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Abstract: Prediction filtering is one of the most commonly used random noise attenuation 
methods in the industry; however, it has two drawbacks. First, it assumes that the seismic 
signals are piecewise stationary and linear. However, the seismic signal exhibits nonstationary 
due to the complexity of the underground structure. Second, the method predicts noise 
from seismic data by convolving with a prediction error filter (PEF), which applies 
inconsistent noise models before and after denoising. Therefore, the assumptions and model 
inconsistencies weaken conventional prediction filtering's performance in noise attenuation 
and signal preservation. In this paper, we propose a nonstationary signal inversion based on 
shaping regularization for random noise attenuation. The main idea of the method is to use 
the nonstationary prediction operator (NPO) to describe the complex structure and obtain 
seismic signals using nonstationary signal inversion instead of convolution. Different from 
the convolutional predicting filtering, the proposed method uses NPO as the regularization 
constraint to directly invert the eff ective signal from the noisy seismic data. The NPO varies 
in time and space, enabling the inversion system to describe complex (nonstationary and 
nonlinear) underground geological structures in detail. Processing synthetic and field data 
results demonstrate that the method eff ectively suppresses random noise and preserves seismic 
refl ection signals for nonstationary seismic data.
Keywords: noise attenuation, nonstationary, inversion, shaping regularization

Introduction

Noise can cause serious confusion over the refl ection 
of seismic signals from actual underground structures. 
Spatial predictability is the essential diff erence between 
seismic signals and random noise (Bednar, 1983; Jones 
and Levy, 1987; Yu et al., 1989). Thus, various methods 
have been developed for random noise attenuation 
(Alan and Panos, 1990; Zhang and Ulrych, 2003; 

Neelamani et al., 2008; Gholami, 2014; Wang and 
Chen, 2019; Zhao et al., 2020). Among these, the most 
commonly used are prediction fi ltering in the f-x domain 
(Canales, 1984; Gulunay, 1986; Chase, 1992; Sun and 
Ronen, 1996) and t-x domain (Claerbout, 1992; Abma 
and Claerbout, 1995). However, prediction filtering 
assumes two inconsistent noise models before and after 
denoising; thus, it cannot accurately predict the signal 
(Soubaras, 1994; Zhao et al., 2017). To overcome this 
model inconsistency, Soubaras (1994, 2000) proposed 
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projection filtering for random noise attenuation, which 
enhances the recovery of seismic signals. Prediction 
fi ltering based on the autoregressive–moving average model 
(Sacchi and Kuehl, 2001; Liu et al., 2009) can also achieve 
a denoising eff ect similar to that of projection fi ltering. The 
diff erence is that prediction fi ltering estimates the fi lter by 
solving the eigenvalue problem, while projection filtering 
obtains the fi lter by iterative calculation.

The strategy of a short temporal window is the simplest 
noise attenuation method for nonstationary seismic signals 
(Crawley et al., 1999). However, this strategy is diffi  cult to 
adapt to processing complex nonstationary seismic signals. 
Fomel (2007, 2009) proposed regularized nonstationary 
regression (RNR) for shaping regularization; in this 
approach, the operator for predicting the spatiotemporal 
variation of the signal is obtained by solving the global 
minimization problem. Thus, it  can be adapted to 
nonstationary seismic signals that vary with time and space. 
Liu and Fomel (2010) employed RNR to calculate adaptive 
prediction-error filters (PEFs) in the t-x domain for trace 
interpolation. Liu et al. (2012, 2013) applied RNR in the 
f-x domain and f-x-y domain for random noise attenuation, 
which can adapted to predicting nonstationary signals 
that vary in dip or amplitude. Liu et al. (2014) proposed 
adaptive prediction fi ltering in the t-x-y domain for random 
noise attenuation based on RNR.

In addition to denoising, a filter should also be able to 
preserve the signal. Yuan et al. (2012) proposed an edge-
preserving random noise attenuation method based on 
inversion. The denoised seismic data were taken as model 
parameters, and the total variation (TV) model (Rudin 
et al., 1992) was used as a regularization constraint to 
directly invert the seismic signal from noisy seismic 
data. However, the TV model cannot adaptively describe 
complex structures. To overcome this problem, Zhao et 
al. (2017) introduced PEF as a regularization constraint to 
prediction filtering and proposed an inversion-based data-
driven method for random noise attenuation in the t-x 
domain. While Yuan et al.’s (2012) method uses a model-
driven algorithm, Zhao et al.’s (2017) method calculates 
the regularization constraint from the seismic data itself; 
thus, it is a data-driven algorithm with stronger denoising 
ability. However, the assumptions of prediction filtering 
limit the prediction ability of Zhao et al.’s method when the 
underground structure is very complex because a stationary 
PEF is used as a regularization constraint, and seismic 
signals are assumed to be piecewise stationary and linear.

Based on the data-driven seismic signal inversion 
proposed by Zhao et al. (2017), in this paper we propose a 

random noise attenuation method for the inversion 
of nonstationary signals by shaping regularization. 
Our method uses shaping regularization to calculate 
the operator for predicting a signal that varies with 
time and space, and it does not assume a piecewise 
stationary and linear signal. Thus, it can be used 
to characterize complex geologic structures. The 
proposed method was applied to a series of models 
and real data from an oil field in eastern China, 
and the results were used to verify its effectiveness 
at noise attenuation and signal preservation for 
nonstationary data.

Theory

Prediction fi ltering in t-x domain
According to the prediction fi ltering, the linear and 

stationary seismic signal in a trace can be predicted 
by the adjacent seismic trace owing to its spatial 
predictability (Canales, 1984);thus, the seismic signal 
s can be written as:
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where f is PF, ix and jx are spatial indices, it and 
jt are temporal indices, mx and mt are the length 
of t-x domain PF in the space and time directions, 
respectively. The form of PF with mx = 2 and mt = 2 
is:
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We obtain the PF f from noisy data d by solving the 
following least-squares problem:
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where 2
 denotes the square of the l2 norm and ε is a 
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scalar regularization parameter. We obtain the donoised 
data d' by calculating 2D convolution of the PF f and 
noisy data d:

   ' * .d f d  (4)

The prediction filtering assumed two inconsistent 
noise models before and after denoising, which 
decreased noise attenuation and signal preservation 
(Soubaras, 1994; Liu et al.,2009, Zhao et al., 2017). 
On the other hand, the prediction filtering applies the 
same PF f to all seismic data in the processing window, 
requiring the assumption that the seismic signals are 
stationary and the events are linear. However, the real 
seismic data are mostly nonstationary, and the events are 
nonlinear. Thus, the stationary PF is diffi  cult to consider 
all seismic data and accurately describes the geological 
structure, causing damage to the seismic signal. Aiming 
at this problem, Liu et al. (2014) proposed an adaptive 
prediction filtering and calculated the APF using 
nonstationary autoregression. The APF varies with time 
and space; thus, it can describe complex underground 
geological structures.

We obtain the APF coeffi  cients Fi,j(t,x) by solving the 
following least-squares problem. Unlike equation (3), the 
equation is underdetermined and can be solved using a 
conjugate-gradient algorithm with shaping regularization 
(Fomel, 2007).
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where i and j are temporal and spatial indices for APF, 
respectively; t and x are temporal and spatial indices 
for seismic, respectively M and N indicate the size of 
APF in the time and space directions, respectively; the 
μ is a scalar regularization parameter and R[•] indicates 
shaping regularization, which is implemented by a 
triangular smoothing fi lter (Fomel, 2007), whose length 
is called the smoothing radius. As the smoothing radius 
of the APF increases, the APF removes more random 
noise and some structural details.

Similar to the stationary prediction filtering, we can 
obtain the denoised seismic data S by nonstationary 
prediction fi ltering as follows:

    

, ,
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Nonstationary signal inversion for random 
noise attenuation

Unlike the stationary prediction filtering, which 
directly convolves the PF with the seismic data to obtain 
the denoised data, the proposed method uses the NPO as 
the regularization constraint of the inversion. It regards 
denoised data as a model parameter in the inversion. We 
obtain the denoised data by inverting these parameters 
from the noisy seismic data. The NPO ( , )t xF  has the 
same coeffi  cients as the APF F(t, x), except that the value 
at the output position is -1, which has the following form 
if M = 2 and N = 2:
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As shown in equation (7), the NPO structure 
excludes the causal time prediction coefficients 
( i . e . , 0, ( , )=0, 0jF t x j ) ,  a n d  f o r c e s  o n l y  l a t e r a l 
predictions. 

The objective function of the nonstationary seismic 
signal inversion can be expressed as:
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For simplicity, we rewrite equation (8) in matrix form 
as:

    
2 ,k

L
J d - S PS  (9)

where d and S are vectors, d = [d(1,1), d(2,1), ...,d(Nt, 
Nx)]T, and Nt and Nx are noisy data sizes in time and 
space directions, respectively, S is the signal or denoised 
data. λ is a scalar trade-off  parameter, L is a norm, k is a 
power. When L = 1 (k = 1), the second term is l1 norm, 
and when L = 2 (k = 2), the second term is l2 norm. P 
is a (Nt×Nx) × (Nt×Nx) matrix rearranged by Fi,j(t,x) 
according to the calculation correspondence. 

The first term in equation (9) describes the energy 
difference between the effective signal and the noisy 
seismic data, which guarantees this method’s signal-
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preservation capability. The second term is the 
regularization term, which describes the seismic signal’s 
predictability and ensures noise attenuation eff ectiveness. 
The NPO describes the geological structure. If the 
inverted signal is laterally discontinuous, then the signal 
is unpredictable, which leads to the larger value of the 
second term in equation (9). However, if the inverted 
signal is laterally continuous and conforms to NPO’s 
geological structure, the signal is predictable, leading to 
the second term’s smaller value. We can get the seismic 
signal following the geological law by minimizing the 
objective function. The trade-off  parameter λ determines 
the contribution of the two terms to the objective 
function and affects noise attenuation performance. 
If λ is too small, several noise may remain However, 
if λ is too large, the effective signal may be damaged. 
Therefore, we need to choose reasonable parameter 
λ to achieve a balance between noise attenuation and 
signal preservation. The second term of equation (9) can 
select l1 norm, l2 norm, or other norms. When L = 2, the 
solution of the objective function 9 is:

    
1( ) .TS I P P d  (10)

To improve the computational efficiency, we obtain 
the denoised data S by calculating equation (10) using 
the conjugate-gradient algorithm instead of matrix 
operation. The calculation process of the proposed 
method is as follows:

1) Calculate the NPO:
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2) Invert signal constrained by the NPO:
    

2 .k
L
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Synthetic model test

We design two synthetic seismic models with 
nonstationary signals to test and analyze the noise 
suppressing and signal-preserving performance of the 

proposed method (NSI). For comparison, we use the 
RNA (i.e., the f-x domain prediction filtering) in the 
GeoEast software, the inversion-based t-x domain 
random noise attenuation method (Zhao et al., 2017, 
hereinafter referred to as IRNA) and APF (Liu et al., 
2014) based on RNA to process the data simultaneously. 
To quantify the denoising effect of the above four 
methods, we defi ne the SNR as follows:

    2

10 210 log ,F

F

SNR
S

D S
 (13)

where S is the true signal, D is the noisy data, and 2

F is 
the square of Frobenius norm. Figure 1 shows the SNR 
of the data after denoising with the above four methods.

Fig. 1.  SNR of data after denoising by the four methods 
(Unit: dB).

The first model is a curve model. Fig. 2(a) shows 
the clean synthetic data in which the event’s travel-
time is a sinusoidal function, and the wavelet is a 30-
Hz Ricker wavelet. The model has 100 traces. The 
amplitude of each trace data is nonstationary, and the 
maximum amplitude varies with the traces: A(x)=2/
nx2(x-nx/2)2+0.5, where nx is the traces number and 
x is the traces index. The time length is 200 ms, and 
the sampling rate is 2ms. We added Gaussian noise to 
the clean data, as shown in Figure 2a), and obtained 
the noisy data (see Fig. 2(b)) with SNR=3.94 dB. To 
approximate the real random noise, the added Gaussian 
noise was low-pass fi ltered. The RNA implemented with 
the length of the PF is 7. For IRNA, the PF length in the 
time and space direction is 10 and 7, respectively (mt = 
10 and mx= 7 in equation (3)); the trade-off  parameter is 
1. For APF, the length of the fi lter in the time and space 
direction are 5 and 2, respectively (M = 5 and N = 2 in 
equation (5)); the smoothing radius is 20. For NSI, the 
NPO’s length in the time and space direction are 5 and 
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2, respectively (M = 5 and N= 2 in equation (8)); the 
trade-off parameter is 10. Figure 3 shows the denoised 
results and the removed noise of the three methods. 
RNA applies inconsistent noise models before and after 
denoising (Soubaras, 1994; Liu et al., 2009; Zhao et al., 
2017) and assumes that the seismic signal is stationary 
and events are linear (Canales, 1984). Therefore, it is 
difficult to reduce random noise from nonstationary 
seismic data (Figure 3)), while it is easy to damage the 
effective signal (Figure 3b)). IRNA uses inversion to 
denoise instead of convolution and overcomes the model 
inconsistencies, removing more random noise than the 
RNA (Figure 3c). However, its regularization conditions 

are derived from conventional PFs and cannot describe 
complex geological structures; thus, causing damage to 
eff ective signals (Figure d). APF uses the nonstationary 
PF to predict the signal without the assumption of 
stationary signals and linear events. Therefore, it has 
some advantages in nonstationary signal preservation. 
NSI uses the NPO as a regularization constraint 
inversion to reduce random noise, which requires 
assumptions and overcomes the model inconsistencies. 
Therefore, NSI is more eff ective in noise attenuation and 
signal preservation for nonstationary data than the other 
three methods ( see Figures 3 (g), (h), and Figure. 1).

Fig. 2.  Curved model (a) clean data, (b) noisy data.
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Fig. 3. Comparison of the three methods: (a) the denoised results by RNA (b) the removed noise by RNA (c) the denoised results 
by IRNA (d) the noise removed by IRNA (e) the denoised results by APF (f) the noise removed by APF (g) the denoised results by 

NSI (h) the noise removed by NSI.

The second model is a 2D geological model with fold 
and fault structures. Figure 4 shows the velocity model. 
The horizontal length is 1600m, and the time depth is 
500 ms. The shallow layers of the model are horizontal 
strata, and the underlying strata are folded structures. 
The seismic data is synthesized by convoluting Ricker 
wavelet; whose dominant frequency is 30 Hz. Figure 
5a shows that the seismic data has 101 traces and 251 
sampling points. The sampling rate is 2ms, and the time 
length is 500 ms. The fold and fault structures from 
150 ms to 350ms are used to investigate the denoising 
method’s eff ectiveness for nonstationary data. The weak 
signal around 400ms is used to examine the denoising 
method’s performance in recovering weak signals. 
Figure 5b shows noisy data with SNR = 6.88 dB. To 
reduce SNR of noisy seismic data at strong amplitude, 
the energy of simulated random noise is enhanced by 
equation (14) after low-pass filtering. We applied the 
above four methods, RNA, IRNA, APF, and NSI, to 
suppress random noise. The RNA is implemented with 
the length of the PF is 7. For IRNA, the PF’s length in 
the time and space direction are 31 and 20, respectively 

(mt = 15 and mx = 10 in equation (3)); the trade-off 
parameter is 2. For APF, the length of the filter in the 
time and space direction are 5 and 3, respectively (M 
= 5 and N= 3 in equation (5)), the smoothing radius is 
10. For NSI, the NPO’s length in the time and space 
direction are 5 and 3, respectively (M = 5 and N= 3 in 
equation (8)), the smoothing radius is 10, and the trade-
off  parameter is 5. Figure 6 shows the denoised results 
and the removed noise of the four methods. As shown 
in Figure6a, 6c, 6e, 6f, and Figure 1, NSI removes more 
noise than the other two methods. As for the processing 
results of the RNA, the signals of the fold and fault 
structure in the noise section are very obvious, and 
the weak signal in the denoised data section becomes 
laterally discontinuous (see Figure 6a), indicating that 
the RNA is not suitable for nonstationary data. IRNA 
performs better than RNA in weak signal protection ( see 
Figure 5c); however, it is not suitable for nonstationary 
data. If the dip and amplitude of the event vary sharply, 
the method may damage the eff ective signal (see Figure 
6d). APF method is suitable for nonstationary data, and 
it does not cause obvious damage to the eff ective signal. 
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Still, the denoising eff ect is slightly inferior to NSI (see 
Figure 6e) and Figure1). For NSI, the noise section’s 
signal is almost invisible (see Figure 6f). The denoised 
result’s weak signal is clear and laterally continuous, and 
the seismic structure remains complete (Figure 6e)). 

   
max(1, 2 ) ,

max( )
S

N N
S

 (14)

where, N is the noise data after low-pass fi ltering and   is 
Hadamard product.

Fig. 4.  2D geological model with folded structures.

Fig. 5.  Geological model (a) clean data, (b) noisy data.
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Fig. 6. Comparison of the three methods: (a) the denoised results by RNA (b) the removed noise by RNA (c) the denoised results 
by IRNA (d) the noise removed by IRNA (e) the denoised results by APF (f) the noise removed by APF (g) the denoised results by 

NSI (h) the noise removed by NSI.

Field data examples

The fi eld data shown in Figure 7 are from an oil fi eld 
in eastern China. For comparison, we use RNA and 
IRNA to process this data simultaneously. The RNA is 
implemented with the PF length of 7. For IRNA, the 
PF length in the time and space direction are 21 and 14, 
respectively (mt = 10 and mx = 7 in equation (3)); the 
trade-off parameter is 2. For NSI, the NPO’s length in 
the time and space direction are 5 and 5, respectively (M 
= 5 and N= 5 in equation (8)); the trade-off parameter 
is 10. Figure 8 shows the denoised results and removed 
noise by the three methods. The three methods 
effectively suppress random noise when the events are 
approximately linear, and seismic data is quasi-stationary 
(the dip and amplitude of events are varying smoothly) 
(see Figures. 8 (a), (c), and (e). In the area of complex 
structure (such as faults), RNA and IRNA remove many 
eff ective signals ( see Figure 8 (b), (d)). Compared with 
the two methods, the proposed method removes noise 

and preserve signal eff ectively ( see Figures 8 (e), (f)), 
especially for complex structure.

Fig. 7.  Seismic fi eld data.
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Fig. 8.  Comparison of the three methods. (a) the denoised results by RNA, (b) the removed noise by RNA, (c) the denoised 
results by IRNA, (d) the noise removed by IRNA, (e) the denoised results by NSI, and (f) the noise removed by NSI. 

Conclusions

We proposed a novel method for random noise 
attenuation using nonstationary signal inversion. 
In the method, the nonstationary signal inversion is 
taken as the denoising frame. The NPO calculated 
by shaping regularization is taken as the structural 
constraint in the inversion; thus, the effective signal 
can be directly inverted from the noisy seismic data. 
The experimental results showed that the denoising 
frame is a nonstationary signal inversion, which can 
overcome the model inconsistency before and after 
denoising, improving the signal-preserving ability. The 
NPO calculated by shaping regularization is varying 
spatiotemporally, describing the complex geological 

structure. Therefore, the proposed method does not 
assume seismic data to be piecewise stationary and 
linear. Compared with RNA and IRNA, NSI removes 
noise and effectively preserves signals, especially for 
complex structures. Compared with APF, NSI has a 
more obvious denoising eff ect. The NPO length (M, N), 
smoothing radius, and trade-off  parameter   are the key 
parameters that aff ect the denoising eff ect of the method. 
The NPO length is related to the dip of events (Liu et al., 
2012; Liu et al., 2014). The longer the NPO is, the more 
accurate the seismic signal structure can be described, 
but the higher the calculation cost will be. The larger the 
smoothing radius, the more obvious the denoising eff ect. 
Still, it will remove some structural details, resulting 
in poor signal-preserving performance. The trade-off 
parameter   affects the performance of the method in 
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noise attenuation and signal preservation; thus, it needs 
to be determined by experiment. The application of 
synthetic seismic data and fi eld data demonstrated that the 
proposed method performs better in suppressing random 
noise and preserving nonstationary signals. However, the 
proposed method converts the denoising problem into an 
inversion, improving the denoising effect and reducing 
the computational effi  ciency. Therefore, how to further 
improve computational efficiency will be the focus of 
future research.
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