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Abstract: Reverse time migration (RTM) is an indispensable but computationally intensive 
seismic exploration technique. Graphics processing units (GPUs) by NVIDIA® offer the 
option for parallel computations and speed improvements in such high-density processes. 
With increasing seismic imaging space, the problems associated with multi-GPU techniques 
need to be addressed. We propose an efficient scheme for multi-GPU programming based 
on the features of the compute-unified device Architecture (CUDA) using GPU hardware, 
including concurrent kernel execution, CUDA streams, and peer-to-peer (P2P) communication 
between the different GPUs. In addition, by adjusting the computing time for imaging during 
RTM, the data communication times between GPUs become negligible. This means that 
the overall computation effi ciency improves linearly, as the number of GPUs increases. We 
introduce the multi-GPU scheme by using the acoustic wave propagation and then describe 
the implementation of RTM in tilted transversely isotropic (TTI) media. Next, we compare 
the multi-GPU and the unifi ed memory schemes. The results suggest that the proposed multi-
GPU scheme is superior and, with increasing number of GPUs, the computational effi ciency 
improves linearly. 
Keywords: multi-GPU, kernel, peer-to-peer, forward modeling, TTI, RTM

Introduction

Seismic imaging by reverse time migration (RTM) is 
indispensable to seismic exploration but computationally 
intensive. Consequently, parallel computing studies 
use a variety of computing devices to accelerate 
the process. Graphics processing units (GPUs) with 
multicore architecture and high memory bandwidth 
delivers extremely high computing performance at 

reduced power and cost compared to conventional 
central processing units (CPUs). GPUs developed 
by NVIDIA® are widely used in seismic exploration 
because of their high performance and accessibility, 
e.g., prestack time migration (Liu et al.,2009,2016;Li 
et al.,2009;Shi et al.,2011), wave propagation forward 
modeling (Micikevicius,2009; Komatitsch, 2010; 
Okamoto et al., 2010; Weiss, 2013), RTM (Foltinek 
et al., 2009; Liu et al.,2009; Liu et al.,2012; Liu et 
al.,2013,2016; Shi et al.,2016), and waveform inversion 
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(Liu et al., 2012; Monton et al., 2008; Liu et al., 2015). 
In all these cases, the computational efficiency improved. 
When the datasets cannot fit into the memory of a single 
GPU or when increasing throughput and efficiency are 
required, multiple GPUs are used to process multiple tasks 
concurrently. Forward modeling of wave propagation 
and RTM operations require multiple GPUs when the 
computing space is larger than the memory of a single 
GPU. Thus, several approaches have been proposed 
(e.g., Nakata et al.,2011; Weiss,2013), where the data 
communication between different GPUs uses a percentage 
of the total time needed to achieve overlap of computation 
and communication. This means that the ideal 1:N ratio of 
computation time to the number of GPUs N is not reached 
because of the limited ability of various GPUs.

We present a series of techniques for finite-difference 
RTM to achieve the ideal speedup ratio using the GPU 
architecture. We start with forward modeling of the acoustic 
wave propagation equation and then apply these techniques 
to tilted transversely isotropic (TTI) RTM using multiple 
GPUs. These examples suggest that the proposed methods 
can be generalized for inhomogeneous operations.

Multi-GPU computation

With the development of the compute-unified device 
architecture (CUDA) and GPU hardware, new features 
have been proposed to improve the efficiency of GPU 
computations and to simplify multi-GPU programming. We 
rely on the following critical features (Cheng et al.,2014; 
NVidia,2017).

Concurrent kernel: “The Fermi architecture was the 
first complete GPU computing architecture to deliver the 
features required for the most demanding high-performance 
computation application. Fermi has been widely adopted for 
accelerating production workloads” (Cheng et al., 2014). 
One key feature of the Fermi architecture is the support 
for concurrent kernel execution. This means that “multiple 
kernels launched from the same application context are 
executed on the same GPU at the same time. Concurrent 
kernel execution allows programs that execute a number 
of small kernels to fully utilize the GPU” (Cheng et al., 
2014). This is also the main technique used for the full 
overlap of communication and computation during multiple 
GPU implementations. The difference between serial and 
concurrent kernels is shown in Figure1.

Stream: “A CUDA stream refers to a sequence of 
asynchronous CUDA operations that are executed on 
a device in the order issued by the host code. A stream 

encapsulates these operations, maintains their 
ordering, and permits operations to be queued in the 
stream for execution after all preceding operations. 
These operations can include host-device data 
transfer, kernel launches, and most other commands 
that are issued by the host but handled by the device” 
(Cheng et al.,2014). In many cases, such as those 
featuring forwarding modeling and RTM, more 
time is spent executing the kernel than transferring 
data. In these situations, data communication 
between multiple GPUs can be completely hidden 
by dispatching the kernel execution and data transfer 
into separate streams  (Figure 1).

Fig.1 Serial kernel execution and 
concurrent kernel execution. 

Peer-to-Peer (P2P) communication: When usi-
ng the CUDA 4.0 or higher, kernel executiοn in a 
“device with computational capability 2.0 and higher 
can directly access the global memory of any GPU 
connected to the same PCIe root node” (Cheng et 
al.,2014). P2P communication supports loading and 
storing addresses with a CUDA kernel and across 
GPUs; moreover, it allows direct data copying 
between GPUs and data transfer is performed along 
the shortest PCIe path without the need to be routed 
through the host memory.

Forward modeling of the acoustic 
wave equation with multi-GPUs

We begin with the acoustic wave equation 
  
                     

2 2 2 2
2

2 2 2 2( ),u u u uv
t x y z  

           (1)

where u is the pressure and v is the wave velocity in 
the subsurface material. The forward modeling kernel 
uses second-order and higher order finite-difference 
algorithms to approximate the time and space 
derivatives.

Micikevicius (2009) proved that the fi nite-differe-

H2D Kernel1 Kernel2 Kernel3 D2H

H2D Kernel1

Kernel2

Kernel3

D2H

Time
Serial

Concurrency

saved time



58

Multi-GPU TTI reverse time migration 

nce computations in two dimensions leads to higher 
single-GPU performance. Therefore, a tiling method 
is proposed that uses shared memory to improve 
bandwidth. This is because the global memory access 
of GPUs is not implicitly cached by the hardware. This 
method can be easily extended to three dimensions, 
where the fi nite-difference calculation for each slice in 
the z-direction is performed using the 2D method (Liu et 
al.,2013).

For 3D large-scale datasets, the global memory of a 
single GPU cannot accommodate the calculated data. 
In this case, CUDA offers two strategies to deal with 
this condition. The fi rst is called unifi ed memory and it 
creates a pool of managed memory, where each allocated 

memory is accessible by multiple GPUs linked with 
PCIe. The second strategy uses a real multiple GPU 
scheme that divides the calculated space into separate 
GPU memory pools. These two strategies are based 
on the computational domain decomposition along the 
depth direction. The decomposition is calculated by loop 
statements in a single GPU. The domain decomposition 
is shown in Figure 2. Specifi cally, Figure 2a shows the 
computational domain that is divided into two parts with 
a halo region related to the fi nite-difference order in the 
depth direction. Figure 2b shows the finite difference 
in the x–y slice of each z, which is calculated using the 
Micikevicius (2009) method, and the slice in z is shown 
in Figure 2c. 

(a) (b) (c)

Fig. 2 Computational domain decomposition in the depth direction in multi-GPU programming: (a) computational domain, 
(b) domain divided into two parts with a halo region, and (c) slice along the z-direction.

Fig. 3 Memory management for a large computational domain: (a) unifi ed memory and (b) multi-GPU scheme.
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The main difference between unified-memory and 
multi-GPU programming is in the memory management. 
In the unified-memory strategy, the computation on 
different GPUs operates on the same piece of memory 
but at different index locations. Two different GPUs use 
the same pointer variable at different index locations 
(d_wf1 and d_wf2). GPU0 is used to calculate the 3D 

wavefi eld from index iz0 = 0 to snz0, which corresponds 
to the orange regions in Figure 3a. GPU1 computes the 
remaining wavefields from index iz = snz0 + 1 to NZ, 
which correspond to the blue regions in Figure 3a. When 
a kernel is launched, the system automatically calls 
the corresponding data and communication between 
the two GPUs is automatically achieved through the 
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system rather than manually. This simplifies multi-
GPU programming. There is no data exchange between 
the two devices but because every memory transaction 
to the mapped memory must pass over the PCIe bus, 
signifi cant latency is added compared to global memory.

The multiple GPU scheme is shown in Figure 3b. 
The total model space is divided into two subdomains 
in the z-direction corresponding to GPU0 and GPU1.
We concentrate on the data communication in the halo 
region at each time step. We also divide the space on 
each GPU into three parts. We consider GPU0 and 
calculate d_wf11 and d_wf20 separately. After fi nishing 
the fi nite-difference computation, d_wf20 is transferred 
to GPU1 using a P2P path to cover the halo region. 
GPU1 and GPU0 follow the same process. The size of 
d_wf20 and d_wf11 in the z-direction depends on the 
finite-difference order in the z-space domain. d_wf20 
and d_wf11 are much smaller than d_wf10 and d_wf21; 
therefore, we create two streams for each GPU to overlap 

the computation and communication between the two 
GPUs. We then consider GPU0 to calculate the finite-
difference kernel for d_wf10 in one stream, whereas 
the second stream first calculates the finite-difference 
kernel for d_wf20 concurrently with d_wf10 and then 
transfers the calculated d_wf20 to cover the red region 
in GPU1. This process, including kernel concurrency, 
steam, and P2P communication, (Figure 4) achieves total 
overlapping of computation and communication in the 
multi-GPU calculations. Figure 5 shows a slice along the 
z-direction for a shot pulse.

Time

Stream 0 d_wf20 finite
difference kernel

data transfer
with P2P

d_wf10 finite difference kernelStream 1GP
U0

 ke
rn

el
Fig. 4 Single-GPU stream in multi-GPU programming.

Fig. 5 Shot-pulse response slice in a homogeneous medium in multi-GPU programming.

We compare the total run time of the 3D forward 
modeling with different cube model volumes ranging 
from 304×304×304 to 1072×1072×1072 for 650 
time steps using a single GPU or multi-GPUs. The 
workstation used had two 3.07 MHz Intel (R) Core (TM) 
i7 CPUs with 24 GB of DDR3 memory, a K10 with 
dual GK104 architecture, and 4 GB of global memory. 
The comparison is shown in Figure 6. The codes for 
the two different multi-GPU strategies show opposite 
acceleration effects compared to the single-GPU code. 
The real multi-GPU scheme, when combined with 
asynchronous streams, performs well and reaches the 
ideal speedup ratio with total overlap of communication 
and calculation. However, the unified memory scheme 
shows much lower efficiency. Figure 7 shows the 
speedup ratio compared with the single GPU. 

TTI RTM with multi-GPUs

RTM is a powerful seismic imaging method for 
interpreting steep dips and subsalt regions. However, its 
implementation is computationally expensive. Effi ciency 
improvements in the RTM calculations with a single 
GPU and mature computation schemes have been 
proposed, e.g., a random boundary is used to substitute 
for storing the wavefields in two-time wavefield 
extrapolation as well as sharing the GPU memory to 
enlarge the data access bandwidth (Liu et al., 2012; Liu 
et al., 2013). When the imaging space is too large to 
be allocated in a single-GPU memory, multiple GPUs 
can be used. Thus, we focus on how to improve the 
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execution efficiency of multiple GPUs based on wave propagation forward modeling.
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Fig. 7 Speedup ratio for the two strategies based on two GPUs with different computational 
volumes compared to a single GPU. 

TTI RTM is a complex but more accurate method that 
can be used when anisotropy exists in numerous rocks 
and materials. We use the wave equation proposed by 
Fletcher (2009)
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where p is the pressure wavefield, q is the auxiliary 
wavefield, ε  and δ are the anisotropic Thomsen 
parameters, Vpz is the P-wave velocity in normal to the 
symmetry plane, Vsz is the SV-wave velocity normal to 
the symmetry plane, H1 and H2 are derivative operators, θ 
is the dip angle of the symmetry axis measured from the 
vertical, and φ is the azimuth of the symmetry axis. Note 
that the fi ve parameters needed to implement TTI RTM 
are ε, δ, θ, φ, and Vpz. Vsz is controlled by parameter σ 
and is

                                 
2

2σ ,pz

sz

V
V  

                   (3)

where α is a formal parameter. Following Fletcher 
(2009), 3D TTI RTM was implemented using Eq. (2) 
with α = 1 and σ = 0.75. Fletcher demonstrated that 
the SV velocity corresponding to σ = 0.75 removes 
triplications from the SV-wave front and minimizes the 

anisotropic term of the SV refl ection coeffi cient.
The TTI RTM calculation has two parts. The first 

part comprises the source and received wavefield 
extrapolation by finite-difference methods, and the 
second comprises the imaging by cross-correlating these 
two wavefi elds at each extrapolated time step. The TTI 
RTM wavefield extrapolation is a little more complex 
than the acoustic situation where the main wavefield p 
and auxiliary wavefield q are extrapolated alternately. 
This is shown in Figure 8. 

The multiple GPU extrapolation of the source and 
receiver wavefields follows a similar scheme, as the 
one introduced with the forward modeling multi-GPU 
kernel. The large imaging space is divided into two 
sections along the depth direction, as shown in Figure 9, 
one is for GPU0 and the other for GPU1. Each section 
also has three parts: the halo region, the streams, and 
P2P transaction features. These parts are used to overlap 
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61

Liu et al.

the time for computing and communicating between the 
two different GPUs. 

Fig. 9 Imaging space divided into two GPUs in TTI RTM 
wavefi eld extrapolation.

When cross-correlating the imaging, the wavefields 
are correlated at the equivalent latest time positions 
(it+1). For convenience, the conventional wavefi elds in 
the latest time step (it+1) are replaced by the wavefi elds 
in the current time step (it). Therefore, there is no need to 
wait for the extrapolation to end during each time step, 
and the imaging calculation is performed concurrently 
with the extrapolation. In TTI RTM, the extrapolation of 
the source and receiver wavefi elds is not interrelated and 
it can be executed concurrently.

Based on the above, we established ten streams that 
allow us to achieve overlapping of the various parts 
of the calculation. GPU0 and GPU1 each has five 
streams for executing the source- and receiver-wavefi eld 
extrapolations concurrently, as well as transferring data 
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with P2P and imaging with cross-correlation. The two 
GPUs follow the same process at the different parts of 
the imaging space (Figure 10). In GPU0, for example, 
for the source extrapolation, Stream1 is responsible 
for calculating the subdomain 0-0 and transferring 
the result to 1-1 of GPU1 using P2P communication. 
Stream2 calculates the main parts of the imaging space 
using GPU0. At the same time, Stream3 and Stream4 
are established to calculate the receiver extrapolation 
concurrently with the source extrapolation, and Stream5 
executes the cross-correlation concurrently at time t 
instead of time t+1.

We applied GPU TTI RTM to a 3D TTI salt model, 
which is synthesized by using forward modeling. The 
model grid size is 901×901×250. The corresponding grid 
interval is 15×15×10 m3. The number of shots in the 3D 
TTI salt dataset is 3134. The shot interval is 120 m. The 
number of channels is 16,081 and the receiver interval 
is 30 m. The total recording time is 8 s and the sampling 
rate is 4 ms. Figure 12 shows two sublines from the 
TTI RTM imaging results, as produced by the model. 
We only present the velocity and dip angle of the model 
parameters. The refl ectors or layers are imaged well, i.e., 
they are continuous and strong.

Figure 11 shows that the CPU code accelerates 
significantly and, compared with the dual-GPU code, 
the efficiency increases by a factor of two. The test 
results verify the proposed strategy with multiple GPUs 
and its ability to achieve the ideal speedup ratio of 2:1. 
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Fig. 10 Stream structure in TTI RTM with two GPUs.
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When the proposed method is extended to more than 
two GPUs, it only involves dividing the fi nite-difference 
domain to multiple parts. However, there are no data 

transformations between them and the calculation time 
can be reduced proportionally to the number of GPUs.
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Fig. 11 Computational effi ciency: (a) CPU vs GPU and (b) one GPU vs two GPU.

 Fig. 12 The two sublines of the TTI reverse time migration results for the 3D salt TTI model. The top panels show the velocity 
model parameter. The middle panels show the dip angle model parameter, and the bottom panels are the imaging results based 

on the proposed algorithm.
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Conclusions

A new multi-GPU scheme for forward modeling and 
RTM was proposed. Newly developed features like 
concurrent kernels, streams, and P2P communication 
were introduced. The communication time between 
different GPUs linked by PCIe in forward modeling 
is totally hidden. After changing the cross-correlation 
time step from (it+1) to (it), the above features were 
successfully applied to TTI RTM. The test results 

suggest that when using two GPUs for the above 
two modules, the computing time is reduced by half 
compared to one GPU. Furthermore, these techniques 
can easily be extended to more than two GPUs by 
dividing the fi nite-difference domain into multiple parts 
according to the number of GPUs. With GPU hardware 
development, e.g., stream processing in the GPU core 
and improving the bandwidth between different GPUs, 
the concurrent kernel and P2P communication offer the 
promise of effi ciency improvements.
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