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Abstract

is then iteratively solved by the approximate zero norm solution. The inversion approach 
mainly employs forward modeling; a depth weight function is introduced into the objective 
function of the zero norms. Sparse inversion results are obtained by the corresponding optimal 
mathematical method. To achieve the practical geophysical and geological significance of 
the results, penalty function is applied to constrain the density values. Results obtained by 
proposed provide clear boundary depth and density contrast distribution information. The 

synthetic models. To further explain its reliability, a practical gravity data is obtained for a 
region in Texas, USA is applied. Inversion results for this region are compared with those of 
previous studies, including a research of logging data in the same area. The depth of salt dome 
obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value 
from the logging data. From this, the practicality of the inversion method is also validated.
Keywords
iterative method, density constraint penalty function

Geophysicists expect much geological information 
from gravity data; therefore, precise relay and 
interpretation of these data is crucial. The proposed three-

describe sub-surface density distribution characteristics; 
nevertheless, it is faced with several challenging, key 

gravity information of a sub-surface anomaly, which is 

surface anomalies of different volumes gives the same 
gravity data, leading to multiple solutions of inversion 
results, and; 3. There is volume effect of gravity field 
data, meaning, each observed gravity data point is the 
comprehensive reaction of the sub-surface anomalies; 
hence, obtaining sub-surface anomaly information from 
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the 3D gravity data inversion results are unstable and 

Geophysicists have applied the constantly improving 
mathematical algorithms to solve the problems 
associated with the 3D gravity data inversion. Two 
methods were mainly used to solve the multiple solutions 
and instability of gravity data inversion. (1) The first 

data calculated by the forward models and inversion 
results are studied, and the geological information are 
applied in the inversion research. Afterwards, sub-
surface geological anomalies with relatively shallow 
depth and complicated geometry are interpreted by a 
human-computer interactive inversion method; thus, 
the accuracy of inversion results is mainly determined 
by the interpreter’s understanding. (2) The inversion 

solution of linear or non-linear functions (Gholami 
and Siahkoohi, 2010; Bijani et al., 2015; Ghalehnoee 

location, and distributions of density contrast are 
obtained by this method. Several related approaches 
have been studied to obtain the density distribution of 
target anomalies, which are categorized into inversion 
methods using little prior information (Last and Kubik, 
1983; Barbosa and Sliva, 1994; Li and Oldenburg, 

2009; Wang et al., 2017) and those using much prior 
information (Guillen and Menchetti, 1984; Silva et al., 
2006; Lelievre and Oldenburg, 2009; Silva Dias et al., 
2009; 2011). 

The key technologies involve discretization of 
sub-surface domain to establish linear or non-linear 
relationship between gravity data and sub-surface 
density contrast distribution and to formulate a 
mathematical theory capable of solving the established 

distributions of anomalies (Gholami and Siahkoohi, 
2010; Bijani et al., 2015; Ghalehnoee et al., 2017; 

geological information to establish a sub-surface three-
dimensional gravity and magnetic models that would 
reduce the uncertainty of inversion results; however, this 
method is not suitable for regions that have insufficient 
geological information. To compensate for this weakness, 
the Tikonov regularization theory was introduced and 
added a number of mathematical constraints to reduce 

For example, prior information was added into the model 
function in the form of weight function. Minimization 

of the target model and data misfit functions was then 
achieved using the constraint of model parameter 
function. Finally, theoretically optimal inversion 
results were obtained. Different constraints can be 
introduced simultaneously according to the fundamental 
characteristics of different potential field data to 
overcome their shortcomings (such as the convergence 
effect of forward kernel function in 3D gravity inversion). 

by studying the kernel function. Li and Oldenburg 
(1996, 1998) introduced this method into gravity data 
and magnetic data inversion. With the depth weighting 
function applied to counteract the attachment effect of 
gravity and magnetic field data, the inversion results 
obtained were in accordance with the actual geological 
conditions. Last and Kubik (1983) used an approach to 
minimize the volume of anomalies, and then compressed 
the volume of abnormal sources in a more reasonable 
range, to define the sharp density boundary of these 

have improved this principle, while constantly enhancing 
its efficiency and practicality (Guillen and Menichetti., 
1984; Barbosa and Silva, 1994; Portniaguine and 

Another method, the focusing inversion, was applied by 
Totini et al. (2009, 2012) to the seafloor magnetic field 

in the South Pacific Ocean to analyze the variation 
characteristics of seafloor rock susceptibility, and to 
simultaneously obtain the accurate inversion results by 
introducing rock physical constraints into the inversion 

relationship between observed data and anomalous 
bodies was established, which was then solved by 

Commer (2011) applied non-linear conjugate gradient 
method to solve gravity gradient inversion problems 
with weight function. Upper and lower limit density 
constraint functions were in the form of a global objective 
function that increases the accuracy of inversion results. 
These inversion methods plays an important role in 

they are helpful in the study of geosciences, including 
establishment of geological models and restoration of 
sub-surface geological structures, among others.

The volume of sub-surface anomaly body is normally 
smaller than the whole sub-surface space, while its mesh 
is sparse. Taking these characteristics into account, this 
paper focuses on an inversion method that introduces the 
concept of zero norm function (the number of non-zero 
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elements) into the model objective function, in order to 
constrain the sub-surface model. Mathematical theory 
and model test prove that the zero norm constraint 

problems in 3D inversion to a certain extent. At the same 
time, solve the zero norm is rigorous and challenging. 
We use the function of approximate zero norm instead 
of zero norm to constrain the object, which is solved by 
iterative solution method, and determine the sub-surface 
density distribution characteristics of the study region. 
This inversion method is applied to the actual gravity 
data in Texas, USA.

Firstly, the sub-surface should be discretized, and the 
space is divided into several adjacent prims consisting 
of the subsurface space. The density of each unit should 

a coordinate origin O. Using Newton’s law of universal 
gravitation, we could obtain the gravity potential field 
data. The residual gravity field caused by any point in 
the ground space is given by

,
V

dVmU(r)
r

(1)

where m is the density contrast of the subsurface 
anomaly, V is the volume, U(r)

r is the distance 
between the observation point and the anomalous source.

Ug = ,
z

(2)

where U
The forward formulation of the sub-surface abnormal 

1996)

2 2 2

1 1 1

{ ( ) ln ( ) ( ) ln ( )
( )( )( ) arctan }| | | ,

( )
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(3)

where (x, y ,z) is the coordinate of the observations, 
and ( ) is the coordinates center of the subsurface 
anomalies such that

1
2 2 2 2[( ) ( ) ( ) ] .r x y z

The gravity data on the ground is obtained according 
to the forward formula of rectangle bodies, which consist 
of each rectangular discrete anomalous subsurface space. 
Using the superposition principle for each gravity data 
of each prism results to the discrete gravity data formula 
(Li and Oldenburg, 1998)

,d = Gm (4)

where G RN×M represents the gravity forward kernel 
function of the density distribution model space, 
m RM×1 is the subsurface space density distribution 
vector, and d RN×1 is the surface observed gravity data. 

M and N respectively represent the number of the 
subsurface space prism and the corresponding value of 
the observed gravity data points.

is attributed to much less number of observation 
points than the number of discrete meshes in a sub-

sparse recovery iteration method based on zero norm to 

recovery has been widely applied in other geophysical 

and Chen, 2014). In thus paper, the zero norm function 
is introduced into 3D gravity inversion.

Generally, the number of subsurface grid is Nz times 
than the number of ground gravity observation points 
(Nz is the number of the vertical layer), which is much 
larger than the number of ground observation points. In 
other words, in the underdetermined functions d = Gm,
the number M of the unknown solution m is far greater 
than the number of N (the number of ground observation 

Because the number of anomalous bodies’ prisms in the 
subsurface is sparse, the zero norm function of the model 
parameter is introduced to obtain the optimal inversion 
results, which are the most sparse inversion results. The 
objective function is based on the inverse problem of      
d = Gm, which can be transformed into one of the most 
sparse optimization problems 
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0
min

,
. .s t

prem m

d Gm
(5)

where m = (m1, m2, …, mN) is the density contrast of 
the target anomalies relative to the surrounding rock, 
and mpre = (mpre1, mpre2, …, mpreN) is a priori density 
contrast of the target anomalies.

The proposed inversion method is based on the theory 
of sparse recovery, which demand solution using the 
reconstruction algorithm of zero norm minimization. 

(2005), and Donoho and David (2006) pointed out that 

solved approximately by other mathematical methods. 
There are several main methods applicable in solving 
the problem of zero norms. Basis Pursit algorithm is 
an effective method (Chen et al., 1998; Li et al., 2003; 
Donoho, 2006), while Matching Pursuit is another fast 

Lesage, 2006). The downside of these algorithms is 
they are greedy, where calculations could be very slow, 
aside from needing to enhance the accuracy of the sparse 
recovery. Therefore, based on full range search, these 
greedy algorithms are not suitable for large scale sparse 
recovery problems. Besides, a number of alternative 
methods using an L1 norm can be used to approximately 
replace the zero norms, such as the interior point, 
iterative weight weighted L1 norm, projection gradient, 
and so on (Chen et al., 2001; Elad, 2007; Figueiredo et 
al., 2007).

For this work, an approximate zero norm function 
replaces the zero norm to solve the occurrence of N-P 
hard problem for zero norms. The selected approximate 
function is a smooth Gauss function, in which the 
expected value is zero; this mathematical model is 
capable of solving the problem of zero norm (Mohimanni 
et al., 2009). In the case where regional geological data 

mpre is to zero, then 

the approximate zero norm function is expressed as

2

2( ) exp( ),
2

f mm (6)

where m is the residual density contrast, and  is a 
parameter to control the degree of the smoothness and 
sharpness of f (m)

0

1 0
lim ( ) .

0 0
m

f m
m

(7)

The approximate zero norms proposed in this part 
should be discrete, 

1
( ) ( ).

N

i
i

F fm m (8)

Moreover, M is the number of discrete subsurface 
spaces such that

00
lim ( ) .MF m m (9)

Using Gauss approximation after discretization, 
the N-P hard problem in the process of zero norm 
solution can be solved well (Mohimani et al., 2009). 
Alternatively, M–F (m) also approximates the zero norm 
of m such that

0
( ),Mm F m (10)

where there is a very essential parameter  for the whole 
inversion method process.

The parameter  plays a very significant role in the 
final solution of this problem, as it selects a value that 
determines the approximate degree of smoothness and 
an approximation of the function F . The smaller  is, 
the more accurate the approximation is; likewise, the 
smoother the Gauss function selection is, the easier the 
true global minimum solution is.

Based on the analysis of formulations (9) and (10), a 
sufficiently small  lets us discover that the minimum 
problem of F (m) can be replaced by a maximum 
problem. In other words, the minimum problem can be 
transformed into another function form as determined by

arg max ( )
.

m F m
d Gm

(11)

of  as outer iteration and (2) giving  value as inner 

We mainly use the Lagrange method to approach this 
problem. The Lagrange multiplier and functions are 
introduced in

( , ) ( ) ( ).TL m F m Gm d (12)

The Karush–Kuhn–Tuchker system is ideal (Cheng, 
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We use an approximate method to deal with the inner 
iteration. Given the initial value of 0, m(0) through 
n iteration to get the final error, meets the accuracy 

( ) 2
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In the inversion process, selecting the value of 
is very crucial. If it is too large, then the resulting 
approximate degree of zero norm will not enough or too 
far, thus, reducing the inversion resolution as inversion 
results become over smooth. In contrast, if the choice 
is too small, the inversion solutions will easily fall into 
the local minimum solution trap, as well as easily get 
affected by the Gauss noise.  does not only guarantee 
a global minimum solution or avoid the influence of 
noise, but also ensures the target function to approximate 
the zero norm so that an accurate inversion solution is 

the external iteration for similar reasons. The updated 
parameters are obtained by

( 1) ( ) ,n n (15)

where

Formula deduction yields a new inversion weight 
function. Constantly updating this weight function 
enables the iteration inversion results to approximate 
the real subsurface model very well. The new weight 
function is expressed as

( )
( ) 2

20
( )2

1 ,
( )1 exp( ) 10
2

n
i n

i
n

w
m (16)

where the appearance of 10  prevents the emergence 
of zero values in the vector m, which will make the 
function meaningless. 

Following a series of formulas derivation below, a 
new inversion algorithm can be obtained.

1.The initial value of the inversion model density is 

set to m = 0
initial value m0 (the conjugate gradient method is used 
as the initial value), (0) = 100×max(abs(m0)), and =0.8.

2.The conjugate method is employed to obtain the 
inversion results m(n), where n is the number of iterations. 
At the same time, the weight function matrix W(n) is 
updated continuously. Matrix W(n) is the diagonal matrix 
of the n×n order; its component in the diagonal is 1/wi(n),
and its value is continuously updated to a new function 
w(n), wi(n+1)=1-1/(exp-(mi(n)+1)2/2( (n+1))2)+10 ).

3. Parameter  in the outer loop is updated to (n+1) = (n).
4. If <10 , then updating stops and this value is 

maintained. The stopping criteria for this inversion 
iteration of the new inversion method is

4( ) ( ) 10 .
T

RMS
N

d Gm d Gm (17)

5. When the iterative stopping condition is satisfied, 

of the inversion.

The proposed algorithm has two important parameters 
 and 

Varying and selecting these values directly affect the 
accuracy of the results, along with the degree of noise 

for the approximate zero norms. Through an analysis of 
the approximate zero norm and number of experiments 
conducted, we discover that the best  is between 0.5–1.0, 
as this selection can prevent the parameter falling too 
fast leading to unstable inversion results. In this paper, 
we choose  = 0.8. As mentioned previously. the initial 
value of 
inversion results; a small  may make the results fall into 
the local minimum, while a large  may not only make 
the results too smooth to give an accurate restriction for 
the inversion, but will also raise the number of iterations. 
Therefore, we used an adaptive method to update  in 
each iteration process by multiplying it with , using 
twice the absolute value of the maximum density in the 

1
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initial iteration as the initial value ensuring the weight 
of the anomalous density body during the inversion. In 
mathematical theory, this parameter variation method 

3D gravity data inversion aims to obtain the 
spatial distribution characteristics of the subsurface 
anomalies for a more comprehensive understanding of 
subsurface geological structure and mineral distribution 
characteristics. The sparse recovery method we adopted 
can basically solve the problem of gravity 3D inversion 
and obtain the 3D density distribution characteristics 
of the relatively accurate subsurface anomaly sources. 

realistic physical and geological meaning, the density 
contrast from the inversion should be constrained in 
real and accurate range. The density constraint function 
selection method is described in the following. A 
subsurface inversion space consists mainly of two 
density models, namely, rock density and anomaly. In the 
inversion, the surrounding rock density is the inversion 
density standard, thus, we can think of it as a density 
of a surrounding rock with a zero residual value. The 
density contrast of target anomalous bodies refers to the 
difference between the density of the anomalous bodies 
and the density of the surrounding rock. Based on the 
geological data of the inversion region, the average 
density of the surrounding rock can be found, and the 
observed gravity potential field data are processed to 
remove the anomalies caused by the regional density. 
Simultaneously, using the geological data to determine the 
density change in the anomalous sources, we can pinpoint 
the limitation of the anomalous density, and then contrast 
the inversion results in a reasonable density range. Since 
the sparse recovery 3D inversion method appears as the 
focusing phenomenon of inverse density, such density 
exceeds the range of the actual real anomaly source, thus, 

this reason, we must select the effective density constraint 
function that guarantees inversion results and that limits 
the inversion results within the physical, geophysical, and 

function aims to determine the upper and lower limits of 
the density (mb and ma), so as to ensure that the residual 
density value of inversion change is within this range. 
Several density constraint functions exist, the first 
application of which was in conductivity inversion; for 
example, in 1999, Kim et al. (1999) used the logarithmic 
function of conductivity to constrain the varied electrical 
conductivity values within the reasonable range. This was 

succeeded by gravity and magnetic inversion application 

for an aggregation process. A number of constraint 
functions have continued to appear in different studies 
and applications afterwards such as in the successful 
electrical resistivity tomography by Cardarelli and 
Fischanger (2006), and in the inverse hyperbolic tangent 
transfer function, aside from a previous logarithmic 
transformation, by Commer and Newman (2008), which 
limited the conductivity parameter in a transformation 
with the unbounded domain, and ensured rationality of 
the conductivity.

With regards to sparse inversion method, we referred 
to research and tests of various density constraint 
functions, and found that the simple upper and lower 
bound function is the most effective method for the study 
of the density function. Thus, in this work, we exploited 
the upper and lower function as the constraint function 
in the inversion as it is presumed to make the exceeding 
density of the inversion results fall within the reasonable 
range of the geological data, and to enable us to obtain 
inversion results that are consistent with the geological 

given by

,
, 1, 2, ...,

i b b i

i i a i b

i a i a

m m m m
m m m m m i
m m m m

M , (18)

where mb and ma are the respective upper and lower 
bounds of the density. This constraint function is 
combined with the spare recovery method proposed in 
this paper to produce accurate, stable, and true inversion 
results.

In this section, we verified the effectiveness and 
feasibility of the proposed inversion method through 
tests employing two discrete models. The study area 

and lines were separated from each other by 50 m. We 
used a discrete data grid point of 30×30, and dispersed 
the subsurface space of research area by dividing it into 
30×30×15 grids. Each grid prim was a cube measuring 
50 m × 50 m × 50 m. The number of ground observation 
points and the number of underground grids were 
consistent in each test.



530

Three-dimensional gravity inversion based on sparse recovery iteration

Easting direction (m)

No
rth

ing
 di

re
cti

on
 (m

)

1500

1250

1000

750

500

250

0

2.5

2

1.5

1

0.5

0
0 250 500 750 1000 1250 1500

m (Gal)

The subsurface space has 16500 grids; Table 1 
shows the spatial coordinates of the two models. The 
density contrast of each anomalous body is 1g/cm3; the 
simulated values of gravity anomalies (data contained 
by Gauss noise 5%) are shown in Figure 2. The spatial 
distributions of models are shown in Figures 3a and 
3b, where the characteristics of models can be clearly 
observed. As shown, the test region of the simulated 
values of gravity anomalies can cover the anomalous 
body completely, ensuring that the model of subsurface 
inversions can be obtained successfully.

Model number Easting direction (m) × northing
direction (m) × depth direction (m)

Center position
(m)

Density
(g/cm3)

A 250 m × 250 m × 200 m 475 × 775 × 300 1
B 250 m × 250 m × 200 m 1025 × 775 × 300 1

Applying 3D gravity inversion based on the iterative 
solution of sparse recovery with approximate zero norms, 
inversion calculations were carried out by the ground 
gravity data using the theoretical models. The objective 
function was established by the sensitivity matrix of 
model space and the gravity anomaly. Assuming that 

there was no a priori information, the initial model had 
zero vectors. In the inversion,  = 0.8, and  is twice 
the results of the initial inversion. After constructing the 
objective function, we constrained the density of inversion 
results within 0.0–1 g/cm3

Based on the comparison (Figure 3) between the 
section figures of the inversion results and theoretical 
models, there good agreement in the depth of 250 m, 
where accurate density distribution and the boundary of 
subsurface anomalous bodies are clearly. In the northing 
direction of 750 m, a very small deviation between the 
inversion results and design models in the inversion 

results could be seen. At deep position, the inversion 
results vary slightly with those of the real model. Thus, 
inversion results show that the proposed inversion 
method can identify density distribution and spatial 
distribution characteristics of the subsurface anomalies 
very well. This paper adopted the MATLAB platform 
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Dyke Dyke

had very high accuracy level and vertical resolution.

As mentioned above, there are 16500 in the subsurface 
space; the spatial coordinates of the model body are 
shown in Table 2. The density contrast of the anomalous 
body is 1g/cm3. Figure 4 shows the simulated values of 
gravity anomalies (Gauss noise containing 5%), while 
Figs. 5a and 5b show the spatial distribution of the model. 
Simulation of the gravity model anomaly values was 
completely contained in the inversion region. Based on 
the calculations, the subsurface model can be successfully 

obtained with the proposed inversion method.

Model number Easting direction (m) × northing 
direction (m) × depth direction (m) Inclination Center position

(m)
Density
(g/cm3)

Dyke 150 m × 150 m × 400 m 135° 775 × 775 × 300 1

Using the method of 3D gravity inversion based 
on the iterative solution of the sparse recovery with 
approximate zero norms, we carried out the inversion 
calculation of the gravity anomaly produced by the 
theoretical model in the ground. We established the 
objective function using the sensitivity matrix of the 
model space and the gravity anomaly of the forward 
model. In the case without any priori information, the 
initial model vector is the zero vector. The initial value 

initial value for the succeeding inversion, where  = 0.9 
(according to the characteristics of inversion anomaly, 
and its convergence with the iterative inversion method) 
and  is twice the maximum value of the initial inversion 
solutions, so that the objective function is constructed. 
Densities of the inversion were constrained within 0–1g/
cm3

Inversion results for the inclined rock veins are shown 
in Figure 5.

Based on the comparison in Figure 5, in the depth of 
250 m, the inversion results approximated the theoretical 
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inversion of an actual gravity data observation. The 
research region, located in the American state of Texas, 
was covered in rock salt. Due to the great relationship 
of oil and gas storage with rock salt, the results of this 
research is greatly significant for rock salt regions. In 
the actual initial iteration process of gravity inversion, a 
large  avoid inversion solutions getting trapped into the 
local minima, making the results unstable. At this point, 

 values are relatively close to 1, which can prevent 
rapid inversion decay. To achieve relative stability of 
the inversion results, reducing  should be gradual. 
Depending on the rate of decrease,  can accelerate 
decrease in the speed of 
solution can be obtained as the gravity inversion result. 
In the real data inversion, the choice of 
important; thus, we set  = 0.9 for in this paper.

The actual survey region measures 16500 m × 16500 
m. From Figure 6 of residual gravity anomaly, a low 
gravity anomaly was apparent in the region, as indicated 
by the grid of gravity data. The sub-surface region was 
divided into 33 × 33 × 10 vertical rectangular prisms, 
with geometry measuring 500 m × 500 m × 500 m.

model, and the horizontal position of the rock vein were 
approximately found. A certain deviation was observed 
but could be neglected as the information of anomalous 
boundaries obtained by the inversion was relatively 
accurate. Moreover, the density contrasts of the inversion 
results were in accordance with the true density 
contrasts. From the horizontal slices of the inversion 
research of the rock vein, the inversion method could 
obtain the characteristics of the shallow anomaly. From 
the compared results of the northing–southing direction 
slice, the approximate features of the rock vein could 
also be obtained, and the characteristics of the shallow 
region were very good. In contrast, inversion results in 
the deep region of the rock vein were relatively poor, 
which could be attributed to the less deep information of 

priori information, although the position of deep rock 
vein cannot be simulated, the approximate shape of the 
rock vein was clear. Moreover, the spatial distribution 
and density distribution of the rock vein were consistent 
with the model of the real setting, and inversion results 
were accurate as well. The inclined rock vein simulation 
was based on the MATLAB platform, and the results 
were calculated by an ordinary computer with a typical 

relatively longer, at 1042 s, than in the inversion of two 
separate rectangular anomalies, as these were decided by 

of the proposed 3D inversion method.
From the analysis of the inversion results of the 

theoretical model, the stabilized convergence adopting 
the approximate zero norm sparse recovery method was 
reached, with accurate inversion results, which were in 

positively reflect those of the true model of the spatial 
density distribution. Moreover, this inversion process 
did not produce excess structural information of false 
interpretation and false results. Thus, the characteristics 

the most basic density distribution and structural features, 
which we mainly wanted to obtain. The results have very 
clear boundary information and accurate exception to 
the density values. Therefore, these characteristics meet 

interpretation, researches, and empirical observations.

The 3D inversion method can be applied to the 

The real gravity data observed in the region was 
applied on the proposed 3D inversion. Density contrast 
distribution and variation characteristics of the sub-
surface anomalies were obtained using the source 
characteristics, including the depth, north–south and 
east–west directions, of the geological structures. 
Afterwards, 3D models were constructed to show the 
sub-surface anomalous characteristics clearly. Figures 7 
and 8 show the inversion results.

From the 3D inversion results of the gravity data 
observed, we found an obvious body with low density 
contrast in the study region. Based on the range of 
geological conditions and variations, the inversion body 
was salt rock with low density contrast. From the spatial 

Easting direction (m)

)m(noitceri d gni htr oN

15000

12500

10000

7500

5000

2500

0

0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

0 2500 5000 7500 10000 12500 15000

m (Gal)



533

Meng et al.

From the comparison between 3D inversion results 
of gravity data and the previous results, the salt rock 
center depth of 3D inversion results was 4200 m. This 
is consistent with the results obtained by Salem, Essa, 

applicable in real scenarios (Salem et al., 2004; Essa, 
2007; Oru, 2010; Ma et al., 2012). Simultaneously, the 
previous logging test in the region yielded a center depth 
for the salt rock of nearly 4400 m, which agreed well 
with the result of our inversion method.

of the low density dome was sphere-like, which is 
consistent with the assumption of previous researchers.

Methods Center depth (km)
Nettleton (1976) 4.97
Mohan et al. (1986) 4.63
Abdelrahman et al. (1991) 4.65
Shaw and Agarwal (1997) 4.13
Salem et al. (2004) 5.12 0.28
Essa (2007) 4.18

4.12
Ma (2012) 4.14

The novel gravity inversion method was inspired by 
the approximate zero norm sparse recovery method, 
whose norm function replaced the model objective 
function in the conventional gravity data inversion. 
Lagrange method was employed for deduction of 
formulas to derive the corresponding inversion method. 
Moreover, the steepest descent method was applied 
to obtain the accurate geophysical inversion results. 
The main characteristics of this 3D inversion method 

utilized the steepest descent and gradient projection 
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distribution of inverse target anomaly, the low density 
rock had approximate spheroidal geometry; its density 

3, which agreed with 
the real geological information. Figures 6 and 7 show 
the characteristics of depth variation of the sub-surface 
low density salt rock at an overall distribution range of 

2500–5000 m, with the anomaly center depth of 4200 m. 
Since 3D inversion researches are relatively less on this 
region, depth inversion results of gravity and analysis 
results of logging data could be used to demonstrate and 
further illustrate the accuracy of our inversion method. 
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