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Abstract: Digital core models reconstructed using X-ray tomography (X-CT) enable the 
quantitative characterization of the pore structure in three dimensions (3D) and the numerical 
simulation of petrophysics. When the X-CT images accurately reflect the micro structures of 
core samples, the greyscale threshold in the image segmentation determines the accuracy of 
digital cores and the simulated petrophysical properties. Therefore, it is vital to investigate the 
comparison parameter for determining the key greyscale threshold and the criterion to describe 
the accuracy of the segmentation. Representative coquina digital core models from X-CT are 
used in this work to study the impact of grayscale threshold on the porosity, pore percolation, 
connectivity and electrical resistivity of the pore scale model and these simulations are calculated 
by Minkowski functions, component labeling and fi nite element method, respectively, to quantify 
the pore structure and simulate electrical resistivity. Results showed that the simulated physical 
properties of the digital cores, varied with the gradual increase of the greyscale threshold. Among 
the four parameters related to the threshold, the porosity was most sensitive and chose as the 
comparison parameter to judge the accuracy of the greyscale threshold. The variations of the 
threshold change the micro pore structures, and then the electrical resistivity. When the porosity 
of the digital core model is close to the experimental porosity, the simulated porosity exponent 
matches the experimental porosity exponents well. The good agreement proved that the porosity is 
the critical comparison parameter to describe the accuracy of image segmentation. The criterion is 
that the porosity of the digital core after segmentation should be close to the experimental porosity.
Keyword: Porous media, X-CT, image segmentation, digital core, electrical resistivity simulation

Introduction

Digital core models distinguish grains, pores, 

and fluids in pore spaces, and are used as a basis 
for the analysis and simulation of the hydraulic and 
petrophysical properties of porous media (Iassonov et al., 
2009; Blunt et al., 2013). X-ray computed tomography 
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low-contrast reservoir and gas hydrate sediments, on 
the basis of which new reservoir evaluation models 
are proposed. Wu et al. (2020) reconstruct digital core 
models on the basis of SEM images to investigate the 
eff ects of pore types, mineral types, and fl uid types on 
the electrical resistivity and elastic properties of shale 
reservoirs. On the basis of X-CT images, the contact 
angle representing wettability (Blunt et al., 2013) and 
the surface area of the interface (Wildenschild and 
Sheppard, 2013) between diff erent fl uid phases have 
also been determined.

Iassonov et al. (2009) point out that the develop-
ment of image segmentation technologies is lagging 
behind the improvement of X-CT technology in 
the imaging of porous media and then present a 
review of key image segmentation methods. Many 
researchers have realized that pore structure affects 
the petrophysical properties of unconventional 
reservoirs, such as carbonate, tight sandstone, shale, 
and gas hydrate (Blunt et al., 2013; Corbett et al., 
2017; Liu et al., 2017; Wang, 2018; Yan et al., 2018b; 
Dong et al., 2019; Wu et al., 2020). On the premise of 
the X-CT resolution being suitable for characterizing 
microstructures, the grayscale threshold affects 
the pore structure and physical properties of 
reconstructed pore scale models by segmented X-CT 
images. To choose a reasonable grayscale threshold in 
image segmentation and thereby reach an acceptable 
digital core model for pore structure characterization 
and physical simulation, the current study extracted 
two representative volume (REV) samples with a size 
of 600 and a super REV sample with a size of 800 
from the X-CT images of a coquina sample (Liu et 
al., 2009; Vik et al., 2013; Corbett et al., 2017). The 
effects of the grayscale threshold on the porosity, 
pore percolation, connectivity, and electrical current 
flow were investigated accordingly. Porosity and 
pore connectivity were calculated by Minkowski 
functions (Vogel and Roth, 2001; Vogel et al., 2010). 
The component labeling algorithm (Hoshen and 
Kopelman, 1976) was used to judge the percolation 
of the REV samples. The FEM (Garboczi, 1998) was 
adopted to calculate electrical resistivity. Archie’s 
law (Archie, 1942) was considered in defining the 
porosity exponent. According to the relationships 
of these parameters with the grayscale thresholds, 
the parameter that was most sensitive to the image 
segmentation threshold was determined. The 
parameter was then taken for comparison to segment 

(X-CT) is a nondestructive technology that yields high-
resolution images of the matrices, pore spaces, and fluid 
distribution within porous materials in three dimensions 
(3D). X-CT images measure the attenuation of X-rays after 
passing through specimens. The intensity of attenuation 
is quantifi ed by grayscale data and relates to composition, 
density, and incident X-ray energy. On the basis of X-CT 
images, digital core models reconstructed in 3D and then 
further numerically simulated in terms of their hydraulic 
and petrophysical properties have been widely applied 
to petroleum exploration and soil and subsurface water 
fl ow investigation. Arns (2002) utilizes X-CT to scan four 
Fontainebleau sandstones with porosities of 8%, 13%, 15%, 
and 22% and then calculates the electrical and acoustic 
properties with brine water saturation equal to 100% by 
using the fi nite element method (FEM) (Arns et al., 2002; 
Knackstedt et al., 2007). Knackstedt et al. (2007) apply the 
pore morphology method introduced by Hilpert and Miller 
(2001) to simulate the fl uid distribution during drainage and 
then calculate the electrical resistivity by using the FEM. 
Liu et al. (2009) consider a water film in calculating the 
resistivity of Fontainebleau sandstones. Arns et al. (2003) 
and Arns et al. (2004) investigate the permeability of pore 
scale models on the basis of the lattice Boltzmann method 
(Pan et al., 2004). Corbett et al. (2017) build carbonate 
pore scale models on the basis of X-CT images and 
interpret a positive correlation between the experimental 
porosity exponent and the permeability of the carbonate 
samples according to the quantitative characterization of 
the microscopic pore structure of the pore scale models. 
With the exploration and exploitation of tight sandstones, 
carbonates, shale, and gas hydrate sediments, pore structure 
and pore type gradually and obviously aff ect petrophysical 
properties (Blunt et al., 2013; Corbett et al., 2017; Liu et 
al., 2017; Yan et al., 2018a; Dong et al., 2019; Yan et al., 
2019; Dong et al., 2020; Wu et al., 2020). X-CT imaging 
and digital core models also play important roles in 
investigating the micropore structures of unconventional 
reservoirs. Liu et al. (2017 and 2021) combine X-CT 
and scanning electronic microscopy (SEM) images to 
reconstruct tight sandstone digital core models, characterize 
the nm- to cm-scale pore structure of the Yanchang 
Formation in the Ordos Basin in China, and investigate the 
eff ects of minerals on electrical resistivity. Wang (2018 and 
2020) investigates the eff ects of pore types and pore clusters 
on electrical resistivity and permeability and proposes a 
new electrical model on the basis of pore structure (Wang 
and Zhang, 2019). Yan et al. (2018b) and Dong et al. (2019 
and 2020) respectively study the electrical resistivity of a 
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super REV X-CT images of coquina and then reconstruct 
a binary pore scale model. The comparison of the 
simulated porosity exponent of the segmented coquina 
model with the experimental porosity exponent validated 
the feasibility of taking the parameter most sensitive to 
the grayscale threshold as a comparison parameter for 
image segmentation.

Materials and methodology

1. Coquina sample
The samples in this investigation are coquina samples 

from pre-salt carbonate reservoirs that are mainly of 
lacustrine origin; they are defined as concentrations of 
shells or shelly fragments deposited from the actions of 
some agent of transport (Câmara et al. 2014; Corbett et 
al. 2017). In this investigation, the coquina samples were 
from the outcrops of the Morro do Chaves Formation 
in the Sergipe–Alagoas Basin in Brazil. Core plugs 
were drilled from a block in the lab and then cleaned 
and dried to calculate the porosity. Thereafter, the 
laboratory measured porosities from the weight volume 
measurement, Hassler measurement with a confining 
pressure of 1, 000psi, and microscopy analysis, are 
24.0%, 19.5%, and 22.0%, respectively (in Figure 1a).

The core plugs were saturated in brine of 50,000 ppm 
NaCl for fi ve days at ambient temperature to reach the 
saturation equilibrium. Afterward, the core plugs were 
set in a core holder with a confining pressure of 1,000 
psi in ambient temperature to measure the electrical 
resistivity. The resistivity was recorded when no obvious 
vibration occurred in 1–2 h. This resistivity was defi ned 
as the resistivity of the core plugs fully saturated by 
brine and was denoted as R0. The resistivity of brine, Rw, 
and the length and cross-sectional area of each core plug 
were measured. Then, the formation factor, FF, and the 
porosity exponent, m, were calculated using Archie’s 
first equation in Equation (1) (Archie, 1942). For each 
core plug, the electrical resistivity was measured twice, 
and the porosity exponents were equal to 3.0 and 2.78 
(Figure 1b).

w 0

0 w

1
m

RFF
R

,                         (1)

where FF is the formation factor representing the ratio 
of the resistivity of the porous media fully saturated 
by brine, R0, to the resistivity of brine, Rw; σ0 is the 
conductivity of the porous media with brine water in 
the pore space; σw is the conductivity of brine; ϕ is the 
porosity in fraction; and m is the porosity exponent.

X-CT imaging enables the characterization of the 
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Fig. 1.  Porosities and porosity exponents of coquina carbonates measured in the laboratory.

inner pores and mineral structures of core samples in 3D 
without destroying the samples. Therefore, the Skyscan 
1173 high energy equipment was used to acquire the 
X-CT data, which included images measuring 1,368 × 
1,368 and having a pixel size of 19.28 μm (Figure 2a) 
(Corbett et al., 2017). According to REV analysis (Liu 
et al., 2009), the size of a representative core sample is 
equal to 600 voxels (Wang, 2015; Corbett et al., 2017). 
In the current work, the core samples measuring 800 
voxels were referred to as super REV samples (Figure 
2b). The core samples measuring 600 voxels were called 
REV1 and REV2 (Figures 2c and 2d, respectively) and 

were used to investigate the effects of the grayscale 
threshold on the porosity, pore percolation, pore 
connectivity, and porosity exponent of the segmented 
pore scale models. The super REV samples were used 
to verify the image segmentation result on the basis of 
the eff ects of the grayscale threshold in segmentation on 
pore space and electrical resistivity.

2. Percolation of pore space
Microscopic pore structures affect the macroscopic 

properties of porous media (Blunt et al., 2013; Bultreys 
et al., 2016). The percolation of pore spaces in 
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Fig. 2.  X-ray CT slice of coquina: (a) a digital pore scale model of a super REV sample in 3D (8003) based on the 
original X-CT data (b) and two REV samples (6003), namely, REV1 (c) and REV2 (d), for investigating the effects of the 

image segmentation thresholds on the porosity, pore connectivity, pore percolation, and porosity exponent of the pore            
scale models.

segmented porous media is one of the most important 
parameters to describe the topology of micropore 
structures as it illustrates whether or not pore spaces 
are totally connected in one direction, as determined 
by searching and labeling the components in 3D binary 
images (Park and Rosenfeld, 1971). An important 
breakthrough in percolation determination is the 
introduction of multiple cluster labeling for 2D and 
3D images known as the Hoshen–Kopelman algorithm 
(HKA) proposed by Hoshen and Kopelman (1976). 
This algorithm determines not only the percolation of a 

3. Pore connectivity characterization
Minkowski functions are basic geometric measures 

def ined  for  b inary  porous  media  a f te r  image 
segmentation (Vogel et al., 2010). For a binary porous 
medium, Ω, in d dimension with a pore space X  Ω, 
a limited set of d+1 Minkowski functions is provided 
by its integral geometry. In 3D, four functions can be 
provided by Minkowski functions, as shown in Equation 
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pore space in a specific direction but also the numbers 
and sizes of the components (clusters) in a single scan 
with consideration of diverse adjacencies. Adjacencies 
illustrate the connection of a voxel to its surrounding 
voxels known as neighbors in image processing. In 
3D, the three types of adjacencies are 6, 18, and 26 
adjacencies; that is, their voxels belong to their 6, 18, 
and 26 nearest neighbors, respectively. Meanwhile, 4 
and 8 adjacencies are the only two types of connection 
for 2D. Herein, percolation was calculated by the HKA 
with 26 adjacencies.

(2) (Vogel et al., 2010).
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where δx represents the pore surface; ds is the surface 
element; and r1 and r2 are the minimum and maximum 
radii of curvature for the surface element, respectively.

The fi rst function M0 is the total mass of the structural 
unit corresponding to porosity, M1 corresponds to surface 
density related to the interaction of solutes at pore–solid 
interfaces, the mean curvature M2 is correlated with the 
pore shape affecting the energy density of the wetting 
fl uid or capillary pressure between diff erent fl uid phases, 
and M3 is related to the connectivity of the pores usually 
presented by a Euler number χ. The Euler number is 
defi ned by Equation (3) (Vogel et al., 2010).

3
1( ) N L ( )
4

X O XM ,             (3)

where N is the number of isolated objects (closed 
convex); L is the number of redundant connections or 
loops (closed saddle surface); O is the number of cavities 
(closed concave); and M3 is a dimensionless, topological 
measure that quantifies the connectivity of the pattern 
while M0, M1, and M2 are metrics with units [L3], [L2], 
and [L], respectively. Herein, the Euler number was 
divided by the volume of the samples to eliminate the 
eff ect of the volume of the samples on the number.

4. Electrical current simulation
The FEM is used to calculate the conductivity of 

reconstructed porous models in 3D on the basis of 
X-CT images after image segmentation. Garboczi 
(1998) develops an FEM algorithm and estimates the 
electrical properties of porous media. In this algorithm, 
a variational principle converts the solution of the 
Laplace equation into the optimization of system energy. 
The optimization is implemented by a fast conjugate–
gradient method. In the current study, the FF was a 
conductivity (reciprocal of resistivity) ratio (Equation 1); 
hence, only the value of the conductivity of each phase 
in the segmented porous model in 3D was considered 
regardless of the unit. The porous model consisted of 
a matrix and a pore. The conductivity of the matrix 
grains was 0, while that of the pore, which was fully 
saturated by brine, was equal to 1. The FEM was used to 
calculate the current fl ow in the X, Y, and Z directions. 
The average of the currents of the porous model was 
the harmonic average of the electrical currents in three 
directions.

On the basis of the resistivity simulated by the 
FEM, the FF and porosity exponent were calculated by 

Archie’s law (Archie, 1942) in Equation (1).

Results

1. Effects of grayscale threshold on segmented 
core samples

The grayscale threshold in image segmentation 
affects reconstructed digital core models and the 
petrophysical properties of corresponding digital core 
models. With the variation of the grayscale threshold 
in image segmentation, the changes in pore volume 
and the variations of pore percolation and connectivity 
affect the electrical current flow path and result in the 
vibration of electrical properties. When the grayscale 
threshold increases, the pore space gradually increases, 
and the porosity increases from 5% to 30% (Figure 3a). 
Herein, REV1 sequentially percolated in the Y, Z, and 
X directions when the grayscale threshold was equal 
to 20, 25, and 30, respectively (Figure 3b). The Euler 
number, which reflects pore connectivity (Figure 3c), 
dramatically increases to a peak of about 2.2 mm−3 when 
the grayscale threshold gradually reaches 20. This eff ect 
is due to the fact that the pore space percolates in neither 
direction and that the number of isolated pore clusters 
increases with an increase in the grayscale threshold. 
When the grayscale threshold further increases to 40, the 
pore space percolates in order in three directions, and the 
Euler number drops to 0.5 mm−3. The number of isolated 
pore clusters and the number of connections increase 
with the further increase of the grayscale threshold. In 
such a case, the Euler number approaches 1.0 mm−3 until 
the grayscale threshold reaches 120. When the grayscale 
threshold exceeds 120, the isolated pore clusters further 
connect to one another, the number of isolated pore 
clusters decreases, the number of connections increases, 
and the Euler number drops.

With an increase in the grayscale threshold in this 
work, the pore space consecutively percolated in the Y, 
Z, and X directions, and the porosity exponent in each 
direction decreased (Figure 3d). With the percolation and 
increase of the pore space, the current density increased, 
hence the red color in Figure 4. Take the fourth column 
(Figures 4d, i, and n) as an example; from top to bottom, 
the color varied from −9 (Figure 4d) to −7.5 (Figure 
4i) when the grayscale threshold ranged from 10 to 50. 
Meanwhile, the color varied from −7.5 (Figure 4i) to −7 
(Figure 4n) when the grayscale threshold ranged from 
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50 to 90. With the variation of the current density, the 
porosity exponent began to converge (Figure 3d). When 
the grayscale threshold reached 60, the average porosity 
exponent slowly decreased from 3.0 to 2.5. When the 
grayscale threshold exceeded 70, the porosity exponent 
values mz, my, m, and mx consecutively decreased.

Therefore, when the grayscale threshold in the image 

segmentation reached a critical value, the pore space 
reached stability. Even with the further increase of the 
grayscale threshold, the pore connectivity and physical 
properties of the pore scale model remained almost 
stable, and the sensitivities of the properties to the 
grayscale threshold decreased.

Fig. 3. Effects of image segmentation thresholds on the porosity (a), pore percolation (b), pore connectivity (c), and 
porosity exponent (d) of the pore scale model REV1 with various thresholds. The dotted lines in (c) and (d) refl ect the 

percolation of the pore space in three directions.

The shape and distribution of the pore space 
(anisotropic and heterogeneous) result in the variation 
of the current density distributions in three directions. 
Figure 3 and Figure 4 clearly show that the variations of 
the pore shape and pore distribution caused diff erences 
in the electrical current density in three directions. The 
images in the same row in Figure 4 are equivalent to the 
same grayscale threshold. Owing to the variations of the 
pore space distribution in three directions, the electrical 
properties varied (Figures 4l, m, n and o). Take the third 
row as an example; the colors of the density distributions 
from X direction (Figure 4l), Y direction (Figure 4m), Z 
direction (Figure 4n) to average (Figure 4o) were almost 
the same, while the cross sectional areas of the pore 
space gradually reduced from XOY plane, XOZ plane 

to YOZ plane (Figure 4), and the porosity exponent 
increased from mz, my, and m to mx.

The properties of the segmented pore scale model 
were related to the grayscale threshold. Among 
these properties, only porosity showed a monotonic 
increase with the increase of the grayscale threshold. A 
monotonically increasing function is the simplest and 
the easiest relationship in these four correlations. Pore 
percolation and Euler number quantitatively characterize 
pore microstructures and thus affect the macroscopic 
physical properties of core samples (Blunt et al., 2013). 
Therefore, the alteration of pore connectivity and 
percolation with diff erent grayscale thresholds explained 
the variation of the electrical porosity exponent of the 
REV samples in this work.
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The comparison of Figures 3 and Figure 4 revealed 
that the correlations between the grayscale threshold and 
the porosity (Figure 5a and Figure 6a), pore percolation 
(Figure 5b and Figure 6b), pore connectivity (Figure 
5c and Figure 6c), and electrical properties (Figure 5d 

Fig. 4. Effects of image segmentation thresholds on electrical current density in the X, Y, and Z directions and the average 
electrical current density of the pore scale model REV1 with various thresholds. The legend is the logarithm of the     

current density.

and Figure 6d) of REV2 were almost the same as those 
of REV1. The porosity also monotonically increased 
with the increase of the grayscale threshold. Meanwhile, 
the Euler number began to drop when the grayscale 
threshold exceeded 140. However, the pore distribution, 
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pore percolation, and pore connectivity of REV2 were 
diff erent from those of REV1. The pore space of REV2 
consecutively percolated in the X, Y, and Z directions. 
When the pore space percolated in all three directions, 
the Euler number decreased to 0.2 mm−3. Hence, the 
porosity exponent of REV2 gradually decreased from 
mx and my to mz. The variations of the pore space 

distribution in three directions caused the differences 
in the pore percolation, electrical current density 
distribution, and porosity exponents. For REV1 and 
REV2, the porosity, pore percolation, pore connectivity, 
and pore exponent varied, thereby reflecting the 
heterogeneity of the coquina sample.

2. Porosity as a comparison parameter in 
image segmentation

To quantitatively characterize the effects of the 
grayscale thresholds on porosity, pore percolation, pore 
connectivity, and porosity exponent, this study used the 
Morris screening method (Francos et al., 2003; Morris, 
1991) in Equation (4). Specifically, such method was 
used to calculate the sensitivities of the aforementioned 
parameters to the grayscale thresholds in Figure 7.

1
1 0

0 1

( ) /
S / ( 1)

( ) /100

n
i i

i i i

Y Y Y
n

P P
,                   (4)

where S is the sensitive factor, Yi denotes the properties 

of the reconstructed pore scale model segmented by the 
ith grayscale threshold, Yi+1 denotes the properties of the 
reconstructed pore scale model segmented by the i + 1 
th grayscale threshold, Y0 denotes the properties of the 
pore scale model with a grayscale threshold equal to 0, 
Pi is the ith grayscale threshold, and n is the number of 
segmentations.

Sensitivity reduced from porosity, pore connectivity, 
and pore percolation to porosity exponent. Hence, 
porosity was found as the best comparison parameter 
to apply in image segmentation. Porosity was the 
most sensitive to the grayscale threshold (Figure 7) 
and was thus chosen as the comparison parameter to 
judge the accuracy of the grayscale threshold in image 
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segmentation. When the porosities of REV2 and REV1 
were close to 20%, the pore spaces percolated in three 
directions, and the Euler numbers began to drop from 
1.0 mm−3 to 0.0 mm−3 for REV1 (Figure 3) and from 1.5 
mm−3 to 0.0 mm−3 for REV2 (Figure 5). Meanwhile, the 
average porosity exponent slowly decreased from 2.7 to 
2.5 for REV1 (Figure 3) and rapidly decreased from 3.25 
to 2.8 for REV2 (Figure 5). Therefore, porosity served as 
a comparison parameter to examine image segmentation, 
in which the porosity of the segmented pore scale model 
reconstructed by X-CT images should be close to the 
experimental porosity. According to this criterion, the 
coquina sample with a size of 800 (Figure 2b) and 
converted into the segmented binary pore scale model 
and the pore network extracted from the segmented 
pore scale model by the maximal ball method (Dong, 
2007) are shown in Figure 8. In the fi gure, the red color 
denotes the pore body, and the blue color denotes the 
throat bond. With regard to the pore network for the 
coquina sample, the variations of the pore size and throat 
size were huge and indicated the abundance of isolated 
pore clusters existing in the pore space. Figure 9a lists 

Fig. 7. Sensitivity of the porosity, pore percolation, pore 
connectivity (Euler number), and porosity exponent of 
the reconstructed pore scale model after segmentation 
to the grayscale thresholds of the segmentation.

the porosities of the binary pore scale model and various 
methods. Figure 9b compares the calculated porosity 
exponent of the binary segmented pore scale model by 
the global grayscale threshold with the two experimental 
porosity exponents. The porosity exponent matched the 
experimental data well, thereby validating the feasibility 
of taking porosity as the comparison parameter in image 
segmentation.
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Conclusions

This study investigated the effects of the grayscale 
threshold on the segmentation of X-CT images, which 
enable the accurate reflection of the microstructures 
of core samples. Specifically, a super representative 
coquina sample in 8003 and two representative samples 
(6003) were applied to investigate the effects of the 
grayscale threshold on the porosity, pore percolation, 
pore connectivity, and porosity exponent of the binary 
pore scale model after image segmentation by the 
grayscale threshold. The component labeling method, 
Minkowski functions, FEM, and Archie’s law were 
used to determine pore percolation, pore connectivity, 
resistivity of porous media, and porosity exponent, 
respectively. The results indicated the following. (1) The 
relationships of the properties of the segmented pore 
scale models with the grayscale threshold varied, with 
the most sensitive parameter being porosity. (2) The 
microscopic pore structure determined the macroscopic 
properties of each core sample. Therefore, the micropore 
distribution and pore connectivity aff ected the electrical 
resistivity. (3) The complexity of the coquina carbonate 
pore space caused the heterogeneity and anisotropy of 
the petrophysics. (4) This study highlighted the effects 
of the grayscale threshold on porosity, pore percolation, 
pore connectivity, and porosity exponent. Moreover, 
observations indicated that the pore percolation, Euler 
number, and porosity exponent presented the same 
variations for REV1 and REV2 when the porosity 
was close to the experimental data. According to these 
findings, porosity as a comparison factor determined 
the accurate grayscale threshold in the segmentation 
of the X-CT images, with resolutions suitable for the 
characterization of microstructures. The determination 
criterion was as follows: the porosity of the digital 
core model after image segmentation should be close 
to the experimental porosity. With this criterion, the 
simulated porosity exponent of the super REV binary 
pore scale model after image segmentation matched the 
experimental data well. This result thus validated the 
feasibility of taking porosity as a comparison parameter 
in image segmentation.
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