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Abstract: Mesh-free fi nite difference (FD) methods can improve the geometric fl exibility of 
modeling without the need for lattice mapping or complex meshing process. Radial-basis-
function-generated FD is among the most commonly used mesh-free FD methods and can 
accurately simulate seismic wave propagation in the non-rectangular computational domain. 
In this paper, we propose a perfectly matched layer (PML) boundary condition for a mesh-
free FD solution of the elastic wave equation, which can be applied to the boundaries of the 
non-rectangular velocity model. The performance of the PML is, however, severely reduced 
for near-grazing incident waves and low-frequency waves. We thus also propose the complex-
frequency-shifted PML (CFS-PML) boundary condition for a mesh-free FD solution of the 
elastic wave equation. For two PML boundary conditions, we derive unsplit time-domain 
expressions by constructing auxiliary differential equations, both of which require less 
memory and are easy for programming. Numerical experiments demonstrate that these two 
PML boundary conditions effectively eliminate artificial boundary reflections in mesh-free 
FD simulations. When compared with the PML boundary condition, the CFS-PML boundary 
condition results in better absorption for near-grazing incident waves and evanescent waves.
Keywords: mesh-free fi nite difference, elastic wave equation, non-rectangular computational 
domain, perfectly matched layer, complex-frequency-shifted perfectly matched layer

Introduction

Seismic wave modeling is the basis of geophysical 
exploration. There are numerous modeling methods, such 
as finite difference (FD) (Alford et al., 1974; Virieux, 

1986), pseudo-spectral (Kosloff and Baysal, 1982), and 
finite element (Seron et al., 1990). Among these, FD 
methods have particular simplicity and flexibility and 
are typically implemented in regular grids. Regular grids 
lack geometric flexibility, however, and cannot exactly 
fi t model interfaces and boundaries. Furthermore, local 
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refinement in critical areas is also hard to achieve. To 
improve geometric flexibility, structured and unstructured 
grid methods (Hestholm, 1999; Zhang and Liu, 2002; Zhang 
and Chen, 2006; Kristek et al., 2010) have been proposed; 
however, the complex meshing processes and coordinate 
mapping required by these methods result in significant 
computational costs. Mesh-free FD methods, such as the 
irregular lattice method (O’Brien and Bean, 2011), radial-
basis-function-generated FD (RBF-FD) method (Flyer et 
al., 2012, 2014; Martin et al., 2013), mesh-free FD method 
using the multi-variable Taylor series expansion (Takekawa 
and Mikada, 2016, 2018), and time-space-domain mesh-
free FD based on least squares (Li et al., 2017a), have 
been more recently developed, and used in seismic wave 
modeling. Compared with structured and unstructured 
grids, mesh-free nodes can perfectly fit model boundaries 
and interfaces. Furthermore, their spatial resolution can be 
preset according to the velocity of the model. Mesh-free 
discretization can be used simply and rapidly, thus reducing 
the cost of improving geometric fl exibility. RBF-FD is one 
of the most popular mesh-free FD methods. The FD based 
on various radial basis functions (RBFs) has been widely 
used to solve partial differential equations (Shankar et al., 
2015; Flyer et al., 2016a). Current studies on RBF-FD 
focus predominantly on the limit of increasingly fl at RBFs 
(Driscoll and Fornberg, 2002; Fornberg et al., 2013; Lee et 
al., 2014) and the inclusion of additional polynomials into 
RBF-FD approaches (Flyer et al., 2016b; Bayona et al., 
2017).

In FD modeling, absorbing boundary conditions are 
employed to eliminate the spurious reflections caused 
by model truncation. Among numerous absorbing 
boundary conditions, the perfectly matched layer (PML) 
boundary condition, first introduced by Bérenger (1994) 
for electromagnetic wave simulation, has an effective 
and stable absorption for incident waves of all angles 
and all frequencies before discretization. As a result, it is 
widely used in numerical simulations. Chew and Weedon 
(1994) mathematically demonstrated that the PML is 
essentially a coordinate transformation in a complex 
stretching coordinate system, and Chew and Liu (1996) 
applied the PML in elastic wave modeling. Nonetheless, 
the PML also has deficiencies. For example, its reflection 
coefficient is not exactly zero after discretization; thus, 
under circumstances such as very thin mesh slices, 
sources located close to the boundary, and receivers with 
large offsets, seismic waves can be incident on the PML 
interface at nearing-grazing angles, causing large spurious 
reflections (Komatitsch and Martin, 2007). Furthermore, 
the PML cannot effectively absorb low-frequency waves. 
To enhance its absorption, Kuzuoglu and Mittra (1996) 

proposed a more general complex-frequency-shifted 
(CFS) stretching function in electromagnetic wave 
modeling. The PML has been approached in both its 
split-fi eld (Komatitsch and Tromp, 2003) and unsplit-
field (Wang and Tang, 2003) forms; however, the 
split-fi eld approach requires non-physical splitting of 
wave fields and increases consumption of computer 
memory. The CFS-PML is also diffi cult to implement 
in a split-field form. The unsplit-field approach is 
based on one of a convolution algorithm (Roden 
and Gedney, 2000), recursive integration (Drossaert 
and Giannopoulos, 2007; Zhang et al., 2009; Zhang 
et al., 2010), or auxiliary differential equations 
(ADEs) (Zhang and Shen, 2010). Compared with 
the convolution algorithm, recursive integration or 
ADEs can make the unsplit PML easier to implement. 
PML and CFS-PML are often used for first-order 
wave equations; however, second-order wave 
equations have simpler forms and are more suitable 
for numerical simulations. Komatitsch and Tromp 
(2003) derived the PML expressions for a second-
order wave equation by splitting the fields. Third-
order temporal derivatives also arise and require the 
introduction of ADEs. Ma et al. (2014) and Gao et 
al. (2015) proposed unsplit PML and unsplit CFS-
PML expressions for second-order acoustic wave 
equations. These two unsplit boundary conditions 
involve neither a convolution algorithm nor high-
order temporal derivatives and can thus be easily 
implemented.

In this paper, we introduce RBF-FD for solving 
seismic wave equations. We then derive PML 
and CFS-PML formulations for polygonal model 
boundaries. Finally, we apply these PML boundary 
conditions in mesh-free FD simulations of the elastic 
wave equation. Both PML boundary conditions 
are applicable to both mesh-free modeling and 
regular-grid modeling. Numerical results confirm 
the advantage of RBF-FD, which can simply and 
efficiently achieve high accuracy and geometric 
fl exibility, demonstrating the effectiveness of the use 
of two PML boundary conditions and the advantage 
of the CFS-PML for absorbing near-grazing and 
evanescent waves.

Radial-basis-function-generated 
fi nite difference method

When using FD methods, the spatial derivative 
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can be represented by the weighted sum of wave field 
values at all stencil nodes. For mesh-free FD methods, 
the nodes are usually irregularly distributed, leading to 
improved geometric fl exibility but also an increase in the 
diffi culty of determining FD coeffi cients.

RBF-FD is one of the most popular mesh-free FD 
methods. In the RBF-FD stencil, the approximation of 
operator L (such as ∂/∂x, ∂2/(∂x∂z), and ∂2/∂x2) at the 
center node x0 is represented as the weighted sum of 

wave field values at all n + 1 stencil nodes as follows 
(Martin et al., 2015):
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where ci is the mesh-free FD coefficient of node i, xi 
is the position of node i, and ci can be determined by 
solving a linear system as follows (Martin et al., 2015):
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or in abbreviated notation, Ac = L .
Here, we use the inverse multiquadric radial function   

21 1r r  for RBF-FD, where r is the distance 
between two nodes and ε is the shape parameter 
controlling the condition number of coefficient matrix 
A. When the condition numbers of coeffi cient matrices 
are in the range of 106–108, RBF-FD can achieve a good 
compromise between stability and accuracy. Moreover, 
a key feature of RBF-FD is the fact that one can impose 
additional functions (typically polynomials) in equation 
(2) to improve the convergence rate and overcome the 
stagnation error (Flyer et al., 2016b). For instance, 
adding Taylor monomials (1, x, z) to equation (2) obtains 
the following (Larsson et al., 2013):
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where (Δxi, Δzi) = (xi, zi) – (x0, z0). cn+1, cn+2, and cn+3 are 
auxiliary coeffi cients and will be discarded after solving 
equation (3). Note that in order to avoid singularity of 
the matrix in equation (3), the number of additional rows 
must not exceed the number of rows in matrix A.

Two boundary conditions for mesh-
free FD methods

The traditional FD computational domains are 
rectangular. Mesh-free FD methods can simulate seismic 
wave propagation in the non-rectangular computational 
domain. Boundaries of the objective zone may take 
the form of slanted straight lines. Here, we use the 
straightforward expanding strategy (Li et al., 2017b) to 
generate an absorbing-zone nodal distribution suitable 
for the polygonal objective zone. The straightforward 
expanding strategy can be divided into two steps. 
We first sample the model boundary to determine the 
sampled boundary nodes and corresponding outward 
normal directions and then expand absorbing-zone 
nodes on the basis of sampled nodes and their outward 
normal directions. In the case of corner nodes where 
two adjacent boundaries intersect, we consider that the 
corner node has two outward normal directions 1n  and 2n
, and that these nodes are distributed on hypothetical arcs 
formed by the rotation from 1n  and 2n with the corner 
node as the pivot.

In Cartesian coordinate systems, the second-order 
elastic wave equation can be expressed as
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where U  and W  are the horizontal and vertical 



441

Sun et al.

displacement components in the frequency domain, 
respectively; λ and μ are the Lamé coefficients; ρ is 
density; and ω denotes angular frequency. To obtain 
absorbing properties in the PML, a complex coordinate 
transformation is usually performed on the x and 
z directions in the absorbing-zone of the Cartesian 
coordinate system in order to transform the seismic 
wave equation into a stretched-coordinate domain. For 
equation (4), we have

   
(5a)

   

(5b)

where sx and sz are complex stretching functions in 
the x and z directions, respectively. However, since 
the truncated boundaries may not be horizontal or 
vertical, we transform the elastic wave equation into 
a rotated-coordinate system with an outward normal 
direction n  from the truncated boundary as a positive 
axis and transform this elastic wave equation into its 
corresponding stretched-coordinate domain. The specifi c 
process will be described in detail below.

The slanted boundary
As shown in Figure 1, the absorbing-zone node R, 

which is expanded based on a slanted boundary, has an 
outward normal direction n. We transform the wave 
fi elds at all nodes in the FD stencil centered on node R 
and then transform elastic wave equation into a rotated-
coordinate system with the direction n  as a positive axis 
such that equation (4) becomes
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where n̂  represents both the direction perpendicular ton, 
and the positive axis of a rotated-coordinate system,
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in which θ is the angle between the outward normal 
direction n  and the horizontal direction, θ ∈[0,2π].

In the stretched-coordinate domain corresponding to 
the rotated-coordinate system, equation (6) becomes
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where sn  is the stretching function. Note that absorbing-
zone nodes expanded based on the slanted boundary 
have the same outward normal direction n , and it is 
necessary only to consider the absorption of seismic 
waves along the direction n . Compared with equation 
(5), equation (8) has more simplified formulations for 
further derivation. Following this, we can obtain PML 
and CFS-PML expressions suitable for the slanted 
boundary.

Fig. 1 Illustration of expanding absorbing-zone nodes for 
the slanted boundary. Black dots represent mesh-free discrete 
nodes in the objective zone, blue dots are absorbing-zone nodes, 
and green dots are all nodes in the FD stencil centered on node R.

The PML boundary condition for the slanted 
boundary

The stretching function is defined as (Drossaert and 
Giannopoulos, 2007)
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 1 ,
i
ds n

n (9)

where dn  is the attenuation factor that exponentially 
attenuates the amplitude of the wave fi eld along direction  
n. For the attenuation factor (Komatitsch and Martin, 
2007; Drossaert and Giannopoulos, 2007), we use

   2
max3 ln 1

,
2

cv R ld
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where vmax is the maximum P-wave velocity, T is the          
thickness of the absorbing-zone, l is the distance between 
the expanded node and its corresponding sampled 
boundary node, and Rc is the theoretical reflection 
coefficient. The relationship between Rc and the PML 
width N follows a logarithmic equation (Zhang and Shen, 
2010) as follows: 10 10 10log log 1 log 2 3cR N .

By constructing ADEs, we can obtain the unsplit PML 
formulations. For simplicity, we consider equation (8a) 
as an example. Equation (8a) becomes

 
  

(11)

where dn  is the first-order derivative of dn  along 
directionn . Introducing a variable, i dn and 
substituting it into equation (11), we obtain

(12)

Introducing an auxiliary
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equation (12) is rewritten as
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Multiplying both sides of equation (13) by ψ, we 
obtain
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Multiplying both sides of equation (16) by ψ, we have
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Then, multiplying both sides of equation (18) by ψ 
yields

   
3 .UU dn n

 (19)

Substituting i dn  into equations (14), (15), 
(17), and (19), we obtain the following frequency 
domain equations:

 
  

(20)

Finally, transforming the above equations into the 
time-domain obtains

 

(21)

where ∂ t represents the time derivative. Equation 
(21) shows that the unsplit PML based on ADEs does 
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not need to split the fields, nor is it required to solve 
convolution or high-order temporal derivatives, which is 
more convenient for the ease of programming.

The CFS-PML boundary condition for the slanted 
boundary

The traditional stretching function has certain 
drawbacks, for example, at near-grazing incidence, 
seismic waves convert into evanescent waves, which 
travel parallel to the PML interface and cannot 
be effectively absorbed, thereby causing spurious 
refl ections. In addition, the traditional stretching function 
attains singularity for very low-frequency waves. To 
enhance the absorption of the PML, the CFS stretching 
function has been proposed (Zhang and Shen, 2010):

   
.

i
ds n

n n
n

 (22)

Compared with equation (9), equation (22) has a 
more general form, including an attenuation factor dn ,              
a frequency-shifted factor nn  and a scaling factor nn.       
The frequency-shifted factor nn  can shift the singularity 
in the stretching function from the real axis into the 
negative imaginary half of the complex plane, affecting 
the absorption of evanescent and low-frequency waves. 
The scaling factor nn  is more effi cient in absorbing near-
grazing incident waves (Zhang and Shen, 2010). nn  and   
nn  are defi ned as
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where Pα = 1 , 2p , α0 = πf0, and f0 is the dominant 
frequency. Generally, 0 1  guarantees the absorbing 
performance of the CFS-PML boundary condition 
such that the CFS stretching function becomes 

1 / is dn n n .
As above, equation (8a) can be rewritten as
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where nnn  is the first-order derivative of nn  along the 

direction n . Substituting i dn ndnddi dn i di d  into equation 
(24), we obtain
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Introducing auxiliary variables,
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Substituting i dn ndnddi dn i di d  into equations (25) and 
(26), as well as transforming equations (25) and (26) 
back to the time-domain, yields

   

3

2

2 32

2

1 2

2

2

2 2
2

2

( ) ( ) ,

( ) (2 ) ,

( ) ( 2 ) 2

( ) ( 2 ) ,
ˆ

( 2 )

t

t

t

t

ud u d

u ud u d d d u

u ud u d d

wd d u

u uu

n n n n

n n n n n n

n n n n

n n

n

n n

n n

n n

n

( n

( n

( n

) n)))

u
3t ) (3n n3) () 3t ) (3)) () (3 ) u)n n ,

nn
2u u2

2t d) (2) (22n 2) 2t )) 2) (2) (22 (2 u uu))) uu
2n n2

2u u2
t ) ( 2 )) 1) ( 2 )) 1n 1) ( 2 )1t ) ( 2 )) 1) ( 2 )) 1

u d22uu d2d2d2d2nn n n2nn nnd2d2 nd2d2 n

2w( )d ( 2 )n ( )( 2 )( 2 )ww
n n

2 2u u2u u2 ( 2 )t u
u
2n2

2

12 ( ) .           
ˆ ˆ

w u
n n n

2w
1( ) .  1( )) w

n n

(27)

The entire process is divided into three parts. At each 
time step, the wavefield values at all stencil nodes are 
transformed using equation (7) and then 3u , 2u , and 1u
are updated in turn to obtain u  at the center node of the 
FD stencil. Finally, we inversely transform the wavefi eld 
values at all stencil nodes using
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The corner node
For an absorbing-zone node G expanded from the 

corner node, we assume an outward normal direction to 
be denoted by n , as shown in Figure 2. Seismic waves 

are directly absorbed along the x and z axes.
The PML boundary condition for the corner node

For an absorbing-zone node G expanded based on 
the corner node, we assume that the angle between 
the outward normal direction n  and the positive x axis 
is θ. The elastic wave equation is transformed into 
a stretched-coordinate domain. The 2-D stretching 
function is written as (Drossaert and Giannopoulos, 
2007)

  1 ,
i
d

s  (29)

where  η = x, z. The attenuation factors are
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By constructing ADEs, we obtain the time-domain 
PML formulations for the corner node:
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(31)

where ux3, ux2, ux1, uz3, uz2, uz1, uxz2 and uxz1 are auxiliary 
variables.

The CFS-PML boundary condition for the corner 
node

The CFS stretching function in a Cartesian coordinate 
system can be written as (Zhang and Shen, 2010)
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Fig. 2 Illustration of expanding absorbing-zone nodes from 
the corner node. The black dots represent mesh-free discrete 
nodes in the objective zone, blue dots are absorbing-zone 
nodes expanded based on the slanted boundaries, red dots are 
absorbing-zone nodes expanded based on the corner node, and 
green dots are all nodes in the FD stencil centered on node G.
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As above, 0 1  such that the CFS stretching 
function becomes 1 is d .

By constructing ADEs, we obtain time-domain CFS-
PML formulations for the corner node as follows:
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Equations (31) and (34) demonstrate that ADEs are 
fi rst-order equations. During the time marching process, 
the values of auxiliary variables at the next time step 
directly cover values at the current time step, saving 
computer memory.

Numerical examples

To demonstrate the effectiveness of both PML 
boundary conditions and the utility of the CFS-PML, 
we conducted RBF-FD numerical simulations for 
homogeneous, multi-layer, and truncated Hess models. 
The nodal distribution in the objective zone was obtained 
using the fast-generation algorithm (Fornberg and Flyer, 
2015), whereas the nodal distribution of the absorbing-
zone was obtained using the expanding strategy.

The polygonal homogeneous model
As shown in Figure 3, the polygonal homogeneous 

model has a slanted boundary and five corner nodes; 
zone I is the objective zone, zones II are absorbing zones 
generated based on straight boundaries, zones III are 
absorbing zones generated from corner nodes. P-wave 
velocity is 5000 m/s, S-wave velocity is 3000 m/s, and 

density is 2800 kg/m3. We adopted a quasi-uniform 
nodal distribution in the objective zone, and the “grain 
radius” was set at 10 m. We used RBF-FD to simulate 
elastic wave propagation and the number of neighboring 
nodes in each FD stencil was set at 20. The point source 
was a concentrated force source with an angle of 135° 
counterclockwise from the z axis. The source wavelet 
was a 25 Hz Ricker wavelet. The time step used was 
0.001 s. Two sources S1 and S2 are located at (1500, 500) 
m and (800, 10) m. Receivers R1 and R2 are located at 
(2000, 10) m and (800, 1000) m. We conducted RBF-
FD numerical simulations on polygonal homogeneous 
models using source S1 and 20 absorbing layers. Figure 
4 shows snapshots of the vertical component at 0.2 and 
0.42 s demonstrating clearly that both PML boundary 
conditions have excellent absorbing performances.

Fig. 3 Diagram of the polygonal homogeneous model. Dots 
indicate the positions of sources and triangles indicate 

receivers.

To demonstrate the advantageous utility of the CFS-
PML using source S2, we performed RBF-FD numerical 
simulations on polygonal homogeneous models. The 
number of the absorbing layers was 8. The source was 
close to the top boundary to allow the formation of near-
grazing incident waves. The angle of the concentrated 
force source was selected to ensure that P-wave and 
S-wave impinge onto the PML interface at either the 
normal or near-grazing angle. Figure 5 shows snapshots 
of the vertical component at 0.3, 0.5, and 0.7 s. One 
can clearly observe that, as simulation time increases, 
large offset and large-angle incident waves appear. 
Seismic waves are converted into evanescent waves that 
travel parallel to the PML interface, causing spurious 
refl ections. Furthermore, the stretching function becomes 
singular for low frequencies or waves with a long-term 
interaction with the PML interface, again resulting in 
spurious refl ections. The CFS-PML boundary condition 
using the CFS stretching function exhibits better 
absorption for large-angle incident waves, such that 
there are almost no spurious reflections, even at very 
large offset values. To further verify these conclusions, 
we compare waveforms recorded at two receivers for 
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Fig. 4 Snapshots of the vertical component using source S1 at 0.2 s (left) and 0.42 s (right). (a) The proposed PML. (b) The 
proposed CFS-PML. (c) Reference snapshots computed by extending the model boundaries. The black lines represent internal 

boundaries of the absorbing-zone.

Fig. 5 Snapshots of the vertical component using the source S2 at 0.3 s (a), 0.5 s (b), and 0.7 s (c). Figures on the left are 
snapshots of the proposed PML, and fi gures on the right are snapshots of the proposed CFS-PML. The cutoff threshold is 2.5% 
of the maximum value in the corresponding snapshot, and the normalized value is raised to the power of 0.3 to enhance small 

amplitudes. The amplitude is displayed in red (positive) and blue (negative) at each node.

both the cases of PML and CFS-PML. The waveforms 
at receiver R1 in Figure 6 show that both PML boundary 
conditions exhibit good absorption for normal incident 

waves. The waveforms at receiver R2 show that at large 
offsets, seismic waves impinge upon the PML interface 
at near-grazing angles, and the PML waveforms have 
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obvious spurious oscillations, whereas the CFS-PML 
waveforms remain in good agreement with the reference 
waveforms. The reference waveforms are computed by 
extending the model boundaries. Therefore, the CFS-
PML has better absorption for near-grazing incident 
and evanescent waves. These conclusions are similar to 

those of previous papers (Drossaert and Giannopoulos, 
2007; Komatitsch and Martin, 2007; Zhang et al., 2009); 
however, although the CFS-PML boundary conditions 
use the CFS stretching function in the coordinate 
transformation, they are implemented in different ways.

Fig. 6 Waveforms at receivers using source S2. (a) Receiver R1. 
(b) Receiver R2. Vertical and horizontal components are from left to right.

The non-rectangular multi-layer model
Figure 7a shows a rectangular multi-layer model where 

the P-wave velocities are 2500, 4000, and 5000 m/s and 
S-wave velocities are 1500, 2700, and 3500 m/s, from 
shallow to deep. The density is 2800 kg/m3. Mesh-free 
FD simulations need to predetermine the FD coeffi cients 
for each stencil in advance, resulting in significant 
computational costs. For RBF-FD, the FD coefficients 
are fi xed provided that the relative positions of nodes in 
the stencils remain the same. Therefore, we discretize the 
velocity model with regularly arranged nodes and then 
insert scattered nodes that perfectly fi t model interfaces 
and boundaries. Finally, an efficient “node repel” 
algorithm is used to adjust the positions of neighboring 
nodes to show the location of given interfaces and 
boundaries (Fornberg and Flyer, 2015). Figure 7b shows 
nodal distributions in the multi-layer model, i.e., nodes 
are evenly distributed with an average node spacing of 
5 m. Because RBF-FD can accurately simulate seismic 

wave propagation in the non-rectangular computational 
domain, we cut off the lower left and right regions of 
the rectangular multi-layer model. Figure 8 shows the 
non-rectangular multi-layer model and its mesh-free 
nodal distribution. The red zones show the absorbing-
zone nodal distribution generated from corner nodes, 
blue zones show the absorbing-zone nodal distribution 
generated from straight boundaries, and black and cyan 
zones show nodal distributions in the objective zone. The 
FD stencils centered on each node in the cyan zone have 
the same FD coeffi cients because the relative positions 
of nodes in these stencils are the same. We are required 
to predetermine the FD coeffi cients of any one of these 
stencils.

We used an explosive source located at (1500, 50) m 
with a 30 Hz Ricker source wavelet and a time step of 
0.0005 s. The receivers were placed with 5 m intervals 
at a depth of 50 m. The thickness of the absorbing-
zone was 100 m, and the number of the absorbing 
layers was 20. On the basis of two proposed PML 
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boundary conditions, we performed RBF-FD numerical 
simulations on rectangular and non-rectangular multi-
layer models. The total number of nodes in each FD 
stencil was 21. Coeffi cient matrices of RBF-FD included 
a first-order polynomial to improve their convergence 
rate. Furthermore, on the basis of the proposed unsplit 
CFS-PML, we also performed regular-grid numerical 
simulations on a rectangular multi-layer model, which 
has dimensions of 3000 m × 2000 m. We considered a 
10th-order-accuracy FD in regular-grid simulations such 
that the number of grid points in each regular-grid FD 
stencil was the same as the number of nodes in the RBF-
FD stencil. The regular-grid simulation has grid sizes of 
5 m × 5 m and 2 m × 2 m and 20 absorbing layers.

Figure 9 illustrates the nodal distributions of dash-
square regions in Figure 8a. Figure 10 displays 
seismograms computed by regular-grid FD. Since the 

grids in regular-grid simulations are regularly arranged, 
the staircase approximation for curved interfaces will 
inevitably lead to scattering noise, as shown in Figure 
10a. To circumvent such problems, the grid size was 
generally reduced, but this leads to an increase in 
computational cost. Figure 10b shows the seismogram 
obtained using a smaller grid size (2 m × 2 m), but some 
visible scattering noises are still visible. The mesh-
free nodal distribution can exactly depict the location 
of interfaces and boundaries, and avoid scattering 
noises, as shown in Figure 11. In addition, there are no 
visible spurious refl ections, validating the effectiveness 
of the two PML methods. Long-term simulation can 
verify the numerical stability of the two PML boundary 
conditions. Table 1 shows the memory costs (in terms of 
the number of nodes) required by RBF-FD simulations 
for rectangular and non-rectangular multi-layer models. 

Table 1 Memory costs (in terms of the number of nodes) required by RBF-FD 
simulations for rectangular and non-rectangular multi-layer models

Rectangular multi-layer model Non-rectangular multi-layer model
Objective zone 53176 (Black zone) 187516 (Cyan zone) 48314 (Black zone) 164216 (Cyan zone)
Absorbing zone 1400(Red zone) 39920 (Blue zone) 1440 (Red zone) 36040 (Blue zone)

Fig. 7 The rectangular multi-layer model (a) and its mesh-free nodal distribution (b). Black lines represent the internal boundaries 
of the absorbing-zone; solid green lines represent the internal curved interfaces of the model.
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Fig. 8 The non-rectangular multi-layer model (a) and its mesh-free nodal distribution (b). Black lines represent internal 
boundaries of the absorbing-zone; solid green lines represent the internal curved interfaces of the model.
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Fig. 9 Nodal distributions of the dash-square regions. (a) The red dash-square region. (b) The black dash-square region.

Fig. 10 Seismograms computed using regular-grid FD for the rectangular multi-layer model. (a) 5 m × 5 m. (b) 2 m × 2 m. 
Figures on the left show seismograms of the horizontal component, and fi gures on the right show seismograms of the vertical 

component.
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Figure 12 shows normalized computational times for 
RBF-FD numerical simulations running the same 
number of time steps. All simulations were performed 
on the same computer (Dell with Inter(R) Core(TM) i7-
4770 3.4 GHz CPU and 8GB memory) using MATLAB. 

This reveals that by removing unnecessary areas of 
the model and incorporating the two proposed PML 
boundary conditions, the computational cost can be 
significantly reduced and the mesh-free FD modeling 
effi ciency can be improved dramatically.
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Fig. 11 Seismograms computed using RBF-FD for the multi-layer velocity model. (a) Rectangular multi-layer model (CFS-
PML). (b) Non-rectangular multi-layer model (CFS-PML). (c) Non-rectangular multi-layer model (PML). Figures on the left show 

seismograms of the horizontal component, and fi gures on the right show seismograms of the vertical component.

Fig. 12 Normalized computational times for RBF-FD numerical 
simulations running the same number of time steps.

The truncated Hess model
The fast-generation algorithm is an advancing-

front type algorithm. The “grain radius,” a parameter 
controlling nodal density, can be obtained based on the 
model velocity and may be used to generate a model-
adaptive nodal distribution of variable-density. In mesh-
free FD simulations, nodal density increases as wave 
velocity decreases, achieving local refi nement in critical 
areas and reducing computational costs.

Figure 13 shows a truncated Hess model with the 
lower left and right regions removed. Note that this 

0
0 1000

Distance (m)
2000 3000

0.5

1.0

1.5

2.0

(a)

Tim
e (

s)

0
0 1000

Distance (m)
2000 3000

0.5

1.0

1.5

2.0

Tim
e (

s)

0
0 1000

Distance (m)
2000 3000

0.5

1.0

1.5

2.0

(b)

Tim
e (

s)

0
0 1000

Distance (m)
2000 3000

0.5

1.0

1.5

2.0

Tim
e (

s)

0
0 1000

Distance (m)
2000 3000

0.5

1.0

1.5

2.0

(c)

Tim
e (

s)

0
0 1000

Distance (m)
2000 3000

0.5

1.0

1.5

2.0

Tim
e (

s)

1.5

1.00

Rectangular
model
(CFS-PML)

Non-rectangular
model
(CFS-PML)

Non-rectangular
model
(PML)

0.93 0.931

0.5

0

No
rm

ali
ze

d c
om

pu
tat

ion
al 

tim
e



451

Sun et al.

model is used only to demonstrate the effectiveness 
of two PML boundary conditions without rigorous 
geological consideration. In order to avoid sudden 
changes in nodal density that may lead to instability 
throughout long-time simulations, we smoothed the 
velocity model. Figure 14 displays the variable-density 
nodal distribution in the truncated Hess model. The 
“grain radius” ranges from 10 to 15 m with respect to the 
S-wave velocity range of 1600 to 3200 m/s. Velocities of 
1600 and 3200 m/s correspond to “grain radii” of 10 and 
15 m, respectively. The density was set at 2800 kg/m3. 

An explosive source with a 15 Hz Ricker source wavelet 
located at (2500, 50) m was used. The time step was 
0.0005 s. Receivers were placed with 10 m intervals at a 
depth of 50 m. The thickness of the absorbing-zone was 
300 m, and the minimum number of the absorbing layers 
was 20. We performed RBF-FD numerical simulations 
on the Hess model using two proposed PML boundary 
conditions. The number of nodes in each FD stencil 
was 21. We also performed regular-grid numerical 
simulations on a rectangular Hess model with dimension 
of 5000 m × 3000 m. We used a 10th-order-accuracy FD 

Fig. 13 The truncated Hess model. (a) P-wave velocity. (b) S-wave velocity.

Fig. 15 Seismograms of the horizontal component in the Hess velocity model. 
(a) Regular-grid FD (10 m × 10 m, CFS-PML). (b) RBF-FD (CFS-PML). (c) RBF-FD (PML).

Fig. 14 The variable-density nodal distribution in the 
truncated Hess model. The black zone shows the nodal 
distribution in the objective zone, blue zones show the 
absorbing-zone nodal distribution generated based on 

straight boundaries, and red zones show the absorbing-zone 
nodal distribution generated from the corner nodes.

in regular-grid simulation such that the number of grid 
points in each regular-grid FD stencil was equivalent to 
the number of nodes in the RBF-FD stencil. The grid 
size was 10 m × 10 m, and the number of the absorbing 
layers was 20.

Figure 15 shows seismograms computed by RBF-FD 
and regular-grid FD. Almost no difference was observed 
between the results shown in Figures 15a, 15b, and 15c. 
Figure 16 displays trace number 401 from Figure 15. The 
waveforms of RBF-FD coincide with those of regular-
grid FD. These numerical results validate the accuracy of 
RBF-FD for solving seismic wave equations and further 
validate two proposed PML boundary conditions for the 
slanted boundary with large variations in velocity.
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Fig. 16 Sampled traces from seismograms (trace 401) shown 
in Figure 15.

Conclusions

In this paper, we developed PML and CFS-PML 
boundary conditions for mesh-free FD solution of the 
elastic wave equation. These conditions can effectively 
eliminate spurious reflections without convolution 
or wave field splitting. The proposed PML boundary 
conditions are applicable to vertical and horizontal 
boundaries, in addition to slanted boundaries. Through 
using RBF-FD and two proposed PML boundary 
conditions, we perform elastic wave numerical 
simulations on the polygonal homogeneous model, the 
non-rectangular multi-layer model, and then truncated 
Hess model. We make the following conclusions:

(1) These two PML boundary conditions can be 
applied to horizontal, vertical and slanted boundaries to 
obtain good absorption. For near-grazing incident waves 
and very low-frequency waves, the performance of the 
PML is severely reduced, but the proposed CFS-PML 
continues to maintain good absorption.

(2) The mesh-free nodal distribution can exactly 
depict the location of interfaces and boundaries and thus 
improve modeling accuracy. As one of the most popular 
mesh-free FD methods, RBF-FD can successfully 
simulate wave propagation in the non-rectangular 
computational domain. By removing unnecessary 
areas of the model and incorporating variable-density 
nodal distribution together with the two proposed PML 
boundary conditions, we have improved the mesh-free 
FD modeling effi ciency while ensuring accuracy.

The objective zone may have a smooth curved 
boundary. If the absorbing-zone nodal distribution is 
directly generated from a smooth curved boundary using 
the straightforward expanding strategy, the distance 
between two adjacent nodes of the outermost absorbing 
layer will not be equal to the initial distance between 
two adjacent boundary nodes. In this case, both the PML 

and CFS-PML boundary conditions can absorb incident 
elastic waves but cannot guarantee stability throughout 
long-time simulations. For a convex boundary, some 
regions outside the boundary require filling to form 
boundaries consisting of two or more straight boundaries. 
For a concave boundary, the caved-in region must be 
fi lled to form a straight boundary. Regardless of whether 
the boundary is convex or concave, it is necessary to 
fi ll some regions outside the curved boundary to form a 
polygonal objective zone with straight boundaries.
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