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Abstract: A convolution perfectly matched layer (CPML) can efficiently absorb boundary 
refl ection in numerical simulation. However, the CPML is suitable for the fi rst-order elastic 
wave equation and is diffi  cult to apply directly to the second-order elastic wave equation. In 
view of this, based on the fi rst-order CPML absorbing boundary condition, we propose a new 
CPML (NCPML) boundary which can be directly applied to the second-order wave equation. 
We first systematically extend the first-order CPML technique into second-order wave 
equations, neglecting the space-varying characteristics of the partial damping coeffi  cient in the 
complex-frequency domain, avoiding the generation of convolution in the time domain. We 
then transform the technique back to the time domain through the inverse Fourier transform. 
Numerical simulation indicates that the space-varying characteristics of the attenuation factor 
have little influence on the absorption effect and increase the memory at the same time. A 
number of numerical examples show that the NCPML proposed in this study is eff ective in 
simulating elastic wave propagation, and this algorithm is more efficient and requires less 
memory allocation than the conventional PML absorbing boundary.
Keywords: Convolutional perfectly matched layer; absorbing boundary conditions; second-
order elastic wave equation; numerical simulation

Introduction

Since the actual medium in the underground is 
unbounded, artifi cial boundaries have to be established 
by numerical simulation, resulting in that the problem 
of artificial boundary reflection will inevitably occur. 
To eliminate boundary refl ections in the computational 
domain, numerous absorbing boundary conditions 
(ABCs) have been developed (Clayton and Engquist, 
1977, Reynolds, 1978, Cerjan et al., 1985, Lian and 
Zhang, 2013).

Berenger (1994) proposed a new ABC based on the 

Maxwell equation: the PML absorption boundary. The 
classical PML is formulated from complex coordinate 
stretching (CCS) Chew and Weedon, 1994). Collino and 
Tsogka (2001) applied this boundary to the numerical 
simulation of the first-order elastic wave equation. 
However, CCS has a drawback in handling grazing 
and evanescent waves. Kuzuogulu and Mittra (1996) 
proposed a complex frequency shift (CFS-PML) that 
can attenuate grazing waves. The CFS-PML boundary 
condition requires the introduction of too many auxiliary 
variables, leading to expensive computation (Berenger, 
2002). Roden and Gedney (2000) proposed convolution 
PML (CPML) boundary conditions using recursive 
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methods. Komatitsch (2007) used this method to solve the 
first-order velocity–stress elastic wave equation. For the 
numerical simulation method of the second-order isotropic 
and anisotropic acoustic wave  equation, Drossaert and 
Giannopoulos (2007) proposed the Recursive Integral-
PM (RI-PML), which calculates integrals instead of 
convolution; Sun (2019) extended it to mesh-free finite 
difference scheme. At present, the PML absorption 
boundary has been widely applied in the numerical 
simulation of porous elastic media (Martin et al., 2008a), 
anisotropic media (Becache et al., 2003, Martin et al., 
2008b; Pasalic and McGarry, 2010), and viscoelastic media 
(Martin and Komatitsch, 2009).

In the past, this PML was mainly used for first-order 
systems, and there are few studies on PML for second-order 
systems. In order to apply the PML absorption boundary 
to the second-order elastic wave equation, Komatitsch and 
Trompt (2003) fi rst introduce the PML to the second-order 
elastic wave equation. Xing (2006) applied this method to 
the acoustic wave equation by converting a second-order 
equation into a fi rst-order equation. Although this method 
is eff ective, it requires more computational storage. Pinton 
et al. (2012) proposed a PML absorption boundary for the 
acoustic wave equation without splitting the wavefield. 
However, the method involves deconvolution. At present, 
the first- and second-order PMLs of the acoustic wave 
equation have been widely used in numerical simulation: 
The first-order PML has been studied, whereas research 
about the second-order PML is few.

Inspired by the first-order CPML equation, we use 
the iterative format instead of convolution to construct 
second-order new CPML (NCPML) boundary conditions. 
We first review the conventional second-order splitting 
PML (SPML) and CPML boundary elastic wave equation  
deduce the second-order NCPML boundary elastic wave 
equation, theoretically proving the validity of the method. 
Following that, we use homogeneous media to prove that 
the varying characteristics of the partial damping coeffi  cient 
have little eff ect on the absorption eff ect and require more 
memory. Then, we use a layer model to compare the SPML, 
CPML, and NCPML boundaries to show that NCPML has 
more advantages in improving the computation storage 
and computing the effi  ciency and absorption eff ect. Finally, 
we use a Marmousi-2 model to illustrate the stability of 
the NCPML absorption boundary to the complex medium 
model.

Second-order NCPML boundary

There are two conventional forms of the PML absorption 

boundary: splitting and unsplitting. The conventional 
SPML needs to split the wavefield, which increases 
the number of equations and the computational 
storage, and the absorption eff ect for grazing waves is 
less effi  cient. The unsplitting CPML not only fi xes the 
disadvantages of the conventional PML but also needs 
less memory and computes effi  ciently. Unfortunately, 
the conventional CPML boundary is formulated as a 
fi rst-order system in velocity and stress, which means 
that it cannot be directly applied to a second-order 
system in displacement. This paper combines the 
CPML’s absorption properties at grazing incidence 
and the idea of reducing memory by neglecting 
attenuation factor spatiality and proposes the NCPML 
boundary.

The displacement–stress elastic wave equation is as 
follows (Virieux, 1986):
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where σxx and σzz are normal stress, τxz presents shear 
stress, λ and μ are lame constants, ρ is the density 
of the medium, μx and μz represent the displacement 
wavefields in the horizontal and vertical directions, 
respectively, and fx, fz, and fxz are the source terms.

Eliminating the stress components in equation (1), 
the corresponding second-order elastic wave equation 
in homogeneous media (ignoring the source terms) is
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The frequency-domain form is (Yin et al., 2006)
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where and represents the frequency-domain 
wavefi eld.

The complex stretching variable of CPML absorbing 
boundaries (Roden and Gedney, 2000) in the x-axis is
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where 1i , dx(x) represents the damping profile 
in the traditional PML that attenuates the transmission 
wave, and ax(x), bx(x) represent the complex frequency 
shift and the grid compression parameter, respectively. 
In the computational domain, kx=1 and dx=0. The specifi c 
application parameters can be seen in Appendix B.

Substituting equation (4) into equation (3), the 
following equation is obtained:
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where vp and vs are the P- and S-wave velocities, 

respectively, with and .

Taking directly the inverse Fourier transform of the 
stretching variable in equation (5) will be too complex. 
Taking and as an example
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where F-1 represents the inverse Fourier transform and * 
is the convolution operator.

In order to avoid the generation of convolution terms 
in the time domain, the spatial variation properties of 
the damping coefficient 1/sx and 1/sz are ignored; then, 
equation (6) can be simplifi ed as
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Substituting equation (4) into equation (7), the 
following is obtained:
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Noting that the Fourier transform of δ(t) is 1 and the 
Fourier transform of e-atH(t) is 1/(a+iω), 

are denoted as the inverse Fourier transform of
1
x xs s
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and 1
x zs s
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where δ(t) denotes the Dirac delta and H(t) denotes the 
Heaviside distributions.

We denote
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(1) When dx / kx + ax ≠ dz / kz + az, then equation (9) will 
become
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The convolution term is computed at time step n, the 
time interval is ∆t, and we denote
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and
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Because of the exponential form of equation (16), 
equations (12) and (13) can be written in recursive form
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Substituting equation (17) into equation (11), we 
obtain
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and update and in  the  t ime domain 
according to equation (17).

Finally, substituting equation (18) into equation (2), 
the second-order elastic wave equation with the NCPML 
boundary is obtained
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(2) When dx / kx + ax = dz / kz + az, the second-order 
elastic wave equation with the NCPML ABC is
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Numerical examples

To analyze the absorption eff ect and the stability of the 
NCPML boundary, the outline of the analysis process is 
as follows.

(1) First, the space-varying characteristics of the 
attenuation factor influencing the absorption effect and 
storage memory are analyzed.

(2) The advantages of the NCPML over the SPML 
boundary in terms of absorption effect, efficiency, and 
memory occupation are proved by a layered model, and 
the stability of NCPML for a complex model is verifi ed 
by a Marmousi-2 model.

(3) Finally,  by comparing the computational 
efficiencies of NCPML, CPML, and SPML, the 
advantages of NCPML in computational efficiency are 
obvious.

Analysis of the spatial variation of the 
attenuation factor

The second-order NCPML boundary proposed in this 
paper ignores the spatial variation of the attenuation 
factor and neglects the second part of the following 
equation:

  
 2 2 22 2
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To test the effects of the spatial variation of the 
attenuation factor, we take a homogeneous medium 
model with a size of 2000 × 2000 m to test the CPML 
boundary (denoted as CPML) and the NCPML boundary 
(denoted as NCPML). Table 1 shows a statistical table 
of the memory allocation and computational efficiency 
of the two boundaries. It shows that the storage memory 
and time required by the NCPML boundary are less than 
those of the CPML boundary. Therefore, the NCPML 
absorption boundary proposed in this paper neglects the 
spatial variation of the damping coefficient, sacrificing 
some absorption eff ect, but requires less storage memory 
and improves the effi  ciency.

Table 1. Statistical table of computational CPU time and 
memory allocation (1 MiB = 1,048,576 bytes)

Method Computed time (s) Required storage 
(MiB)

CPML  92.274 2.74
NCPML  73.015 2.13

Figs. 1a and 1c show the horizontal components of 
CPML and NCPML at 530 ms, respectively, and Figs. 
1b and d shows the vertical components of CPML and 
NCPML at 530 ms, respectively. It can be seen from 
the fi gure that both boundaries have good absorption of 
the reflected waves, and there is no obvious reflection 
at the boundaries. In order to quantitatively analyze 
the absorption effect of the two absorbing boundaries, 
Figs. 2a and 3a show the comparison of the horizontal 
and vertical component values obtained by numerical 
simulation of the two PML boundaries at the dotted line 
(on the vertical line of x = 1000 m) in figure 1. Figs. 
2b and 3b show the comparison of diff erent absorption 
boundaries and theoretical values in the horizontal and 
vertical components. The theoretical value is calculated 
by adding the calculation domain; then, the calculated 
results are equal to the total absorbed at the boundary. 
We can see that the error of the horizontal component of 
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the wavefi eld of the CPML absorption boundary is 10-4 
and the error of the vertical component is 10-6, so the 

diff erence between the two boundaries can be ignored.

Figure 1. Wavefi eld snapshot at 530 ms under different absorption boundary conditions:
(a) CPML boundary (horizontal component), (b) CPML boundary (vertical component),

(c) NCPML boundary (horizontal component), and (d) NCPML boundary (vertical component).

Figure 3. Waveforms computed by different absorption 
boundaries at position (1000 m, 0 m) (horizontal component):
(a) Waveforms computed by different absorption boundaries 
at 530 ms and (b) amplitude deviation between theoretical 
value and that computed by different CPML boundary 
conditions at 530 ms.

Figure 2. Waveforms computed by different absorption 
boundaries at position (1000 m, 0 m) (horizontal component):
(a) Waveforms computed by different absorption boundaries 
at 530 ms and (b) amplitude deviation between theoretical 
value and that computed by different CPML boundary 
conditions at 530 ms.

Figure 4. Total energy by different absorption boundaries.
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In order to verify the stability of the NCPML 
absorption boundary. Figure 4 shows the total energy 
changes in the calculation area at different times. It 
can be seen that when the time is short, the absorption 
boundary does not play a role, so the energy of the three 
boundaries is the same. When the wave propagates to 
the boundary, it can be clearly seen that the energy of the 
SPML absorption boundary is stronger and the energy of 
the NCPML and CPML absorption boundaries is smaller. 
Figure. 5 verifi es the characteristics of the wavefi eld at 
a large angle when the seismic source is placed on the 
surface. It can also be seen that SPML has obvious large-
angle refl ection, and both NCPML and CPML have good 
absorption eff ects on large-angle incident waves, which 

correspond to the previously proven absorption eff ects of 
the three absorption boundaries.
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Layer model
Numerical simulation of a four-layer model is carried 

out to verify the appropriateness and stability of the 

NCPML boundary. The grid size is 200 × 200, the 
spatial sampling interval is 10 m, the PML boundary 
is a 40-layer width, and the time sampling interval is 

Figure 5. Wavefi eld snapshot at 800 ms under different absorption boundary conditions: (a) SPML boundary (horizontal 
component), (b) NCPML boundary (horizontal component), (c) CPML boundary (horizontal component), (d) SPML boundary 

(vertical component), (e) NCPML boundary (vertical component), and (f) CPML boundary (vertical component).
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0.8 ms. The source’s main frequency is a 25-Hz Ricker 
wavelet. The source is at coordinates (1000 m, 0 m). The 
geophone is arranged on the surface, and the velocity is 
shown in Figure 6.

Figs. 7(a)–(f) presents the horizontal and vertical 
components of the SPML, NCPML, and CPML 
boundaries, respectively, at a time of 550 ms. There 
is almost no reflection of the artificial boundary at 
the wavefield boundary after loading the SPML and 
NCPML absorbing boundaries. It is clear that the SPML, 
NCPML, and CPML boundaries have good absorption 
eff ects on the refl ected wave generated by the artifi cial 
boundary. Figure 6. Velocity of the layered model.
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Figure 7. Wavefi eld snapshot at 550 ms under different methods of the layer model: (a) SPML boundary (horizontal component), (b) 
NCPML boundary (horizontal component), (c) CPML boundary (horizontal component), (d) SPML boundary (vertical component),

(e) NCPML boundary (vertical component), and (f) CPML boundary (vertical component).

In order to quantitatively analyze the absorption 
eff ect of the absorbing boundary, Figs. 8a and 8b show 
the waveform curves of the 100th and 150th channels, 
respectively. Figure 9 shows the waveform part of Figure 

8; we can see that the amplitude of the reflected wave 
under NCPML is not as good as that under CPML but 
better than that under the SPML boundary.

Figs. 10a and 10b show the horizontal and vertical 
component amplitude deviations between the theoretical 
values and the boundary wavefield for channel 100, 
respectively. Compared with the CPML boundary, 
NCPML has some shortages, but it has higher accuracy 
and is closer to the theoretical value than the SPML 
boundary.

Figs. 11a and 12a show the comparison of the 
numerical solutions and theoretical values of the seismic 
records at geophone points (500 m, 0 m) simulated 
by the SPML, CPML, and NCPML boundaries, 
respectively. The theoretical values are calculated 
by extending the calculation area, and the results 

Figure 8. Horizontal component waveform of the layered 
model: (a) trace 10 and (b) trace 150 (the red line is the 
NCPML boundary, the green line is the NCPML boundary,  
the blue line is the CPML boundary, and the black line is the 
theory).

Figure 9. Comparison of seismic waveforms by different 
boundaries of the layered model at x = 1000 m (partial 
display):  (a) horizontal component and (b) vertical 
component.

Figure 10. Amplitude deviation between theoretical values 
and different PML boundaries: (a) horizontal component and 
(b) vertical component.
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are equivalent to the total absorbed. Generally, the 
calculated results of the three absorption boundaries 
are very close to the theoretical values. Fig. 11b shows 
a local enlargement of Fig. 11a (0.70–0.75 s), and Fig. 
12b shows a local enlargement of  Fig. 12a (0.1–0.25 s). 
The simulation results show that the CPML and NCPML 
boundaries basically coincide with the theoretical values, 
but the SPML absorption boundary has some errors, 
and the waveform amplitude is high. To quantitatively 
analyze their errors more intuitively, the SPML, 

Figure 11. Horizontal component seismic records of the 
layered model for displacements at (500 m, 0 m): (a)
Comparison of numerical solutions of seismic records, (b) 
numerical records of seismic records (partial display), and (c) 
different absorption boundaries with theoretical values.
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CPML, and NCPML wavefi elds are compared with the 
theoretical ones. As shown in Fig. 12c, the maximum 
error of the SPML simulations is 2.5×10-3, whereas that 
of CPML and NCPML is only 1.2×10-3. In Fig. 10c, 
the maximum error of the SPML simulations is 8×10-3,
whereas that of the CPML and NCPML simulations 
is only 4×10-3, which is about 50% of that of SPML. 
Therefore, the absorption eff ect of the NCPML boundary 
is better than that of the SPML boundary.

Figure 12. Vertical component seismic records of the layered 
model for displacements at (500 m, 0 m): Comparison of 
(a) numerical solutions of seismic records, (b) numerical 
records of seismic records (partial display), and (c) different 
absorption boundaries with theoretical values.

0.5
0

-0.5
-1

-1.5

(a)

0 100

100 150 200 250

200 300 400 500
t (ms)

t (ms)

600 700 800 900 1000

0 100 200 300 400 500
t (ms)

600 700 800 900 1000

Am
pl

0

-10

-20

(b)
Am

pl
x10-4

0
5

-5
-10

(c)

Am
pl

x10-4

CPML
NCPML
SPML
Theory

CPML
NCPML
SPML
Theory

CPML
NCPML
SPML

Marmousi-2 model
To further verify the suitability and stability of the 

NCPML boundary for the complex model, the complex 
Marmousi-2 model is used. As shown in Figure 13, the 
size of the model is 8000 m × 2000 m, the space step 
is 5 m, the main frequency is a 20-Hz Ricker wavelet, 
and the time interval is 0.4 ms. The excitation location 
of the source is sitting. The geophone is arranged on the 
surface, and the source is at the coordinates (4000 m, 0 
m).

Fig. 14a and 14b shows the horizontal and vertical 
components recorded by the second-order NCPML 
absorbing boundary ground single gun, respectively. We 
can see from the observation that there is no obvious 
false reflection wave in the seismic records obtained 
by two different absorption boundaries. In order to Figure 13. Velocity of the Marmousi-2 model.
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highlight the refl ection of the lower layer, an amplitude 
enhancement method is used to show it, which proves 
that the method is stable for the numerical simulation of 
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complex models.

Comparison of calculation effi ciencies
Compared with the second-order SPML absorbing 

boundary, the second-order NCPML absorbing boundary 
has the advantage of memory optimization; meanwhile, 
the computational efficiency can be greatly improved. 

Table 2 shows the memory and efficiency analysis of 
the different absorbing boundary algorithms on the 
same computer. The test models are the layered and 
Marmousi-2 models. In the testing process, I/O is not 
considered, and we only record the forward modeling 
time.

Figure 14. Seismic records for the Marmousi-2 model activated by one shot:
(a) horizontal component and (b) vertical component.

Table 2. Statistical table of computational CPU time and memory allocation
Method Layer model computed time (s) Marmousi-2 model computed time (s) Required storage
SPML 109.349 1503.774 20 arrays
CPML 95.529 1378.028 18 arrays

NCPML 79.944 1246.999 14 arrays

From the table above, the calculation speed of the 
second-order NCPML absorbing boundary deduced in 
this paper is faster than that of the second-order SPML 
boundary. When the model is small, the difference 
between them is not obvious. However, when the 
complexity of the model and the total computing time 
increase, the advantages of the NCPML absorbing 
boundary in terms of computing speed and memory 
can be obvious. In particular, when testing a three-
dimensional model, the CPML absorbing boundary 
needs 66 three-dimensional arrays, whereas the SPML 
absorbing boundary needs 36 three-dimensional arrays. 
NCPML occupies about 50% of the SPML memory. The 
advantages of the NCPML absorbing boundary in terms 
of computing efficiency and memory optimization will 
be more obvious.

Conclusions

In this paper, a second-order elastic wave equation 
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NCPML absorbing boundary is proposed. By ignoring 
the spatial variation of the damping coefficient in the 
complex-frequency domain, the generation of complex 
convolution in the time domain can be avoided, and the 
NCPML boundary is then transformed back to the time 
domain through the inverse Fourier transform. Finally, 
the second-order elastic wave equations based on the 
NCPML boundary were obtained and then applied to the 
second-order elastic wave numerical forward simulation. 
Numerical  s imulat ion shows that  the  NCPML 
boundary has good validity and stability. The following 
understandings are obtained through algorithm analysis 
and model test.

(1) First, the NCPML boundary elastic wave equation 
is systematically introduced. Through mathematical 
proof and layered model test, the NCPML, CPML, 
and SPML boundaries can efficiently absorb boundary 
reflection, and the NCPML absorption effect is better 
than that of SPML. Then, the stability of the proposed 
method is proved by the Marmousi-2 model.

(2) By analyzing the spatial variation of the damping 
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coeffi  cient, the NCPML deduced in this paper neglects 
the spatial variation of the damping coefficient, 
sacrificing some absorption effect but saving storage 
memory and improving the computation effi  ciency.

(3) The numerical simulation results show that the 
NCPML absorbing boundary has great advantages in 
terms of memory. For the same two-dimensional model, 
the memory usage of the NCPML boundary is 30% less 
than that of the SPML boundary. When the model is 
extended to three-dimensional, the memory and accuracy 
advantages are more obvious, with the NCPML memory 
nearly 50% of that of the SPML boundary.
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Appendix A: Conventional SPML 
boundary

Taking the x-axis as an example, the complex 
coordinate transformation is (Berenger, 1994)
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where 1i represents the damping coeffi  cient that 
attenuates the transmitted wave.

Substituting equation (A-1) into equation (3), the 
following is obtained:
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We can obtain the time-domain equation by inverse 
Fourier transform. However, direct inverse Fourier 
transform will introduce convolution to the time domain, 
so we usually split the wavefi eld, taking the x-direction 
as an example

1 2 3  ,xu u u u (A-3)

where and are the partial derivatives in the x- and 
z-directions and is the partial derivative in the xz-
direction. Thus, we can decompose equation (A-3) into
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By inverse Fourier transform of the equation, we can 
obtain the SPML equation in the time domain.
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where vp and vs represent the P- and S-wave velocities, 

respectively, with and .

Appendix B: Conventional CPML boundary

Diff erent from the conventional SPML boundary, the 
complex stretching variable of the CPML absorbing 
boundary in the x-axis is (Komatitsch, 2007)
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where 1i , dx represents the damping profile in 
the traditional PML that attenuates the transmission 
wave (Wang, 2003, Yang and Wang, 2013), and αx and 
kx represent the complex frequency shift and the grid 
compression parameter, respectively. In the PML region, 
dx ≥ 0, αx ≥ 0, and kx ≥ 1. In the computational domain, kx 

= 1, and dx = 0. Usually, the parameters in the x-axis are 
as follows (Li et al., 2010):
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with
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where x0 and d denote the starting position coordinates 
and thickness of the CPML boundary (here it is 1×10 -6)
(Festa and Nielsen, 2003) and n1 and n2 are the 
exponential factors of the CPML layer attenuation 
change and usually take the value that similarly controls 
the frequency shifting scale, which is usually n1  = 2, n2  
= 0, and n3  = 1 (Li et al., 2010, Zhang et al., 2010, Yuan 
and Liang, 2000, Katsibas and Antonopulos, 2004). The 
values of kz, dz, and αz are consistent with those of kx, dx, 
and αx.

The conventional CPML boundary is based on the 
first-order system. Substituting equation (B-1) into 
frequency-domain equation:Taking the inverse Fourier 
transform, we get   
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where * denotes the convolution. We fi nd
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Moreover, εx(t) is:
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where δ(t) and H(t) denote the Dirac delta and the 
Heaviside distributions, respectively. We fi nd
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where Ax and Bz are auxiliary variables given by
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Also, δx = dx(x) / kx(x), and βx = dx(x)/kx(x) + αx(x). 
Finally, we get the CPML equation
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where Cx, Dz, Ex, Fz, Gx, and Hz are similar to Ax and Bz. 
The equation can be written in second-order form
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where f1 and f2 are as follows:
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with ( )  ( )  1x xk x k x .
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