
56

Manuscript received by the Editor December 8, 2017; revised manuscript received March 28, 2018.
*This work was supported by the National Key R&D Program of China(2017YFC0602204-01) and NSFC (Grant Nos.
41530321 and 41104083).
1. China University of Geosciences-Beijing, Beijing100083, China.
2. Sinopec Geophysical Research Institute,Nanjing211103, China.
♦ Corresponding author: Liu Guo-Feng (E-mail: liugf@cugb.edu.cn)
© 2018 The Editorial Department of APPLIED GEOPHYSICS. All rights reserved.

An effi cient scheme for multi-GPU TTI
reverse time migration*

APPLIED GEOPHYSICS, Vol.16, No.1 (March 2019), P. 56―63, 12 Figures.
DOI:10.1007/s11770-018-0743-8

Liu Guo-Feng♦1, Meng Xiao-Hong1, Yu Zhen-Jiang1, and Liu Ding-Jin2

Abstract: Reverse time migration (RTM) is an indispensable but computationally intensive
seismic exploration technique. Graphics processing units (GPUs) by NVIDIA® offer the
option for parallel computations and speed improvements in such high-density processes.
With increasing seismic imaging space, the problems associated with multi-GPU techniques
need to be addressed. We propose an efficient scheme for multi-GPU programming based
on the features of the compute-unified device Architecture (CUDA) using GPU hardware,
including concurrent kernel execution, CUDA streams, and peer-to-peer (P2P) communication
between the different GPUs. In addition, by adjusting the computing time for imaging during
RTM, the data communication times between GPUs become negligible. This means that
the overall computation effi ciency improves linearly, as the number of GPUs increases. We
introduce the multi-GPU scheme by using the acoustic wave propagation and then describe
the implementation of RTM in tilted transversely isotropic (TTI) media. Next, we compare
the multi-GPU and the unifi ed memory schemes. The results suggest that the proposed multi-
GPU scheme is superior and, with increasing number of GPUs, the computational effi ciency
improves linearly.
Keywords: multi-GPU, kernel, peer-to-peer, forward modeling, TTI, RTM

Introduction

Seismic imaging by reverse time migration (RTM) is
indispensable to seismic exploration but computationally
intensive. Consequently, parallel computing studies
use a variety of computing devices to accelerate
the process. Graphics processing units (GPUs) with
multicore architecture and high memory bandwidth
delivers extremely high computing performance at

reduced power and cost compared to conventional
central processing units (CPUs). GPUs developed
by NVIDIA® are widely used in seismic exploration
because of their high performance and accessibility,
e.g., prestack time migration (Liu et al.,2009,2016;Li
et al.,2009;Shi et al.,2011), wave propagation forward
modeling (Micikevicius,2009; Komatitsch, 2010;
Okamoto et al., 2010; Weiss, 2013), RTM (Foltinek
et al., 2009; Liu et al.,2009; Liu et al.,2012; Liu et
al.,2013,2016; Shi et al.,2016), and waveform inversion

57

Liu et al.

(Liu et al., 2012; Monton et al., 2008; Liu et al., 2015).
In all these cases, the computational efficiency improved.
When the datasets cannot fit into the memory of a single
GPU or when increasing throughput and efficiency are
required, multiple GPUs are used to process multiple tasks
concurrently. Forward modeling of wave propagation
and RTM operations require multiple GPUs when the
computing space is larger than the memory of a single
GPU. Thus, several approaches have been proposed
(e.g., Nakata et al.,2011; Weiss,2013), where the data
communication between different GPUs uses a percentage
of the total time needed to achieve overlap of computation
and communication. This means that the ideal 1:N ratio of
computation time to the number of GPUs N is not reached
because of the limited ability of various GPUs.

We present a series of techniques for finite-difference
RTM to achieve the ideal speedup ratio using the GPU
architecture. We start with forward modeling of the acoustic
wave propagation equation and then apply these techniques
to tilted transversely isotropic (TTI) RTM using multiple
GPUs. These examples suggest that the proposed methods
can be generalized for inhomogeneous operations.

Multi-GPU computation

With the development of the compute-unified device
architecture (CUDA) and GPU hardware, new features
have been proposed to improve the efficiency of GPU
computations and to simplify multi-GPU programming. We
rely on the following critical features (Cheng et al.,2014;
NVidia,2017).

Concurrent kernel: “The Fermi architecture was the
first complete GPU computing architecture to deliver the
features required for the most demanding high-performance
computation application. Fermi has been widely adopted for
accelerating production workloads” (Cheng et al., 2014).
One key feature of the Fermi architecture is the support
for concurrent kernel execution. This means that “multiple
kernels launched from the same application context are
executed on the same GPU at the same time. Concurrent
kernel execution allows programs that execute a number
of small kernels to fully utilize the GPU” (Cheng et al.,
2014). This is also the main technique used for the full
overlap of communication and computation during multiple
GPU implementations. The difference between serial and
concurrent kernels is shown in Figure1.

Stream: “A CUDA stream refers to a sequence of
asynchronous CUDA operations that are executed on
a device in the order issued by the host code. A stream

encapsulates these operations, maintains their
ordering, and permits operations to be queued in the
stream for execution after all preceding operations.
These operations can include host-device data
transfer, kernel launches, and most other commands
that are issued by the host but handled by the device”
(Cheng et al.,2014). In many cases, such as those
featuring forwarding modeling and RTM, more
time is spent executing the kernel than transferring
data. In these situations, data communication
between multiple GPUs can be completely hidden
by dispatching the kernel execution and data transfer
into separate streams (Figure 1).

Fig.1 Serial kernel execution and
concurrent kernel execution.

Peer-to-Peer (P2P) communication: When usi-
ng the CUDA 4.0 or higher, kernel executiοn in a
“device with computational capability 2.0 and higher
can directly access the global memory of any GPU
connected to the same PCIe root node” (Cheng et
al.,2014). P2P communication supports loading and
storing addresses with a CUDA kernel and across
GPUs; moreover, it allows direct data copying
between GPUs and data transfer is performed along
the shortest PCIe path without the need to be routed
through the host memory.

Forward modeling of the acoustic
wave equation with multi-GPUs

We begin with the acoustic wave equation

2 2 2 2
2

2 2 2 2(),u u u uv
t x y z

 (1)

where u is the pressure and v is the wave velocity in
the subsurface material. The forward modeling kernel
uses second-order and higher order finite-difference
algorithms to approximate the time and space
derivatives.

Micikevicius (2009) proved that the fi nite-differe-

H2D Kernel1 Kernel2 Kernel3 D2H

H2D Kernel1

Kernel2

Kernel3

D2H

Time
Serial

Concurrency

saved time

58

Multi-GPU TTI reverse time migration

nce computations in two dimensions leads to higher
single-GPU performance. Therefore, a tiling method
is proposed that uses shared memory to improve
bandwidth. This is because the global memory access
of GPUs is not implicitly cached by the hardware. This
method can be easily extended to three dimensions,
where the fi nite-difference calculation for each slice in
the z-direction is performed using the 2D method (Liu et
al.,2013).

For 3D large-scale datasets, the global memory of a
single GPU cannot accommodate the calculated data.
In this case, CUDA offers two strategies to deal with
this condition. The fi rst is called unifi ed memory and it
creates a pool of managed memory, where each allocated

memory is accessible by multiple GPUs linked with
PCIe. The second strategy uses a real multiple GPU
scheme that divides the calculated space into separate
GPU memory pools. These two strategies are based
on the computational domain decomposition along the
depth direction. The decomposition is calculated by loop
statements in a single GPU. The domain decomposition
is shown in Figure 2. Specifi cally, Figure 2a shows the
computational domain that is divided into two parts with
a halo region related to the fi nite-difference order in the
depth direction. Figure 2b shows the finite difference
in the x–y slice of each z, which is calculated using the
Micikevicius (2009) method, and the slice in z is shown
in Figure 2c.

(a) (b) (c)

Fig. 2 Computational domain decomposition in the depth direction in multi-GPU programming: (a) computational domain,
(b) domain divided into two parts with a halo region, and (c) slice along the z-direction.

Fig. 3 Memory management for a large computational domain: (a) unifi ed memory and (b) multi-GPU scheme.

Z
X

(a) (b)

Unified memory

(d_wf1 d_wf2)

GPU0 memory

(d_wf10 d_wf20)

GPU1 memory

(d_wf11 d_wf21)

The main difference between unified-memory and
multi-GPU programming is in the memory management.
In the unified-memory strategy, the computation on
different GPUs operates on the same piece of memory
but at different index locations. Two different GPUs use
the same pointer variable at different index locations
(d_wf1 and d_wf2). GPU0 is used to calculate the 3D

wavefi eld from index iz0 = 0 to snz0, which corresponds
to the orange regions in Figure 3a. GPU1 computes the
remaining wavefields from index iz = snz0 + 1 to NZ,
which correspond to the blue regions in Figure 3a. When
a kernel is launched, the system automatically calls
the corresponding data and communication between
the two GPUs is automatically achieved through the

59

Liu et al.

system rather than manually. This simplifies multi-
GPU programming. There is no data exchange between
the two devices but because every memory transaction
to the mapped memory must pass over the PCIe bus,
signifi cant latency is added compared to global memory.

The multiple GPU scheme is shown in Figure 3b.
The total model space is divided into two subdomains
in the z-direction corresponding to GPU0 and GPU1.
We concentrate on the data communication in the halo
region at each time step. We also divide the space on
each GPU into three parts. We consider GPU0 and
calculate d_wf11 and d_wf20 separately. After fi nishing
the fi nite-difference computation, d_wf20 is transferred
to GPU1 using a P2P path to cover the halo region.
GPU1 and GPU0 follow the same process. The size of
d_wf20 and d_wf11 in the z-direction depends on the
finite-difference order in the z-space domain. d_wf20
and d_wf11 are much smaller than d_wf10 and d_wf21;
therefore, we create two streams for each GPU to overlap

the computation and communication between the two
GPUs. We then consider GPU0 to calculate the finite-
difference kernel for d_wf10 in one stream, whereas
the second stream first calculates the finite-difference
kernel for d_wf20 concurrently with d_wf10 and then
transfers the calculated d_wf20 to cover the red region
in GPU1. This process, including kernel concurrency,
steam, and P2P communication, (Figure 4) achieves total
overlapping of computation and communication in the
multi-GPU calculations. Figure 5 shows a slice along the
z-direction for a shot pulse.

Time

Stream 0 d_wf20 finite
difference kernel

data transfer
with P2P

d_wf10 finite difference kernelStream 1GP
U0

 ke
rn

el
Fig. 4 Single-GPU stream in multi-GPU programming.

Fig. 5 Shot-pulse response slice in a homogeneous medium in multi-GPU programming.

We compare the total run time of the 3D forward
modeling with different cube model volumes ranging
from 304×304×304 to 1072×1072×1072 for 650
time steps using a single GPU or multi-GPUs. The
workstation used had two 3.07 MHz Intel (R) Core (TM)
i7 CPUs with 24 GB of DDR3 memory, a K10 with
dual GK104 architecture, and 4 GB of global memory.
The comparison is shown in Figure 6. The codes for
the two different multi-GPU strategies show opposite
acceleration effects compared to the single-GPU code.
The real multi-GPU scheme, when combined with
asynchronous streams, performs well and reaches the
ideal speedup ratio with total overlap of communication
and calculation. However, the unified memory scheme
shows much lower efficiency. Figure 7 shows the
speedup ratio compared with the single GPU.

TTI RTM with multi-GPUs

RTM is a powerful seismic imaging method for
interpreting steep dips and subsalt regions. However, its
implementation is computationally expensive. Effi ciency
improvements in the RTM calculations with a single
GPU and mature computation schemes have been
proposed, e.g., a random boundary is used to substitute
for storing the wavefields in two-time wavefield
extrapolation as well as sharing the GPU memory to
enlarge the data access bandwidth (Liu et al., 2012; Liu
et al., 2013). When the imaging space is too large to
be allocated in a single-GPU memory, multiple GPUs
can be used. Thus, we focus on how to improve the

10 2 3
0 1

1

2

2 3

Distance (km)

Distance (km)

De
pth

 (k
m)

transfer with size of 2radius

60

Multi-GPU TTI reverse time migration

execution efficiency of multiple GPUs based on wave propagation forward modeling.

200

400

600

800

1000

1200

1400

 0
304 496 688 880 976 1072 3

Multi-GPUs with unified memory
One GPU
Multi-GPUs with P2P

Ti
m

e (
s)

Volume size
304 496 688 880 976 1072 3

 0

 0.5

 1

 1.5

 2

 2.5

Sp
ee

du
p

Volume size

Multi-GPUs with P2P
One GPU
Multi-GPUs with unified memory

Fig. 7 Speedup ratio for the two strategies based on two GPUs with different computational
volumes compared to a single GPU.

TTI RTM is a complex but more accurate method that
can be used when anisotropy exists in numerous rocks
and materials. We use the wave equation proposed by
Fletcher (2009)

)2()1()21(1

)2()()21(

2
2

1
2

2
2

2

2

1
2

1
2

2
2

2

2

bpqHVqHVpHV
t
q

aqpHVqHVpHV
t
p

szpzpz

szpzpz

 (2)

2 2 2
2 2 2 2 2

1 2 2 2

2 2 2
2

2 2 2

2 12 2 2

sin cos sin sin cos

sin sin 2 sin 2 sin sin 2 cos ,

,

H
x y z

x y y z x z

H H
x y z

where p is the pressure wavefield, q is the auxiliary
wavefield, ε and δ are the anisotropic Thomsen
parameters, Vpz is the P-wave velocity in normal to the
symmetry plane, Vsz is the SV-wave velocity normal to
the symmetry plane, H1 and H2 are derivative operators, θ
is the dip angle of the symmetry axis measured from the
vertical, and φ is the azimuth of the symmetry axis. Note
that the fi ve parameters needed to implement TTI RTM
are ε, δ, θ, φ, and Vpz. Vsz is controlled by parameter σ
and is

2

2σ ,pz

sz

V
V

 (3)

where α is a formal parameter. Following Fletcher
(2009), 3D TTI RTM was implemented using Eq. (2)
with α = 1 and σ = 0.75. Fletcher demonstrated that
the SV velocity corresponding to σ = 0.75 removes
triplications from the SV-wave front and minimizes the

anisotropic term of the SV refl ection coeffi cient.
The TTI RTM calculation has two parts. The first

part comprises the source and received wavefield
extrapolation by finite-difference methods, and the
second comprises the imaging by cross-correlating these
two wavefi elds at each extrapolated time step. The TTI
RTM wavefield extrapolation is a little more complex
than the acoustic situation where the main wavefield p
and auxiliary wavefield q are extrapolated alternately.
This is shown in Figure 8.

The multiple GPU extrapolation of the source and
receiver wavefields follows a similar scheme, as the
one introduced with the forward modeling multi-GPU
kernel. The large imaging space is divided into two
sections along the depth direction, as shown in Figure 9,
one is for GPU0 and the other for GPU1. Each section
also has three parts: the halo region, the streams, and
P2P transaction features. These parts are used to overlap

initial conditions
p(x,y,z)=0

initial conditions
q(x,y,z)=0

extrapolating p
with Eq. (2a)

extrapolating q
with Eq. (2b)

it<=0

it=1

extrapolating p
with Eq. (2a)

extrapolating q
with Eq. (2b)

..
.

..
...
.

it=it-1

extrapolating p
with Eq. (2a)

extrapolating q
with Eq. (2b)

extrapolating p
with Eq. (2a)

extrapolating q
with Eq. (2b)

..
. ..
...
.

it=it

it=itmax

Wavefields

Times

extrapolating p
with Eq. (2a)

extrapolating q
with Eq. (1b)

it=it+1

Fig. 8 Calculation framework for TTI RTM with
dual wavefi elds p and q.

61

Liu et al.

the time for computing and communicating between the
two different GPUs.

Fig. 9 Imaging space divided into two GPUs in TTI RTM
wavefi eld extrapolation.

When cross-correlating the imaging, the wavefields
are correlated at the equivalent latest time positions
(it+1). For convenience, the conventional wavefi elds in
the latest time step (it+1) are replaced by the wavefi elds
in the current time step (it). Therefore, there is no need to
wait for the extrapolation to end during each time step,
and the imaging calculation is performed concurrently
with the extrapolation. In TTI RTM, the extrapolation of
the source and receiver wavefi elds is not interrelated and
it can be executed concurrently.

Based on the above, we established ten streams that
allow us to achieve overlapping of the various parts
of the calculation. GPU0 and GPU1 each has five
streams for executing the source- and receiver-wavefi eld
extrapolations concurrently, as well as transferring data

GPU0

GPU1

S0/R0

S1/R1

0-0
0-1

1-1
1-0P2P

To
tal

 im
ag

ing
 sp

ac
e

with P2P and imaging with cross-correlation. The two
GPUs follow the same process at the different parts of
the imaging space (Figure 10). In GPU0, for example,
for the source extrapolation, Stream1 is responsible
for calculating the subdomain 0-0 and transferring
the result to 1-1 of GPU1 using P2P communication.
Stream2 calculates the main parts of the imaging space
using GPU0. At the same time, Stream3 and Stream4
are established to calculate the receiver extrapolation
concurrently with the source extrapolation, and Stream5
executes the cross-correlation concurrently at time t
instead of time t+1.

We applied GPU TTI RTM to a 3D TTI salt model,
which is synthesized by using forward modeling. The
model grid size is 901×901×250. The corresponding grid
interval is 15×15×10 m3. The number of shots in the 3D
TTI salt dataset is 3134. The shot interval is 120 m. The
number of channels is 16,081 and the receiver interval
is 30 m. The total recording time is 8 s and the sampling
rate is 4 ms. Figure 12 shows two sublines from the
TTI RTM imaging results, as produced by the model.
We only present the velocity and dip angle of the model
parameters. The refl ectors or layers are imaged well, i.e.,
they are continuous and strong.

Figure 11 shows that the CPU code accelerates
significantly and, compared with the dual-GPU code,
the efficiency increases by a factor of two. The test
results verify the proposed strategy with multiple GPUs
and its ability to achieve the ideal speedup ratio of 2:1.

Time

Stream 0

Stream 1

G
PU

0
ke

rn
el

s

 0-0 domain finite
difference kernel

Data transfer from 0-0
to 1-1 with P2P

S0 domain finite difference kernel

Data transfer from o-0
to 1-1 with P2P

 0-0 domain finite
difference kernel

R0 domain finite difference kernel

So
ur

ce

wa
ve

fie
ld

s
Re

ce
ive

r
wa

ve
fie

ld
s

Cross correlation

 Im
ag

in
g

Stream 2

Stream 3

Stream 4

Stream 5

Stream 6

G
PU

1
ke

rn
el

s

 1-0 domain finite
difference kernel

Data transfer from 1-0
to 0-1 with P2P

S1 domain finite difference kernel

Data transfer from 1-0
to 0-1 with P2P

 1-0 domain finite
difference kernel

R1domain finite difference kernel

So
ur

ce

wa
ve

fie
ld

s
Re

ce
ive

r
wa

ve
fie

ld
s

Cross correlation

 Im
ag

in
g

Stream 7

Stream 8

Stream 9

To
ta

l im
ag

in
g

sp
ac

e

Fig. 10 Stream structure in TTI RTM with two GPUs.

62

Multi-GPU TTI reverse time migration

When the proposed method is extended to more than
two GPUs, it only involves dividing the fi nite-difference
domain to multiple parts. However, there are no data

transformations between them and the calculation time
can be reduced proportionally to the number of GPUs.

96x96x250

144x144x250

240x240x250

192x192x250

288x288x250

450x450x250

2800

5600

8400

11200

Ti
m

e (
m

in
)

Grid size

CPU time

GPU time

96x96x250

144x144x250

240x240x250

192x192x250

288x288x250

450x450x250

180

360

540

720

Ti
m

e (
m

in
)

Grid size

1 GPU time
2 GPU time

(a) (b)

Fig. 11 Computational effi ciency: (a) CPU vs GPU and (b) one GPU vs two GPU.

 Fig. 12 The two sublines of the TTI reverse time migration results for the 3D salt TTI model. The top panels show the velocity
model parameter. The middle panels show the dip angle model parameter, and the bottom panels are the imaging results based

on the proposed algorithm.

0 3.0 6.0 9.0 12.00

1.5

3.0

4.5

Distance (km)

De
pth

 (k
m)

0

1.5

3.0

4.5

De
pth

 (k
m)

0

1.5

3.0

4.5

De
pth

 (k
m)

0

1.5

3.0

4.5

De
pth

 (k
m)

0

1.5

3.0

4.5

De
pth

 (k
m)

0

1.5

3.0

4.5

De
pth

 (k
m)

0 3.0 6.0 9.0 12.0
Distance (km)

0 3.0 6.0 9.0 12.0
Distance (km)

0 3.0 6.0 9.0 12.0
Distance (km)

0 3.0 6.0 9.0 12.0
Distance (km)

0 3.0 6.0 9.0 12.0
Distance (km)

Conclusions

A new multi-GPU scheme for forward modeling and
RTM was proposed. Newly developed features like
concurrent kernels, streams, and P2P communication
were introduced. The communication time between
different GPUs linked by PCIe in forward modeling
is totally hidden. After changing the cross-correlation
time step from (it+1) to (it), the above features were
successfully applied to TTI RTM. The test results

suggest that when using two GPUs for the above
two modules, the computing time is reduced by half
compared to one GPU. Furthermore, these techniques
can easily be extended to more than two GPUs by
dividing the fi nite-difference domain into multiple parts
according to the number of GPUs. With GPU hardware
development, e.g., stream processing in the GPU core
and improving the bandwidth between different GPUs,
the concurrent kernel and P2P communication offer the
promise of effi ciency improvements.

63

Liu et al.

Acknowledgments

We would like to thank the reviewers, Drs. He
Bingshou, Wang Boli, Li Zhenchun, and Chen Tiansheng
and editors. Their comments and suggestions improved
the manuscript.

References

Cheng, J., Grossman, M., and McKercher, T., 2014,
Professional CUDA C Programming, Wiley & Sons
Inc., Indianapolis, Indiana, P71, 73, 74, 268, 391

Foltinek, D., Eaton, D., Mahovsky, J., Moghaddam,
P., and McGarry, R., 2009,Industrial-scale reverse
time migration on GPU hardware: 79th Annual
International Meeting, SEG, Expanded Abstracts,
2789–2793.

Fletcher R.P., X. Du, P.J. Fowler, 2009, Reverse time
migration in tilted transversely isotropic media:
Geophysics, 74,179-187.

Liu, H.W., Li, B., Liu, H.,Tong, X.L., Liu, Q., Wang, X.
W., and Liu, W.Q., 2012. The issue of prestack reverse
time migration and solutions with Graphic Processing
Unit implementation, Geophysical Prospecting, 60,
906–918, doi: 10.1111/j.1365-2478.2011.01032.x

Liu, H.W., Li, B., Liu, H., Tong, X.L. and Liu, Q., 2010.
The algorithm of high order fi nite difference pre-stack
reverse time migration andGPU implementation. The
Chinese Journal of Geophysics, 53(7), 1725–1733.

Li, B., Liu, G.F. and Liu, H., 2009. A method of using
GPU to accelerate seismic pre-stack time migration:
The Chinese Journal of Geophysics, 52(1), 245–252.

Liu, G.F., and Li, C., 2016, Practical implementation
o f p res tack Ki rchhoff t ime migra t ion on a
general purpose graphic processing unit: Acta
Geophysica,64,1051–1063, doi: 10.1515/cgeo-2016-
0033

Liu,L,R., Ding, W., Liu, H.W., and Liu, H., 2015, 3D
hybrid-domain full waveform inversion on GPU:
Computers and Geosciences, 83, 27–36.

Liu, G.F.,Meng, X.H., and Liu, H., 2012, Accelerating
finite difference wavefield-continuation depth
migration by GPU: Applied Geophysics, 9, 41–48

Liu,G.F.,Liu, Y.N., and Meng, X.H., 2013, 3D seismic
reverse time migration on GPGPU: Computers and
Geosciences, 59, 17–23

Mic ikev ic ius , P. , 2009 , 3D Fin i te d i ffe rence
computation on GPUs using CUDA: Proceedings
of 2nd Workshop on General Purpose Processing on

Graphics Processing Units, GPGPU-2, Association for
Computing Machinery, 79–84.

Morton, S., Cullison, T., and Micikevicius, P., 2008,
Experiences with seismic imaging on GPUs: 70th
Annual International Conference and exhibition,
EAGE, Extended Abstracts, W08.

Nakata, N. , Tsuj i , T. and Matsuoka, T. , 2011,
Acceleration of computation speed for elastic
wave simulation using a graphics processing unit:
Exploration Geophysics, 42, 98–104, doi: 10.1071/
EG10039.

NVIDIA®, 2017, CUDA C Programming Guide; http://
docs.nvidia.com/cuda/pdf/CUDA_C_Programming_
Guide.pdf

Komatitsch, D., Erlebacher, G.,Göddeke, D., and
Micheá, D., 2010, High-order finite-element seismic
wave propagation modeling with MPIon a large GPU
cluster: Journal of Computational Physics, 229, 7692–
7714, doi: 10.1016/j.jcp.2010.06.024

Okamoto, T., Takenaka, H.,Nakamura, T., and Aoki,
T., 2010, Accelerating large-scale simulation of
seismic wave propagation by multi-GPUs and three-
dimensional domain decomposition: Earth Planets and
Space, 62, 939–942

Shi,X.H., Li, C., and Wang, S.H., 2011, Computing
prestack Kirchhoff time migration on general purpose
GPU: Computers & Geosciences, 37, 1702–1710

Shi, Y and Wang, Y.H., 2016, Reverse time migration of
3D vertical seismic profile data: Geophysics, 81(1),
S31-S38

Weiss, R.M., and Shragge, J. , 2013,solving 3D
anisotropic elastic wave equation on parallel
GPU devices:Geophysics, 78, 7–15, doi: 10.1190/
GEO2012-0063.1

Liu Guo-Feng received a B.S. in Explorat ion
Technology and Engineering (2004)
f r o m t h e C h i n a U n i v e r s i t y o f
Geosciences (Beijing), an M.S. in
Earth Exploration and Information
Technology (2007) from the China
University of Geosciences (Beijing),
and a Ph.D. in Solid Geophysics
(2010) from the Institute of Geology

and Geophysics, CAS. Since 2010, he has been a faculty
member in the School of Geophysics and Information
Technology, China University of Geosciences (Beijing)
and has been a postdoctoral research fellow at the
Institute of Mineral Resource, Chinese Academy of
Geological Sciences. His research interests include
seismic wave simulations and imaging, as well as high-
performance computing.

