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Abstract: Seismic deconvolution plays an important role in the seismic characterization 
of thin-layer structures and seismic resolution enhancement. However, the trace-by-trace 
processing strategy is applied and ignores the spatial connection along seismic traces, which 
gives the deconvolved result strong ambiguity and poor spatial continuity. To alleviate this 
issue, we developed a structurally constrained deconvolution algorithm. The proposed method 
extracts the refl ection structure characterization from the raw seismic data and introduces it 
to the multichannel deconvolution algorithm as a spatial refl ection regularization. Benefi ting 
from the introduction of the reflection regularization, the proposed method enhances the 
stability and spatial continuity of conventional deconvolution methods. Synthetic and field 
data examples confi rm the correctness and feasibility of the proposed method.
Keywords: Deconvolution, spatial refl ection regularization, resolution, sparse-spike

Introduction

In reflection seismology, the recorded seismogram 
can be modeled as the convolution of a source wavelet 
with Earth reflectivity sequences (Lines and Ulrych, 
1977). The major objective of seismic deconvolution 
is to remove the wavelet filtering effects from the 
recorded seismogram to obtain the ideal reflectivity 
sequences, which may be used to quantify seismic 
impedance mismatches between different geological 
layers (Gholami and Sacchi, 2012; de Figueiredo et 
al., 2014; Li, 2014). However, due to the band-limited 

nature of seismic wavelet, seismic deconvolution is 
an ill-posed problem that has countless results. To 
obtain a reasonable deconvolved result, incorporating 
as much prior knowledge about reflectivity as possible 
in the deconvolution algorithm is necessary. For 
example, with the assumption that the reflectivity 
sequences obey Gaussian distribution and the source 
wavelet has minimum phase, the well-known spiking 
deconvolution is developed using Wiener filtering 
(Berkhout, 1977). However, when the seismic wavelet is 
a mixed phase, the conventional spiking deconvolution 
cannot compress the seismic wavelet into an impulse, 
and the deconvolution result has the remaining phase. 
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Therefore, Wiggins (1978) proposed the minimum entropy 
deconvolution (MED). Unlike spiking deconvolution, 
which seeks to whiten the refl ectivity spectrum, the MED 
seeks the smallest number of large spikes that are consistent 
with the seismic data. As discussed by Sacchi et al. (1994), 
the above methods are linear approaches to seismic 
deconvolution, and the ability of these methods to improve 
the resolution is restricted by the effective frequency 
band of the seismic data. In other words, obtaining high-
frequency components outside the eff ective frequency band 
using these deconvolution algorithms is diffi  cult.

To further improve the resolution of seismic data, the 
sparse-spike deconvolution (SSD) technology with L1 
norm constraint has been developed (Taylor et al., 1979; 
Wang et al., 2016). This method assumes that the Earth’s 
reflectivity can be represented as a superposition of 
spikes (Gholami and Sacchi, 2012; Zhang and Castagna, 
2011) and improves the resolution of seismic records on 
the basis of the sparse feature of reflection coefficients. 
Although SSD can improve the resolution of seismic data 
compared to linear deconvolution, its deconvolution results 
have inherent multiplicity. However, SSD is based on the 
1D forward model, and each seismic trace is processed 
independently in the SSD algorithm. This means the SSD 
algorithm does not take into account the spatial correlation 
that exists in the seismic data, which may result in the poor 
lateral continuity of the deconvolved results. To take full 
advantage of the inherent spatial continuity of the seismic 
traces, some scholars have proposed many deconvolution 
methods by using multichannel inversion scheme (Zhang et 
al., 2013; Gholami and Sacchi, 2013; Kazemi and Sacchi, 
2014; Wang and Wang, 2017; Ma et al., 2017; Du et al., 
2018; Ma et al., 2020a,b,c). Among them, Gholami and 
Sacchi (2013) used multichannel refl ectivity inversion with 
total variation regularization, which can obtain relatively 
good results when the underground structure is simple 
(Gholami and Sacchi, 2012). Du et al. (2018) proposed a 
dip-constrained multichannel deconvolution algorithm, 
which introduces seismic dip information into the 
multichannel deconvolution algorithm for situations where 
seismic dips change greatly. However, the actual seismic 
structure cannot be characterized simply by the seismic 
dips. To better exert the spatial constraint effect on the 
deconvolution result, we propose structurally constrained 
deconvolution (SCD) using spatial refl ection regularization. 
Different from total variation regularization and dip 
regularization methods, this method uses t-x prediction-
error filter (PEF), which was introduced by Claerbout 
(1992), to characterize the continuity and spatial structure 

of seismic signals. The t-x PEF is applied to construct 
the structural regularization term for accounting for 
the spatial connection between seismic traces. The 
effectiveness of this approach is demonstrated by 
using both synthetic data and fi eld examples.

The structure of this paper is as follows: First, 
we briefly review the principle of SSD. Then, we 
construct a spatial refl ection regularization by using 
t-x PEF. Next, we incorporate the spatial reflection 
regularization into the deconvolution algorithm and 
develop the SCD algorithm. After that, we apply 
synthetic and fi eld data examples to demonstrate the 
effectiveness of the proposed method. Finally, we 
draw some conclusions.

Theory and method

Sparse-spike deconvolution
On the basis of the 1D forward model, the seismic 

data can be modeled by convolving the reflectivity 
series with a source wavelet (Yilmaz, 2001) 

* ,d t w t r t  (1)

where the notation * denotes the convolution, d(t) is 
the seismogram, w(t) is the band-limited wavelet, and   
r(t) is the reflectivity sequences. The matrix-vector 
form of equation (1) can be expressed as

,d Wr  (2)

where vectors d and r are the discrete representations 
of the seismogram and reflectivity, respectively; 
and the matrix W is a square Toeplitz matrix that 
corresponds to the source wavelet w. An illustration 
of the 1D convolutional model is shown in Figure 1.

 

Fig. 1. Illustration of the 1D convolutional model. The 
algebraic notations d, W, and r are the synthetic seismic 

trace, the Ricker wavelet matrix, and the refl ectivity 
sequences, respectively.

d rW
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With the assumption that the reflectivity is a sparse 
sequence of spikes, seismic deconvolution is, therefore,  
about solving a sparse recovery problem. Many SSD 
algorithms are developed by imposing sparseness 
regularization on the reconstructed reflectivity 
sequences. In this paper, we use the L1 norm to constrain 
the reflectivity and set up the following objective 
function (Taylor et al., 1979):

  
2

2 1

1( ) ,
2

r Wr d r  (3)

where λ(0,∞) is a tradeoff  parameter that can be chosen 
by the cross-validation criterion.

We choose the alternating direction method of 
multipliers (ADMM) to solve this L1-regularized 
problem. The approach of the ADMM formula is to 
decouple the cost function into a quadratic term and  
L1 norm term, which can be expressed as (Boyd et al., 
2011)

  
,

min ( ) ( ) ,f g   s.t.  
r z

r z r z 0  (4)

where z is an auxiliary variable, 
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1( )g z z . We then form the augmented Lagrangian
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where u is the Lagrange multiplier, and ρ is a penalty 
parameter.

The unscaled-form ADMM consists of the iterations 
(Boyd et al., 2011)

   
1 1

1 1 1

1 1 1

min ( , , ) ( ) ( )

min ( , , ) ( , ) ,

( )

k k k T T k k

k k k k k

k k k k

L

L S                       

                                                    

r

z

r r z u W W I W d z u

z r z u r u

u u r z

(6)

where k is the index of iteration. The r-update step is 
quadratic, and its solution is simply obtained by setting 
its derivative with respect to r equals zero. The z-update 
step can be solved using a soft-thresholding algorithm 
with the operator

  ), , ,( ) ( {| | 0}S sgn maxr r r  (7)

where sgn(⁎) is a sign function and γ denotes the 
threshold value. The u-update can be calculated in a 
straightforward manner.

The stopping criterion for the ADMM algorithm is

   
2

2 2

( ),
max ,

k+1 k

k+1 k
k N

r r

r r
 (8)

where ε > 0 is a given tolerance, and N is the maximum 
number of iterations.

Constructing a spatial refl ection constraint
SSD is based on the 1D convolution model [equation 

(2)], and each seismic trace is processed independently. 
Thus, the deconvolved results may show poor spatial 
continuity when the input seismic data are contaminated 
by seismic noise. To address this issue, we extend the 
1D forward model to a multichannel forward system 
and then use the spatial constraint to ensure the lateral 
continuity of deconvolved results.

When considering a 2D seismic profile, we can 
generalize the 1D convolution model [equation (2)] to a 
multichannel system (Du et al., 2018)

   
1 1 1

2 2 2 ,

M M M

s mG

d W 0 0 0 r
d 0 W 0 0 r

0 0 0
d 0 0 0 W r

 (9)

where s and m are the concatenated vector of  2D 
seismic data and reflectivity model, respectively; and 
G is a block diagonal matrix with W as its element. 
An example of a multichannel convolution model for 
generating four seismic traces simultaneously is shown 
in Figure 2.

 
Fig. 2. Multichannel forward system for generating four 

seismic traces simultaneously. The algebraic notations s, G, 
and m are the concatenated seismic data, the block Ricker 

wavelet matrix, and the concatenated refl ectivity model, 
respectively.

To protect the lateral continuity of the deconvolved 

s mG
W

W

W

W
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results, we should extract the spatial coherency 
information in the seismic data. As discussed by 
Claerbout (1992), t-x PEF is a useful tool to account 
for the spatial connection between seismic traces 
(Fomel, 2002). In 2D cases, the PEF with 20 prediction 
coefficients can be defined as (Abma and Claerbout, 
1995; Ma et al., 2020c)

   
2, 2 2, 1 2,1 2,2

1, 2 1, 1 1,1 1,2

0, 2 0, 1 0,1 0,2

1, 2 1, 1 1,1 1,2

2, 2 2, 1 2,1 2,2

0
0
1 ,

0
0

h h h h
h h h h
h h h h
h h h h
h h h h

 (10)

where the vertical and horizontal axes are the time and 
space axes, respectively. The output position is at the 
center of the fi lters (marked by‒1).

T‒x PEF can be calculated by minimizing the 
following functional (Liu et al., 2015):

   2
2 2

, , ,
2, 0 2 2

( ) ( , ) ( , ) ,i j i j i j
j j i

h d t x h d t x  (11)

where di,j(t,x) represents the translation of the raw 
seismic data d(t,x) in the time and space directions with 
time shift i and space shift j. This problem [equation 
(11)] is quadratic, and we can solve it using a conjugate 
gradient algorithm.

After obtaining t-x PEF, we can estimate the prediction 
errors by the following 2D convolution (Ma et al., 
2020c): 

,( ,  ) * ( ,  ),   , 2,  1,  0,  1,  2,i je t x h m t x i j  (12)

where e(t,x) is the prediction error at each position, 
and m(t,x) is the required retrieved model parameter 
(e.g., the reflectivity model). If the raw seismic data 
d(t,x) and the retrieved model m(t,x) have a similar 
seismic reflection structure, then the prediction errors 
e(t,x) should be small. In contrast, if they are dissimilar, 
then the prediction errors are bigger. This means t − 
x PEF quantitatively describes the reflection structure 
diff erences between two seismic data.

Equation (12) is a 2D convolution problem that is 
diffi  cult to solve. According to Claerbout (1998), we can 
employ the helix transform to transform it into 1D space, 
which is expressed as

  
1 1 1* ,   or  ,d d de h m e Hm  (13)

where H is a convolution matrix constructed by PEF. 

Generally, the low-frequency seismic data d(t,x) and 
the required reflectivity model are inherently different, 
which may reduce the accuracy of the spatial refl ection 
constraint. To improve its reliability, we construct the 
spatial refl ection constraint by applying a low-pass fi lter 
to the retrieved refl ectivity sequences

  2

2( ) ,m HLm  (14)

where L is a low-pass fi lter operator. The selection of the 
low-pass fi lter operator needs to be estimated based on 
the dominant frequency band of the fi eld data. Generally, 
the highest frequency of the dominant frequency band 
can be expanded by two times, which is the highest 
frequency of the low-pass fi lter.

Multichannel deconvolution with a spatial 
refl ection constraint

To constrain the spatial continuity of the inverted 
results, we incorporate the spatial reflection constraint 
term [equation (14)] into the framework of the 
multichannel inversion to establish the following 
objective function:

   
2 2

2 1 2

1( ) ,
2 2

x
zm = Gm - s + m + HLm  (15)

where λx is the regularization parameter that controls 
the relative strength of the vertical constraint, and λx is 
the regularization parameter that controls the relative 
strength of the spatial refl ection constraint item.

We adopt the ADMM algorithm to minimize the 
above objective function (equation (15)). With the 
introduction of an auxiliary variable z, equation (15)  can 
be converted to the following minimization problem:

   
2 2
2 1 2
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2 2
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(16)

The augmented Lagrangian formula  of  equation (16) 
is then written as
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2 2
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2s 2
2

2
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(17)

where the vector y is the Lagrangian multiplier, and μ is 
the regularization parameter.

Equation (17) can be minimized by decomposing it 
into the following subproblems:
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or
 

  
11

1 1

1 1 1

( ) ( ) ( )

( , ) .

k T T T k k
x

k k k z

k k k k

S                                                    

                                                       

m G G HL HL I G s z y

z m y

y y m z

(19)

The proposed deconvolution algorithm includes a 
spatial refl ection constraint; thus, we refer to it as SCD 
algorithm.

In this algorithm, the regularization parameters λz, 
λx, and have a greater impact on the deconvolution 
effect and are not easy to select. Therefore, we give 
the empirical selection range of the regularization 
parameters here. The regularization parameter λz 

generally accepts a value of 0.01–1. When the signal-to-
noise ratio is high, the value λz can be small to improve 
the vertical resolution of the deconvolution result; when 
the signal-to-noise ratio is low, the value of should be 
large to suppress the amplifi cation of noise. The value λx 

generally changes with the value λz, and the initial value 
of λx can generally be set to λz. If the lateral continuity 

of the deconvolution result at this time is poor, then the 
value λx can be increased between 10 and 100 times. If 
the deconvolution result at this time is already good, 
then the value λx can be adjusted in the same order of 
magnitude. The selection strategy of the regularization 
parameter is similar to the parameter λx, and both of 
them treat λz as a reference.

Example

Synthetic experiments
In  th is  sec t ion,  we inves t igate  the  super ior 

performance of the proposed SCD algorithm compared 
to that of the SSD approach. In the first experiment, 
simple synthetic data containing fl at and dip events are 
used and shown in Figure 3(a). Figure 3(b) presents 
noisy seismic data with 40% Gaussian noise. We use 
both the SCD and SSD methods to process the noisy 
data, and their corresponding results are shown in 
Figures 3(c) and 3(d), respectively. As demonstrated in 
Figure 3(c), the result obtained by the SSD approach 
is noisy and laterally discontinuous. In contrast, the 
proposed SCD method provides a reflectivity profile 
with improved noise reduction and lateral continuity.

Fig. 3. Simple deconvolution test. (a) The synthetic data containing fl at and dip events, (b) the noisy seismic data with 40% 
Gaussian noise, (c) the result obtained by the SSD approach, and (d) the result obtained by the SCD approach.
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To further demonstrate the superiority of the SCD 
algorithm compared to the SSD method, we apply 
relatively complex synthetic data in the second test. 
Figure 4a shows the refl ectivity model used to generate 
the synthetic seismic data. In this experiment, we 
choose a 30 Hz Ricker wavelet as the source wavelet. 
Convolving this source wavelet with the above 
reflectivity model, we obtain the noise-free synthetic 
data (Figure 4b). Figure 4c displays the noisy seismic 
data with 30% random noise, which is used to conduct 
the deconvolution tests.

To enhance the resolution of the raw data, we use 
both the SCD and SSD methods to process the noisy 

data. In the SSD algorithm, we choose the regularization 
parameter λz =0.04 by trial and error. The corresponding 
deconvolution result is displayed in Figure 5a. In the 
SCD method, we fi x the parameter λz =0.04 and select a 
lateral regularization parameter λx =1 by trial and error. 
The reconstructed reflectivity is shown in Figure 5b. 
As shown in Figure 5, both methods evidently improve 
the seismic resolution of raw data. However, compared 
with the SSD result, the SCD result has better spatial 
continuity and higher S/N ratio, which indicates the 
effectiveness and superiority of the proposed SCD 
method in suppressing random noise and preserving the 
spatial continuity. 

Fig. 4. Forward modeling for generating the synthetic data. (a) The refl ectivity model, 
(b) the noise-free synthetic data, (c) the noisy data with 30% Gaussian noise.

We also use the average correlation coeffi  cient (ACC) 
to quantitatively measure the deconvolution accuracy of 
both methods. The ACC is defi ned as

Fig. 5. Deconvolution results processed by using (a) the SSD algorithm and (b) the SCD algorithm.
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where M is the trace number, and xi and yi are the 
referenced and deconvolved seismic traces, respectively. 
The ACC between the SSD result and the ideal data 
is 0.74, and the ACC between the SCD result and the 
reference reaches 0.83, which further indicates that 
the proposed method has better accuracy than the SSD 
algorithm.

Figure 6 shows the amplitude spectra of the original 
data (red), that of the SSD result (blue), and the SCD 
result (green). Both algorithms broaden the bandwidth 
of the raw data, and the frequency content of the 
deconvolution data is analogous. The small difference 
between the SSD and SCD may result from the 
suppression of seismic noise.

Fig. 6. Amplitude spectra of the original data (red), that of the 
SSD result (blue), and that of the SCD result (green).

Real data tests
To demonstrate the practicability of the proposed 

SCD algorithm in fi eld data, we utilize the seismic data 
shown in Figure 7 to conduct the deconvolution test. To 
enhance the resolution of raw seismic data, we process 
the seismic section by performing the following four 
steps: First, we estimate a zero-phase seismic wavelet 

by using spectral simulation technology (Lines and 
Ulrych, 1977). Then, we calculate the t − x PEF from the 
raw data, which are the required inputs to constrain the 
lateral continuity.

Next, we fi nd that the dominant bandwidth of the raw 
data is approximately 5–60 Hz, and we design a 1–5–
100–120 Hz band-pass fi lter to construct the operator L 
in the cost function of the SCD algorithm. Lastly, we use 
both SSD and SCD algorithms to process the raw data.

In the SSD algorithm, the raw data are processed 
trace-by-trace, and the recovered reflectivity result is 
shown in Figure 8. The deconvolved section reveals an 
evident improvement in the vertical resolution but suff ers 
from a lack of lateral continuity (see arrows). In the SCD 
algorithm, we take the spatial correlation of seismic 
traces into consideration, and the inverted result is shown 
in Figure 9. By comparing these two reconstructed 
refl ectivity profi les, we fi nd that both algorithms have a 
similar ability in improving seismic resolution, but the 
result of the proposed SCD method exhibits improved 
lateral continuity (see the seismic events marked by 
arrows). Figure 10 shows the amplitude spectra of the 
raw data (red), that of the SSD result (blue), and that 

Fig. 7. Field data before seismic deconvolution. Fig. 9. Deconvolution result using the SCD algorithm.

Fig. 8. Deconvolution result using the SSD algorithm.
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of the SCD result (green). From the amplitude spectra, 
we observe that both methods evidently extend the 
bandwidth of the raw data, and a small diff erence exists 
between the spectra of the SSD and that of the SCD.

Fig. 10. Amplitude spectra of the fi eld data (red), that of the 
SSD result (blue), and that of the SCD result (green).

Conclusions

We proposed a SCD method by introducing spatial 
reflection regularization into the deconvolution 
algorithm. t-x PEF is the key component in constructing 
the spatial reflection constraint. In the cost function of 
the algorithm, we utilize not only the sparse refl ectivity 
regularization in the vertical direction, but also the 
continuity constraint in the spatial direction. This three-
term cost function is then effi  ciently solved by ADMM. 
Benefi ting from the introduction of spatial constraint, the 
proposed SCD approach can provide a deconvolution 
result with high resolution and improved spatial 
continuity. The synthetic and fi eld data tests demonstrate 
that the proposed SCD method can eff ectively enhance 
seismic vertical resolution without losing spatial 
continuity.
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