of velocity inversion in the 
holistic receiving time. The numerical results show that 
the network's inference capability on the RMS velocity 
of the last layer is relatively weak, which reduces the 
inversion performance for RMS velocity in the holistic 
receiving time, but the interval velocity of the last layer 
inferred by the CNN-LSTM fusion network is more 

accurate, reducing the mean MSE loss of the interval 
velocity in the holistic receiving time. Furthermore, the 
mean MSE loss of RMS velocity (Mean MSE-RMS in 
Table 3) is found to be less than that of interval velocity 
(Mean MSE-Interval in Table 3). The reason is that 
the neurons used to learn RMS velocities are frozen 
when learning the mapping relationship between CMP 
gathers and interval velocities, allowing the network to 
continue to learn the interval velocities based on learning 
relatively accurate RMS velocities, which is consistent 
with the nature of the physics-based methods. Figure 5 
(green line) depicts the inversion outcomes  of Scheme 1. 
The experimental results show that the proposed CNN-
LSTM fusion network can moderately predict RMS and 
interval velocities.

Figure 4. (a), (b), (d) Complex synthetic models. (c) Marmousi model.  (e)–(g) Enlargements of the velocity models at the position 
of the red lines in Fig. 4(a), the distances are 0.34 km, 0.54 km, and 1.44 km, respectively. (h)–(j) Enlargements of the velocity 

models at the position of the red lines in Fig. 4(b), the distances are 0.14 km, 0.28 km, and 0.45 km, respectively. (k) Enlargement 
of the velocity model at the position of the red line in Fig. 4(c), the distance is 4.0 km, and the depth is from 1.5 km to 3.5 km.

We generate CMP gathers, RMS velocity and interval 
velocity labels using 2D models extended from single-
trace models (Figures 4(e)–4(g), 4(h)–4(j), and 4(k)) 

and a 2D undulating model (Figure 4(b)). We use a 
15 Hz Ricker wavelet to perform the forward process 
to obtain CMP gathers, with no phase rotation, while 
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all other parameters remain constant. Figure 6 (green 
line) depicts the CNN-LSTM fusion neural network’s 
predictions on the RMS velocities and interval velocities 
shown in Figures 4(e)–4(g). The velocities in Figures 
4(e)–4(g) increase with depth, and the thickness of each 
layer in the three depth-domain velocity models are 
different. However, after the interval velocities in the 
depth-domain are converted into RMS velocities and 
interval velocities in the time-domain, the difference 
between each type of velocity label of the three 
velocity models is relatively small, which leads to 
similar predictions from the network. Despite this, the 
CNN-LSTM fusion neural network can still provide 
moderately accurate predictions. Figure 7’s green lines  

are the inversion results of RMS velocities and interval 
velocities corresponding to Figures 4(h)–4(j). The neural 
network can predict the approximate trends of the RMS 
velocity and interval velocity, which are close to the true 
velocity values. We perform the forward process on the 
2D complex undulating media (Figure 4(b)) to obtain 
the CMP gather (Figure 8(a)) in the middle position, 
where the observation system matches that of “Dataset 
construction.” Thus, the velocity model at the middle 
position of Figure 4(b) (green line) is the 1D depth-
domain interval velocity label. Figure 8(b) shows the 
enlargement of the velocity model at the position of the 
green line in Figure 4(b), and the distance is 0.75 km, 
which is converted into the corresponding RMS velocity 

Figure 5. Inversion results of CNN-LSTM fusion deep neural network on 3 of the 32 testing samples. (a)–(c) Inversion results of 
RMS velocities. (d)–(f) Inversion results of corresponding interval velocities.

Table 2  Weight initialization schemes for CNN-LSTM fusion deep neural network 

Number Scheme
Parameter settings

CNN Encoder RMS Decoder Interval 
Decoder Iteration Mean 

MSE-RMS
Mean MSE-

Interval

1 Kaiming Normal 
Initialization mode = fan_in, nonlinearity = relu 49480 0.00231 0.01282

2 Kaiming Normal 
Initialization

mode = fan_in, 
nonlinearity = relu

mode = fan_in, 
nonlinearity = leaky_relu 78440 0.05065 0.03484

3 Kaiming Uniform 
Initialization

mode = fan_in, 
nonlinearity = relu

mode = fan_in, 
nonlinearity = leaky_relu 19720 0.05068 0.03655

4 Orthogonal 
Initialization                                       gain = 1 73480 0.00114 0.00427

5 Normal Distribution 
Initialization

5-11 Conv2d:std = 1e-2, 
others Conv2d:std = 1e-1 std = 1e-4 42400 0.05070 0.03717

6 Normal Distribution 
Initialization std = 1e-4 57880 0.02248 0.03644

* “mode = fan_in” represents the magnitude of the variance of the weights in the forward pass is preserved, “nonlinearity” denotes the 
nonlinear function, and “gain” stands for the optional scaling factor. Please see the “Pytorch Offi  cial Document” in the references for 

detailed instructions.
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Figure 6. Inversion results of CNN-LSTM fusion deep neural network on smoothed synthetic models. (a)–(c) Inversion results 
of RMS velocities corresponding to Figs. 4(e)–4(g). (d)–(f) Inversion results of time-domain interval velocities corresponding to 

Figs. 4(e)–4(g).

Figure 7. Inversion results of CNN-LSTM fusion deep neural network on non-smooth synthetic models. (a)–(c) Inversion results 
of RMS velocities corresponding to Figs. 4(h)–4(j). (d)–(f) Inversion results of time-domain interval velocities corresponding to 

Figs. 4(h)–4(j).

label and 1D time-domain interval velocity label. Figure 
8(c) (green line) depicts the prediction of RMS velocity, 
while Figure 8(d) (green line) depicts the prediction of 

interval velocity. The results of the experiments show 
that the CNN-LSTM fusion neural network can still 
provide a relatively accurate velocity trends for complex 
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Figure 8. Inversion results of CNN-LSTM fusion deep neural network on complex undulating media. (a) CMP gather. (b) 
Enlargement of the velocity model at the position of the green line in Fig. 4(b), the distance is 0.75 km. (c) Inversion results of 

RMS velocity. (d) Inversion results of interval velocity.
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Figure 10. Inversion results of CNN-LSTM fusion deep neural network on the velocity fi eld. (a) RMS velocity label of Fig. 4(d). 
(b) Interval velocity label of Fig. 4(d). (c) Inversion results of RMS velocity fi eld when the weights are initialized with Scheme 1. 
(d) Inversion results of interval velocity fi eld when the weights are initialized with Scheme 1. (e) Residual between Fig. 10(a) and 
Fig. 10(c), which is equal to Fig. 10(a) minus Fig. 10(c). (f) Residual between Fig. 10(b) and Fig. 10(d), which is equal to Fig. 10(b) 
minus Fig. 10(d). (g) Inversion results of RMS velocity fi eld when the weights are initialized with Scheme 4. (h) Inversion results 
of interval velocity fi eld when the weights are initialized with Scheme 4. (i) Residual between Fig. 10(a) and Fig. 10(g), which is 
equal to Fig. 10(a) minus Fig. 10(g). (j) Residual between Fig. 10(b) and Fig. 10(h), which is equal to Fig. 10(b) minus Fig. 10(h).

Figure 9. Inversion results of CNN-LSTM fusion deep neural network on the velocity model shown in Fig. 4(k). (a) Inversion 
results of RMS velocity. (b) Inversion results of time-domain interval velocity.

structures. Figure 9’s green lines depict the inversion 
results of RMS velocity and interval velocity, which 
correspond to Figure 4(k). Because both the RMS 
and interval velocities in the training dataset increase 
over time, the network does not learn how to deal with 
velocity reversals. The RMS velocity corresponding to 
Figure 4(k) roughly conforms to the law of increasing 
velocity with time; thus, the RMS velocity predicted by 
the neural network is relatively accurate, which is shown 
in Figure 9(a). Moreover, for interval velocity, the neural 
network can still provide a reasonably accurate velocity 
trend, except the position of velocity reversals, as shown 
in Figure 9(b). Although the proposed method uses CMP 
gathers to perform velocity analysis, it can still achieve 

good results even when there is horizontal undulation or 
relatively strong vertical velocity variation in velocity 
models, indicating that the CNN-LSTM fusion deep 
neural network has better generalization capability.

Figures 10(a) and 10(b) are the RMS velocity label 
and interval velocity label of the velocity model shown 
in Figure 4(d), respectively. All CMP gathers for the 
velocity model shown in Figure 4(d) are obtained 
using the method described in the section “Dataset 
construction.” We use a 15 Hz Ricker wavelet to perform 
the forward process to obtain CMP gathers, with no 
phase rotation; other parameters remain unchanged. 
Figures 10(c) and 10(d) show the RMS velocity field 
and interval velocity fi eld predicted by the CNN-LSTM 
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fusion neural network, respectively. Figure 10(e) is the 
residual between true RMS velocity fi eld (Figure 10(a)) 
and predicted RMS velocity fi eld (Figure 10(c)), and the 
residual value at each point does not exceed 0.3 km/s. 
Figure 10(f) is the residual between true interval velocity 
fi eld (Figure 10(b)) and predicted interval velocity fi eld 
(Figure 10(d)), and the average residual value of the 
interval velocity field is greater than that of the RMS 
velocity field. The CNN-LSTM fusion neural network 
predicts the horizontal and vertical variation trends of 
two types of velocity fairly accurately, but the RMS 
velocity field outperforms the interval velocity field. 
The prediction of interval velocity field can be used 
as the initial model of other high-resolution velocity 
model building methods (e.g., FWI), demonstrating 
the proposed method's effectiveness and strong 

generalization capability.

Field data test
In this section, the network parameter model used to 

test fi eld data is consistent with that for testing synthetic 
model data. Figure 11(a) shows a CMP gather from the 
land seismic data in a certain exploration area, and the 
CMP number is 290. We perform velocity analysis on 
the CMP gather in Figure 11(a) using Seismic Unix, and 
the result is shown in Figure 11(b). Following that, we 
use the manually picked stacking velocity as the RMS 
velocity label (red line in Figure 11(c)) and then use 
Seismic Unix to convert the RMS velocity label to the 
time-domain interval velocity label (red line in Figure 
11(d)). The green line in Figure 11(c) represents the 

Figure 11. Inversion results of CNN-LSTM fusion deep neural network on land seismic data. (a) Land seismic data’s CMP gather 
as the input of the CNN-LSTM fusion deep neural network. (b) Result obtained by performing velocity analysis on the CMP 
gather in Fig. 11(a). (c) Inversion results of RMS velocity. (d) Inversion results of interval velocity. (e) Result of NMO correction 
with manually picked stacking velocity. (f) Result of NMO correction with RMS velocity predicted by the network when the 
weights are initialized with Scheme 1. (g) Manually picked stacking velocity fi eld. (h) RMS velocity fi eld predicted by the network 
when the weights are initialized with Scheme 1. (i) RMS velocity fi eld predicted by the network when the weights are initialized 
with Scheme 4. (j) Stack section obtained by the velocity fi eld in Fig. 11(g). (k) Stack section obtained by the velocity fi eld in Fig. 
11(h).
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CNN-LSTM fusion network’s inversion result of RMS 
velocity, while the green line in Figure 11(d) represents 
the inversion result of interval velocity. The predictions 
for the two types of velocity are close to the targets. 
We employ the manually picked stacking velocity  
(red line in Figure 11(c)) and predicted RMS velocity 
(green line in Figure 11(c)) to perform normal moveout 
(NMO) correction, respectively. Figures 11(e) and 11(f) 
separately show the corresponding results. It can be 
seen that flattening the phase axis has nearly identical 
effects. Figures 11(g) and 11(h) depict the manually 
picked stacking velocity fi eld and the RMS velocity fi eld 
predicted by the CNN-LSTM fusion neural network, 
respectively, with CMP values ranging from 180 to 400. 
Figures 11(j) and 11(k) show stack sections produced by 
manually picked stacking velocity field and predicted 
RMS velocity field, respectively. Because the velocity 
features obtained by the two methods are relatively 
close, the stack section in Figure 11(k) is consistent 
with that in Figure 11(j). In Figures 11(j) and 11(k), the 
red arrows reveal that the quality of the stack section 
obtained by manually picked stacking velocity field 
is more prominent than that obtained by the predicted 
RMS velocity fi eld, while the green arrows indicate the 
opposite, indicating that the velocity model building 
method based on CNN-LSTM fusion neural network 
can effectively improve the lateral continuity of phase 
axis and quality of stack section. Thus, the test results 
on field data illustrate that the proposed CNN-LSTM 

fusion neural network has good ability to retrieve the 
RMS velocities and interval velocities and possesses 
promising generalization capability.

Ablation experiment

Performance comparison of CNN-LSTM fusion 
deep neural network with single neural network 
models

We compare the performance of the CNN-LSTM 
fusion network to that of single neural network models 
to show that the proposed CNN-LSTM fusion deep 
neural network can simultaneously exploit the respective 
advantages of CNN and LSTM in feature extraction. 
Figure 12 shows single neural network models with only 
CNN architecture (a) and only LSTM architecture (b). 
In Table 2, Scheme 1 is used to initialize the weights 
of the CNN-LSTM fusion network and two single 
neural network models, while equation (11) serves as 
the objective function. Additionally, they adopt the 
same training strategy and training parameter settings. 
The predictions of 32 samples in the testing dataset 
provided by the three architectures are shown in Table 
3. The numerical results indicate that the CNN-LSTM 
fusion network outperforms the single neural network 
models. The reason for this is that the CNN-LSTM 

Figure 12. Two single neural network models. (a) Single neural network model with only CNN architecture. (b) Single neural 
network model with only LSTM architecture.

Table 3 Predictions of CNN-LSTM fusion deep neural network and single neural network models

Architecture
Mean MSE-RMS Mean MSE-Interval

nt = 2048 nt = 0–fi nal refl ection 
interface nt = 2048 nt = 0–fi nal refl ection 

interface
CNN-LSTM 0.00231 0.00216 0.01282 0.01987

CNN 0.03284 0.01053 0.07888 0.05636
LSTM 0.05158 0.02063 0.13104 0.09255

                  * “nt = 2048” represents the holistic receiving time and “nt = 0–fi nal refl ection interface” denotes the time from 0 to
receivers acquire the information of fi nal refl ection interface.

CN
N 

En
co

de
r

Int
er

va
l D

ec
od

erCMP gathers

RMS velocity models 

Interval velocity models

Frozen

Active 

RM
S 

De
co

de
r

CMP gathers 

RMS velocity models 

Interval velocity models

LS
TM

-In
ter

va
l

 D
ec

od
er

Frozen

Active 

LS
TM

-R
MS

   
De

co
de

r

(a) (b)



511

Cao et al.

fusion network can fully extract features in both spatial 
and temporal dimensions from CMP data and fully 
learn the velocity information of subsurface structures, 
whereas a single architecture can only extract a onefold 
feature. As a result, the inversion performance of 
single neural network models is limited. Furthermore, 
numerical experiments show that for the CNN-LSTM 
fusion network, the RMS velocities inferred by the RMS 
Decoder are converted to interval velocities by the Dix 
formula (Dix, 1955), which injects errors in predicted 
RMS velocities into the interval velocities, resulting 
in the interval velocities obtained through conversion 
being far from the targets, whereas the interval velocities 
predicted by the Interval Decoder being closer. This 
illustrates the necessity of setting RMS Decoder and 
Interval Decoder simultaneously in the CNN-LSTM 
fusion network.

Importance of weight initialization
We investigate the effects of six different initial 

weight settings on the performance of the CNN-LSTM 
fusion deep neural network using Kaiming initialization, 
orthogonal initialization, and normal distribution 
initialization. Because the interfaces are provided by the 
Pytorch framework, the relevant parameter settings are 
shown in Table 2, and detailed parameter instructions can 
be found in the references “Pytorch Offi  cial Document.” 
All experiments in this paper decay the learning rate 
when the loss values no longer decrease, so the number 
of iterations is diff erent for each experiment.

The RMS velocities and interval velocities of 32 
testing samples are predicted by the final parameter 
model obtained from the network training. Table 2 
displays the mean MSE losses in the holistic receiving 
time. The numerical results show that Schemes 1 and 
4 can effectively converge loss curves, but orthogonal 
initialization requires more iterations, i.e.,  more 
computer resources. The predictions of synthetic 
model data and field data inferred by the network 
parameter model obtained from Scheme 4 show that, 
while  Scheme 4 can obtain better inversion results than 
Scheme 1 on 32 testing samples, as shown in Figure 
5 (blue line), the predictions obtained from Scheme 4 
deviate from the RMS velocity and interval velocity 
labels for the single-trace velocity models extracted 
from the complex structures as well as the Marmousi 
model, and the complex undulating media corresponding 
to Figure 4(b). This phenomenon illustrates that the 
network initialized by Scheme 4 is prone to over-fit 

the training dataset, which degrades the generalization 
capability, and the corresponding experimental results 
are shown in Figures 6–9 (blue line). The predictions 
of the RMS velocity field and interval velocity field 
obtained by Scheme 4 are shown in Figures 10(g) and 
10(h), respectively. At the position around 0–0.3 km and 
0.9–1.1 km, the predicted RMS velocities and interval 
velocities are seriously far from the true values. Scheme 
1 achieves greater lateral continuity of the RMS velocity 
field and interval velocity field than Scheme 4. Figure 
10(i) depicts the residual between the true RMS velocity 
fi eld (Figure 10(a)) and the RMS velocity fi eld obtained 
by Scheme 4 (Figure 10(g)). The residual value at each 
point is less than 1.5 km/s, which is signifi cantly higher 
than the result of Scheme 1. Figure 10(j) depicts the 
residual between the true interval velocity fi eld (Figure  
10(b)) and the interval velocity fi eld obtained by Scheme 
4 (Figure 10(h)). At the position around 0–0.3 km, there 
are residual values even above 2.4 km/s, which further 
indicates the superiority of Scheme 1 over Scheme 4.

The RMS velocity of field data (Figure 11(a)) 
predicted by the network parameter model obtained 
from Scheme 4 is revealed by the blue line in Figure 
11(c), the prediction of interval velocity is indicated by 
the blue line in Figure 11(d), and the prediction of RMS 
velocity fi eld with the CMP number from 180 to 400 is 
shown in Figure 11(i). The predictions of two types of 
velocity have signifi cant vibrations and are inconsistent 
with the true velocity trends at the position where the 
CMP number is 290; additionally, the prediction of the 
2D RMS velocity field deviates significantly from the 
manually picked stacking velocity fi eld, indicating that 
Scheme 1 has superior generalization capability on 
fi eld data than Scheme 4. Scheme 2, 3 and 5 cause the 
network to fall into local minima at various iterations 
during the training process, resulting in the objective 
function being unable to continue to converge and the 
quality of fi nal inversion results being inaccurate; mode 
collapse also appears in these schemes when inferring 
RMS velocities. In addition, both RMS velocities and 
interval velocities predicted by the network parameter 
model obtained from Scheme 6 suffer from mode 
collapse.

Scheme 1 is currently the most appropriate weight 
initialization strategy for the proposed CNN-LSTM 
fusion deep neural network, as it not only produces 
nontrivial inversion results on the 32 testing samples 
but can also be generalized to synthetic model data 
and field data. As a result, the initial weights are 
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critical to the neural network’s performance, as they 
not only determine whether the deep neural network 
can be trained successfully but also aff ect the objective 
function's convergence speed and inversion performance.

Impacts of different objective functions on 
CNN-LSTM fusion deep neural network 
performance

We also compare the impacts of objective functions 
corresponding to equations (11) and (13) on the 
performance of the CNN-LSTM fusion deep neural 
network. The two experiments use Scheme 1 in 
Table 2 to initialize weights, and the same training 
parameter settings are used in the training process. The 
experimental results show that using SmoothL1 loss 
as the optimization goal for the proposed CNN-LSTM 
network architecture is not appropriate. The reason is 
that the gradient dispersion occurs during the training 
process, resulting in the loss curve no longer going 
down in the later training stage when establishing the 
mapping relationship between CMP gathers and RMS 
velocities (Figure 13), while the neural network does Figure 13. SmoothL1 loss curve.
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Table 4 Comparison on the performance of CNN-LSTM fusion deep neural network with different objective functions
Objective 
function Iteration Mean 

MSE-RMS
Mean 

MSE-Interval
Mean 

SmoothL1-RMS
Mean 

SmoothL1-Interval
Equation (11) 49480 0.00231 0.01282 0.00115 0.00641
Equation (13) 58360 0.05068 0.03627 0.02534 0.01814

not converge to a decent solution at this stage and the 
network falls into local minimum when establishing the 
mapping relationship between CMP gathers and interval 
velocities. We use the network parameter models built 
with the two different objective functions to predict 
the RMS velocities and interval velocities of 32 testing 
samples separately, and the results in holistic receiving 
time are shown in Table 4. It can be seen that the MSE 
loss function with a freezing factor is better suited for 
the proposed CNN-LSTM fusion network to perform the 
velocity inversion task of subsurface media.

introducing a freezing factor. This training approach 
can optimize specific neurons based on the network’s 
learning task, allowing the training and fine-tuning 
processes to be synchronized. The proposed method not 
only produces notable predictions for the samples in the 
testing dataset, but it also produces promising inversion 
results on the complex structures, Marmousi model, and 
fi eld data, demonstrating the method’s eff ectiveness and 
strong generalization capability.

As the performance of neural networks is affected 
by diverse factors, it will be the next work to introduce 
more parameter tuning strategies into the proposed 
method to improve the accuracy of inversion.
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We propose a CNN-LSTM fusion deep neural 
network in this paper to perform end-to-end inversion 
of RMS velocity and interval velocity. This method 
overcomes the feature extraction limitations of the CNN 
and LSTM single neural network models and achieves 
better inversion accuracy than single neural network 
models. The CNN-LSTM fusion deep neural network’s 
predictions can be used as the starting point for high-
precision velocity model building methods like FWI. 
In the meantime, the proposed method significantly 
improves the efficiency of seismic data processing. 
Furthermore, the problem that deep neural networks 
are difficult to be trained successfully due to unstable 
gradient and easy to fall into local minimum is solved by 
jointly adopting Kaiming normal initialization with zero 
negative slopes of rectifi ed units and MSE loss function 
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