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Abstract: Α new method based on variational mode decomposition (VMD) is proposed to 
distinguish between coal-rock fracturing and blasting vibration microseismic signals. First, 
the signals are decomposed to obtain the variational mode components, which are ranked 
by frequency in descending order. Second, each mode component is extracted to form the 
eigenvector of the energy of the original signal and calculate the center of gravity coeffi cient 
of the energy distribution plane. Finally, the coal-rock fracturing and blasting vibration 
signals are classifi ed using a decision tree stump. Experimental results suggest that VMD can 
effectively separate the signal components into coal-rock fracturing and blasting vibration 
signals based on frequency. The contrast in the energy distribution center coeffi cient after the 
dimension reduction of the energy distribution eigenvector accurately identifi es the two types 
of microseismic signals. The method is verifi ed by comparing it to EMD and wavelet packet 
decomposition. 
Keywords: Coal-rock fracturing microseismic, blasting vibration, variational mode 
decomposition, signal identifi cation

Introduction

In recent years, the real-time, continuous, and online 
microseismic monitoring of rocks in coal mines has 
advanced considerably. The mining environment is 
complex owing to the background noise, blasting 
vibrations, etc. Such noise prevents the accurate 
recording of microseismic activity. In addition, highly 
knowledgeable personnel are required to manually identify 

the microseismic events. The combination of these factors 
affects the effi ciency of the various monitoring systems. 
Blasting operations are common in coal mines, and the 
waveforms of rock fracturing and blasting vibrations are 
very similar, resulting in processing errors.

Presently, the identifi cation of microseismic signals is 
mainly based on time–frequency analysis and parameter 
identifi cation. The most commonly used time–frequency 
methods are the Fourier transform, the wavelet 
transform, the wavelet packet transform, the frequency 
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slice wavelet transform, and the empirical mode 
decomposition (EMD). Lu et al. (2005) used the Fourier 
transform to analyze the power spectrum and amplitude 
frequency of roof-pressure relief-blasting microseismic 
signals, and coal-seam pressure-blasting microseismic 
signals, and preliminarily identified the different types 
of microseismic signals in mines. However, the Fourier 
transform is traditionally used to analyze periodic 
stationary signals and has not been found effective for 
random nonstationary microseismic signals with spikes 
and mutations (Alvanitopoulos et al., 2012; Gaci, 2014). 
Wavelet analysis simultaneously analyzes time and 
frequency analyses (Tang et al., 2011). However, this 
type of analysis requires to choose a suitable wavelet 
base (Zhu et al., 2012a; Jiang et al., 2014) to improve 
decomposition. For example, the wavelet energy 
spectrum coeffi cient has been used to analyze the energy 
distribution characteristics of rock fracturing and noise 
signals. Presently, many have applied wavelet analysis 
to the waveforms of natural earthquakes (Liu et al., 
2003; Allmann et al., 2008; Huang et al., 2010) and 
microseismic signals in mines (Zhu et al., 2012b). The 
empirical mode decomposition, proposed by Huang et al. 
(1998), detects and decomposes a signal into principal 
modes. This method has been proven suitable for 
handling random nonstationary signals and it has been 
applied to noise reduction in mine microseismic signals 
(Jia et al., 2015), feature extraction (Wu et al., 2014), 
and classification (Shang et al., 2016; Jia et al., 2017). 
However, the boundary effects and modal aliasing in 
the EMD method (Dong et al., 2016; Zhang et al., 2018) 
affect the decomposition results, causing instability and 
nonuniqueness. Thus, EMD cannot be used to effectively 
identify signals. Parameter identification uses linear 
regression (Zhao et al., 2015; Ma et al., 2015) to extract 
the slope of the starting-up trend line and the coordinates 
of the fi rst and maximum peaks. Then, the identifi cation 
model is established by applying Fisher discriminant 
analysis. However, this requires a high signal waveform, 
which affects the signal identification. Many have 
proposed to identify microseismic waves through coal 
seams and rocks by using the arrival time of the seismic 
waves but the error (Allen, 1978) in window selection, 
and signal-to-noise ratio (Akaike, 1987; Wang, 2018) is 
high.

Variational mode decomposition is an entirely 
nonrecursive decomposition model, in which the modes 
are extracted concurrently (Konstantin and Dominique, 
2014). The method searches for ensembles of modes and 
their respective central frequencies, in which the modes 
collectively reproduce the input signal, while each 

mode turns into a baseband after demodulation. VMD 
overcomes the boundary effects and modal aliasing in 
the EMD and other recursive decomposition algorithms, 
and selects the wavelet base functions in wavelet or 
wavelet packet analysis much easier. Presently, VMD 
has been applied to the functional coupling analysis of 
electroencephalograms and electromyograms (Xie et al., 
2016), fault identification (Tang and Wang, 2015), and 
imaging (Zhang et al., 2016). To tackle the identifi cation 
of rock fracturing and blasting vibration, we use the 
VMD to study the energy distribution in each mode, 
along with the energy focus coeffi cient, and extract the 
energy focus coeffi cient as the characteristic parameter 
to classify and identify these two types of microseismic 
signals. 

Theory

Variational mode decomposition 
Va r i a t i o n a l  m o d e  d e c o m p o s i t i o n  ( V M D ) 

(Dragomiretskiy and Zosso, 2014) is a nonrecursive 
signal decomposition method. VMD decomposes the 
real-time input signal x into K discrete subsignals 
(modes) uk(k = 1,2,…,K) ({uk} = {u1, u2, …,uK}; k is the 
serial number of each mode and K is the total number 
of modes. Each mode has a limited bandwidth with 
a central frequency ωk(k = 1,2,…,K). The constraints 
are that the sum of the bandwidth of all modes is the 
smallest and the sum of all modes is equal to the input 
signal x. VMD addresses the constrained problem in 
different ways. It has been suggested to use both a 
quadratic penalty term α and Lagrangian multipliers 
λ to make the problem unconstrained. The alternating 
direction method of multipliers was used to obtain the 
optimal solution of the constrained variational model, 
and the input signal was decomposed into each mode 
and its central frequency. 

The steps in VMD were as follows:
Input: original signal x and total number of modes K;
Output: K modes.
Step 1: initialize each mode 1ˆku , central frequency 
1ˆk , and Lagrangian multipliers 1ˆ , n = 0;
Step 2: n = n + 1, update uk and ωk according to 

equations (1) and (2) (Dragomiretskiy and Zosso, 2014)
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S tep  3 :  upda te  λ  accord ing  to  equa t ion  (3) 
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where τ is the update step of the Lagrangian multiplier;
Step 4: for ε = 0, if the condition
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(Dragomiretskiy and Zosso, 2014) is satisfied then 
stop the iteration and output the K modes are output; 
otherwise, go back to step 2. 

  In general, VMD is a powerful signal decomposition 
method in the frequency domain that can tackle modal 
aliasing better. We use VMD to decompose the two kinds 
of vibration signals and accurately calculate the band 
energy of the signal frequency and extract the energy 
eigenvectors.

Energy characterization of the signals
The original signal x(t) is decomposed and the K 

modes are {u1, …, uk, …, uK}. The energy Ek of mode 
uk(t) is computed as follows:

                   2 2

1

= ( ) = ,
N

k k ki
i

E A t dt x    (4)

where xki (k = 1,2, …, K; i = 1,2, …, N) is the discrete 
point amplitude of the k-th mode component uk, N is the 
number of sampling points in the original signal, and K 
is the total number of modes.

The total energy E of the original signal x(t) is
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The normalized energy of each mode is 

                             ( )= .kEP k
E

  (6)

Energy focus coeffi cient
In a gravitational field, the center of gravity is the 

average location of the weight of an object. In the energy 

distribution plane, the energy center is the focal point 
of energy. The energy distribution in rock fracturing 
and blasting vibrations are signifi cantly different; thus, 
there are also differences in the position of the energy 
center of these microseismic signals. To facilitate data 
processing and improve the effectiveness of the final 
classifi cation, the energy focus coeffi cient of the energy 
distribution was obtained after the dimension reduction 
of the energy eigenvectors. In this study, the two kinds of 
microseismic signals are classifi ed and identifi ed based 
on the energy focus coeffi cient of the energy distribution.

The normalized energy of each mode was first 
calculated. Next, the energy distribution vector P was 
obtained, where P = (P(1), …, P(k),…, P(K)), and the 
energy distribution plane was constructed. In the energy 
distribution plane, the mode number k was chosen as the 
X-axis and the normalized energy P(k) corresponding to 
k was the Y-axis. 

The energy focus coeffi cient on the X-axis Cx (0 < Cx 

≤ 1) is

                      
(

1

1

( ))

( )

K

i
x K

i

i P i
C

K P i
, (7) 

Cx describes the of signal energy in the plane of 
energy distribution. When 0 < Cx ≤ 0.5, the signal 
energy is concentrated in the fi rst three high-frequency 
components, which can be initially determined as 
blasting vibration signals. When 0.5 < Cx ≤ 1, the 
signal energy focuses on the late three low-frequency 
components, which can be initially determined as coal-
rock fracturing microseismic signals.

Experiments

Coal-rock fracturing microseismic and blasting 
vibration data were selected from a coal mine, part of 
the Linkuang Group. The mine roof is dominated by 
mudstone and sandy mudstone, and locally siltstone. The 
mine fl oor consists of mudstone, followed by siltstone, 
and is characterized by more fractures and rock mass of 
poor stability. The blasting technique used in the mine is 
microdifferential blasting.

Energy distribution of the two types of 
microseismic signals

To compare the energy characteristics of rock 
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fracturing and blasting vibration signals, the two types 
of microseismic signals were selected and decomposed 
by the VMD method, and six modes were obtained, 
respectively. Then, the energy of the microseismic 

signals for the different modes was analyzed. The 
waveform and time–frequency relation of the coal-rock 
fracturing and blasting vibration signals are shown in 
Figures 1 and 2.

 Fig.1 Coal-rock fracturing microseismic signal: (a) waveform; (b) time vs frequency.

Fig.2 Blasting vibration microseismic signal: (a) waveform; (b) time vs frequency.

Figures 1a and 2a show that the rock fracturing and 
blasting vibration waveforms are very similar and are 
very diffi cult to distinguish visually. However, the energy 
distributions of rock fracturing and blasting vibration 
signals differ greatly. As shown in Figure 1b, the energy 
distribution of the rock fracturing signal is between 0 
Hz and 200 Hz, and the main energy is between 20 Hz 

and 100 Hz. In Figure 2b, the energy distribution of the 
blasting vibration signal is between 50 Hz and 300 Hz 
and the main energy is between 150 Hz and 300 Hz.

The two types of microseismic signals are decomposed 
using the VMD method, and the waveforms and time 
versus frequency of each mode of the rock fracturing 
and blasting vibration signals are shown in Figures 3 

Fig.3 VMD decomposition results for the coal-rock fracturing microseismic signal; left columns: u1–u6 are the waveforms of the 
six modes obtained by decomposition; right columns: time vs frequency. 
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and 4. The VMD method decomposes each signal and its 
energy into six narrowband modes. No modal aliasing 
is observed between modes. The normalized energy of 
each mode is then calculated, and the energy distribution 
vector P of the rock fracturing signal is 0.02, 0.09, 3.01, 
1.45, 13.41, and 82.02. The energy distribution vector 
P of the blasting vibration signal is 0.92, 64.93, 7.11, 
15.34, 1.72, and 9.98. The distribution histograms of the 
two microseismic signals are shown in Figure 5. 

In Figure 5a, the energy of the rock fracturing signal 
is mainly concentrated in the low-frequency modes 
and the red open circle denotes the center of the energy 
distribution plane of the rock fracturing signal, where Cx 
= 0.96. In Figure 5b, the energy of the blasting vibration 
signal is mainly concentrated in the higher frequency 
modes and the red solid circle denotes the center of the 
energy distribution plane of the blasting vibration signal, 
where Cx = 0.47. 

Fig.4 VMD decomposition results for the blasting vibration signal: left columns: u1–u6 are the waveforms of the six modes 
obtained by decomposition; right columns: time vs frequency.
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Fig.5 Energy distribution of (a) rock fracturing and (b) blasting vibration microseismic signal.

Microseismic signal identification algorithm 
based on the VMD method

The K narrowband modes with central frequencies 
obtained by the VMD adaptive decomposition method 
contain local and characteristic signals at different time 
scales. First, the microseismic signal was adaptively 

decomposed by using the VMD method and then 
the energy of each narrowband mode was obtained. 
Second, the K-dimensional energy eigenvector P of 
the microseismic signal was obtained. Based on P, the 
energy distribution plane is constructed and dimension 
reduction is performed on the energy eigenvector P to 
calculate the energy distribution center coeffi cient Cx for 
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classifying the two types of microseismic signal.
The microseismic signal identifi cation algorithm based 

on the VMD method has as follows: 
Step 1: Initialization and the number of modes is set at 

K = 6;
Step 2: The input signal x(t) is decomposed using the 

VMD method and six modes U = {u1,u2,u3,u4,u5,u6} are 
obtained;

Step 3: Calculate Ek of mode uk using equation (4); 
Step 4: Calculate each mode component P(k) based on 

equations (5) and (6), and obtain the vector P = (P(1), 
P(2), P(3), P(4), P(5), P(6));

Step 5: Construct the energy distribution plane; 
calculate the energy focus coefficient of the X-axis Cx 
with equation (7) and compare the Cx and T values. If Cx 
> T, the input signal is a rock fracturing signal. If Cx ≤ T, 
the input signal is a blasting vibration signal.

VMD analysis of the microseismic 
signals

Value of the K
The VMD method requires predefining the number 

of K modes and the method output is sensitive to the 
number of modes. After decomposition, the K value, 
and the central frequency and frequency band width of 

each mode change. In addition, the normalized energy 
of each mode has changed. If the K value is small, this 
is due to underdecomposition. If the K value is high, 
overdecomposition may have occurred. In general, the 
minimum value of K is 2 and the maximum value is 
about 10. Therefore, to avoid the problem of under- 
or overdecomposition, the energy distribution of the 
signal with K values of 2–14 is monitored to determine 
the most suitable value of K. A typical rock fracturing 
signal (Figure 1) is decomposed by the VMD method. 
The sampling frequency of the signal is 1,000 Hz, and 
the number of sampling points is 5,000. The normalized 
energy and the energy focus coeffi cient of each mode for 
different K values are listed in Table 1.

When K is 2, the original signal is decomposed into 
two modes, and the energy is distributed in two regions. 
When K is 3 or 4, the energy is concentrated in three 
regions; the normalized energy of the fi rst region is less 
than 1%, that of the second region is approximately 
10%, that of energy of the third region is approximately 
89%. Starting from a K value of 5, the original 
signal is decomposed into K modes and the energy is 
concentrated into four regions; the normalized energy 
of the first region is less than 1%, that of the second 
region is approximately 5%, that of the third region 
is approximately 15%, and that of the fourth region is 
approximately 79%. 

Table 1 Energy distribution and energy focus coeffi cients

K
Normalized energy of each mode

Cxu1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14

2 12.28 87.72 - - - - - - - - - - - - 0.94
3 0.59 9.88 89.53 - - - - - - - - - - - 0.96
4 0.34 9.73 14.76 75.18 - - - - - - - - - - 0.91
5 0.12 1.78 1.39 13.55 83.15 - - - - - - - - - 0.96
6 0.02 0.09 3.04 1.53 13.20 82.12 - - - - - - - - 0.96
7 0.02 0.14 0.37 2.35 2.07 12.61 82.45 - - - - - - - 0.95
8 0.01 0.12 0.08 3.48 1.88 4.06 10.92 79.45 - - - - - - 0.95
9 0.01 0.05 0.12 0.22 3.37 1.96 9.57 14.88 69.81 - - - - - 0.94
10 0.00 0.02 0.13 0.07 2.89 1.30 1.66 13.72 18.19 62.03 - - - - 0.93
11 0.00 0.02 0.12 0.09 0.15 3.78 1.75 1.94 17.15 20.64 54.35 - - - 0.92
12 0.00 0.02 0.07 0.10 0.05 1.96 1.55 1.83 2.06 19.34 24.22 48.79 - - 0.92
13 0.00 0.01 0.02 0.11 0.07 0.12 3.84 1.21 1.54 2.91 18.82 28.41 42.93 - 0.91
14 0.01 0.00 0.01 0.11 0.08 0.04 1.20 2.22 1.55 1.52 4.94 16.68 33.35 38.30 0.91

 The number of mode components for 5% normalized 
energy versus K is shown in Figure 6a. As it can be 
seen from Figure 6a, with increasing K, the number of 

mode components with normalized energy less than 
5% is also increasing. Owing to the increase in K, the 
energy distribution is decomposed in the fi rst and second 
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regions, whereas the total energy distribution in the third 
and fourth regions does not significantly change. With 
increasing K, overdecomposition occurs in the low-
frequency region. In Figure 6b, K has little effect on 
the energy distribution center coefficient. Considering 

the complexity of the algorithm, the higher the 
decomposition level is, the higher the complexity of the 
algorithm will be. Therefore, by considering the above 
three aspects, K is set at 6. 

Fig.6 (a) Number of mode components for 5% normalized energy and (b) energy focus coeffi cient vs K. 
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Threshold value
The threshold  has  been  found to  a ffec t  the 

classification results and accuracy. In this study, a 
machine learning algorithm, which is referred to as the 
decision stump method, was used to solve the two types 
of classifi cation. The decision stump method is a linear 
classifi er. First, the threshold Tini is estimated and then it 
is updated according to the training data. Finally, the best 
optimal threshold Tbest with the least misclassifi cation 
errors is obtained as the threshold of the decision stump.

In this study, the energy focus coeffi cient Cx was used 
for identifi cation purposes and the microseismic signals 
were classified as labels. For Y = 1, the microseismic 
signal is a rock fracturing signal and, for Y = 0, the 
microseismic signal is a blasting vibration signal. The 
model function of the decision stump is f (Cx) = (Cx–Tini), 
where Tini is the initial threshold, and when f (Cx) > 0, 
then Y = 1 or Y = 0. The simplest linear search algorithm 
for Tbest has as follows: 

Input: energy focus coefficient Cx, label Y, and 
learning step LB;

Output: optimal Tbest; 
Step 1: initialization begins with Tini = min(Cx), Tbest = 

Tini, LB = 0.01, minErr = 99999;
Step 2: mumErr= numberOfErrors(Tini);
Step 3: if numErr ≤ minErr, then minErr = numErr, 

Tbest = Tini end if;
Step 4: Tini = Tini + LB, repeat the second and third steps 

until Tini = max(Cx) and end the loop. Tbest is the output.
In the above, minErr is an intermediate variable that is 

used to store the minimum number of misclassifi cation 

errors. The function numberOfErrors (Tini) is used to 
count the number of errors where Tini is the threshold. 
After searching for Cx from Tini = min(Cx) to Tini = 
max(Cx), the least error Tbest is obtained as the optimal 
threshold for the decision tree stumps.

Experiment and analysis
In this study, 15 sets of coal-rock fracturing signals 

and 15 sets of blasting vibration signals were selected for 
training and decomposed using the VMD method. The 
normalized energy of the acquired six modes of each 
signal were calculated. The energy distributions of the 
30 sets of signals are listed in Table 2. The energy of the 
rock fracturing signals is in the low-frequency region, 
whereas the energy of the blasting vibration signals is 
the high-frequency region.

The normalized energy of the 15 sets of rock 
fracturing signals in each mode is shown in Figure 7 and 
that of the 15 sets of blasting vibration signals in each 
mode is shown in Figure 8. Clearly, the decomposed 
rock fracturing signals have their energy distribution 
mainly concentrated in the modes u4, u5, and u6 and the 
energy in these modes is 94.65% of the total energy. 
The decomposed blasting vibration signals have their 
distribution concentrated in the modes u1, u2, and u3 and 
the energy in these modes is 83.21% of the total energy; 
the energy distribution of the other modes is the energy 
of the interference noise in the signal. Clearly, there 
are differences in the energy distribution of the rock 
fracturing and blasting vibration signals of each mode.
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In Figure 7, the open circles denote the center of the 
energy distribution plane of the 15 sets of rock fracturing 
signals of the energy distribution plane, respectively. 
The solid circles in Figure 8 denote the center of the 
15 sets of blasting vibration signals. After setting the 

initial threshold Tini = 0.56, the decision stump algorithm 
was applied to the 30 signal sets and the optimal 
classifi cation identifi cation threshold was determined at 
Tbest = 0.58.

Table 2 Normalized energy distribution of the rock fracturing and blasting vibration signals

No.
Rock fracturing signal (%)

Cx No.
Blasting vibration signal (%)

Cx
P(1) P(2) P(3) P(4) P(5) P(6) P(1) P(2) P(3) P(4) P(5) P(6)

1 1.03 4.57 1.29 56.14 33.76 3.21 0.71 1 12.49 62.88 10.15 6.18 5.52 2.78 0.40
2 0.02 0.09 3.04 1.53 13.2 82.12 0.96 2 6.92 64.93 7.11 15.34 1.72 3.98 0.42
3 0.75 4.68 3.55 8.37 80.0 2.65 0.78 3 9.59 64.79 15.01 5.09 3.83 1.69 0.39
4 1.42 8.41 2.11 47.28 37.38 3.40 0.70 4 56.48 23.23 13.17 2.77 0.91 3.44 0.30
5 0.04 0.13 0.08 5.25 12.18 82.32 0.96 5 34.65 45.30 10.02 5.11 1.39 3.53 0.34
6 0.39 1.82 1.00 57.28 12.35 27.16 0.77 6 16.35 54.80 11.65 8.66 1.80 6.74 0.41
7 1.10 4.53 4.77 16.12 28.45 45.03 0.84 7 0.36 2.96 71.43 11.65 7.09 6.51 0.57
8 0.35 0.89 0.44 33.23 47.91 17.18 0.80 8 29.80 40.16 7.05 15.26 5.65 2.08 0.39
9 1.42 8.41 2.11 47.28 37.38 3.40 0.70 9 0.31 43.12 40.29 12.93 0.64 2.71 0.46
10 0.51 1.54 0.38 30.26 18.06 49.25 0.85 10 7.75 43.95 19.04 15.13 4.97 9.16 0.49
11 0.56 3.19 0.78 65.03 20.66 9.78 0.72 11 7.13 17.45 63.64 8.82 2.28 0.68 0.47
12 0.87 4.37 1.36 66.47 9.53 17.40 0.72 12 3.50 34.85 45.71 8.02 7.33 0.59 0.47
13 0.34 0.89 0.44 33.04 48.20 17.09 0.80 13 1.11 1.43 76.49 13.74 5.70 1.53 0.54
14 0.92 3.00 0.85 67.20 16.27 11.76 0.72 14 2.50 26.81 59.22 9.13 1.37 0.97 0.47
15 0.01 0.01 0.28 0.29 9.40 90.01 0.98 15 8.84 42.30 31.29 10.08 4.27 3.22 0.45

Fig.7 Energy distribution of the 15 sets of rock fracturing (RF) signals.
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In this study, 20 sets of coal-rock fracturing and 
blasting vibration signals were selected for testing. 
Then, the energy centers of each set of the microseismic 
signals were calculated and those with horizontal 
coordinates were normalized as the energy focus 
coefficient of the X-axis Cx, as shown in Figure 9, in 
which the 20 solid circles denote the energy focus 
coefficients of the blasting vibration signals and the 
20 open circles denote the energy focus coeffi cients of 
the rock fracturing signals. The signals were classified 
according to the optimal identification threshold Tbest = 
0.58. Out of 20 sets of microseismic signals, only one 
set of blasting vibration signals was misclassified as 
rock fracturing microseismic signal and all 20 sets of 
coal-rock fracturing microseismic signals were correctly 
identifi ed. The proposed method is highly accurate and 
could replace or assist manual identifi cation. Adding the 
test data to the training group can update the optimal 
identifi cation threshold.

VMD can achieve the effective separation of the signal 
frequency domain and components, yielding more 
accurate energy distribution eigenvalue of the signal in 
each frequency band.

There is significant difference in the energy 
distribution between the microseismic signals of rock 
fracturing and blasting vibration. The energy of the rock 
fracturing signals is mainly concentrated in the low-
frequency modes, whereas the energy of the blasting 
vibration signals is mainly concentrated in the three 
high-frequency modes.

The energy distribution eigenvector of the signals 
is used to identify the coal-rock and blasting vibration 
signals. The energy distribution center coefficient 
obtained from the dimension reduction of the energy 
distribution eigenvector is used to classify and identify 
the two kinds of microseismic waves, with accuracy of 
97.5% or better. 

Clearly, the proposed method can be successfully 
applied to identify rock fracturing and blasting vibration 
signals.
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