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Abstract: Conventional time-space domain and frequency-space domain prediction fi ltering 
methods assume that seismic data consists of two parts, signal and random noise. That is, the 
so-called additive noise model. However, when estimating random noise, it is assumed that 
random noise can be predicted from the seismic data by convolving with a prediction error 
filter. That is, the source-noise model. Model inconsistencies, before and after denoising, 
compromise the noise attenuation and signal-preservation performances of prediction 
filtering methods. Therefore, this study presents an inversion-based time-space domain 
random noise attenuation method to overcome the model inconsistencies. In this method, a 
prediction error fi lter (PEF), is fi rst estimated from seismic data; the fi lter characterizes the 
predictability of the seismic data and adaptively describes the seismic data’s space structure. 
After calculating PEF, it can be applied as a regularized constraint in the inversion process for 
seismic signal from noisy data. Unlike conventional random noise attenuation methods, the 
proposed method solves a seismic data inversion problem using regularization constraint; this 
overcomes the model inconsistency of the prediction fi ltering method. The proposed method 
was tested on both synthetic and real seismic data, and results from the prediction fi ltering 
method and the proposed method are compared. The testing demonstrated that the proposed 
method suppresses noise effectively and provides better signal-preservation performance.
Keywords: Random noise attenuation, prediction filtering, seismic data inversion, 
regularization constraint

Introduction

Seismic data are unavoidably mixed with various 
types of noise, and refl ection energy is reduced because 
of earth filtering and absorption (Futterman, 1962; Li 
et al., 2015; Li et al., 2016a; Li et al., 2016b); both 

enhance the contamination of seismic signals with ndom 
noise. Prediction filtering is a classic and commonly 
used random noise attenuation method. It assumes 
that seismic data is predictable; seismic data can be 
expressed as the convolution of its nearby traces and a 
prediction filter (PF) (Hornbostel, 1991). The method 
can be realized in both time-space and frequency-space 
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domains and are called t-x and f-x prediction filtering, 
respectively.

The f-x prediction filtering was first introduced by 
Canales (1984) and further developed by Gulunay 
(1986) into f-x deconvolution. Chase (1992) extended 
the method to a 3-D version and realized f-x-y domain 
random noise attenuation. However, prediction fi ltering 
harms weak signals, to some extent, while suppressing 
noise in practical applications. Soubaras (1994, 1995) 
believed that signal damage was caused by model 
inconsistency before and after fi ltering and devised the 
f-x projection filtering method. Li (1995) replaced the 
1-D prediction filter, commonly used for conventional 
random noise attenuation, with a 2-D rectangular PF 
and realized 3-D seismic data random noise attenuation. 
Soubaras (2000) extended f-x projection filtering to 
an f-x-y version, which further improved the signal-
preservation ability of the method. Sacchi and Kuehl 
(2001) estimated a prediction error fi lter (PEF) and noise 
using an autoregressive moving average (ARMA) of 
the signal. They claimed that the projection filter can 
be estimated by solving the original ARMA problem 
without introducing the conception of quasi-prediction. 
Liu et al. (2009) solved the noncausal PEF problem by 
constructing an ARMA model and solved the additive 
noise via self-deconvolved projection filtering; this 
filtering avoided model inconsistency before and after 
denoising. The 1-D ARMA model was then extended 
to a 2-D ARMA model, and the 2-D ARMA model was 
applied to 3-D seismic data random noise attenuation. In 
addition, the rank attenuation method, which includes the 
eigen-image and the SSA method, can attenuate random 
noise (Sacchi, 2009; Oropeza and Sacchi, 2011). The 
SSA method is also called the Cadzow fi ltering method 
(Trickett, 2008) and is considered as another form of f-x 
prediction fi ltering (Chen and Sacchi, 2013).

Abma and Claerbout (1995) compared f-x and t-x 
prediction filtering and proved that t-x prediction 
filtering attenuates more noise than f-x prediction 
fi ltering because the PEF for each frequency component 
is calculated for the f-x domain and the time length 
of the filter is similar to that of the seismic data when 
converting the filter to the time domain; this results in 
noise spreading throughout the whole time window 
(Abma and Claerbout, 1995). Conventional t-x domain 
prediction filtering can only process stationary seismic 
data. Patching is a commonly used method to handle 
nonstationary seismic data (Claerbout, 1992). Crawley 
et al. (1999) calculated a smooth and nonstationary PEF, 
which produced a better denoising result compared to 
a rectangular patching method. Sacchi and Naghizadeh 

(2009) proposed a method to calculate a time-space 
varying PEF, which continuously adapts to the variation 
of seismic data. Liu et al. (2015) calculated a prediction 
fi lter (PF) based on a nonstationary, auto-regularization 
process, which improved the accuracy of the predicted 
seismic data.

Yuan et al. (2012) proposed a t-x domain edge-
preserving random noise attenuation method based on 
Bayesian inversion theory, called Bayesian inversion 
filtering. In this method, a blocky earth model is 
introduced as a regularization constraint to the inversion 
system, and denoised seismic data is calculated directly 
from noisy data. As a result, the noise attenuation 
problem is converted into an inversion problem; 
therefore, this method is of great theoretical signifi cance. 
However, when the signal-to-noise ratio (SNR) of 
seismic data is very low and the structure is very 
complex, this method cannot predict denoised seismic 
data accurately.

To better preserve signal and overcome the problem of 
model inconsistency before and after prediction fi ltering, 
an inversion-based t-x domain method for random noise 
attenuation and signal preservation is proposed herein. 
In this method, a PF is initially calculated in the t-x 
domain, which describes the predictability of seismic 
data in space. After the prediction fi lter is calculated, its 
corresponding PEF is used as a regularization constraint 
in the inversion procedure to suppress noise and recover 
the signal instead of convolving with noisy data directly. 
The regularization operator is derived from the seismic 
data and is not given in advance, as in the method 
proposed by Yuan et al. (2012). Therefore, the proposed 
method possesses better adaptability for seismic data.

In this study, the prevailing problem of the basic 
theory of t-x domain prediction fi ltering is fi rst analyzed 
and discussed. An inversion-based t-x domain random 
noise attenuation method, overcoming the model 
inconsistency problem before and after filtering in 
conventional methods, is then proposed. Furthermore, 
the method is extended to the 3-D case. Finally, real 
seismic data is processed with the proposed method 
using model tests.

Theory

The time-space domain prediction fi ltering problem
Hornbostel (1991) discussed and analyzed t-x domain 

prediction filtering; the basic theory of this method is 
discussed herein. Assuming 2-D seismic data with clean 
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signal, s(x, t), and noise, n(x, t), we obtain

                   ( , ) ( , ) ( , ).d x t s x t n x t  (1)

Seismic data is predictable in the space domain; 
therefore, there exists a prediction filter, h(x, t), which 
satisfi es equation (2):

, 0
, , , ,

mx mt

jx mx jx jt mt
d ix it h jx jt d ix jx it jt  (2)

where ix and jx are spatial indices for seismic data; it and 
jt are temporal indices for seismic data; and mx and mt 
indicate the size of the 2-D prediction fi lter in the space 
and time directions, respectively. If mx = 2 and mt = 2, 
then the prediction fi lter has the following form (Abma 
and Claerbout, 1995):
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The prediction filter, h(x, t), can be calculated from 
noisy data by minimizing the following objective 
function:

2
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( , ) ( , ) ( , ) .
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ix it jx mx jx jt mt
J d ix it h jx jt d ix jx it jt

 (4)

Based on the prediction filter, h(x, t), the denoised 
seismic data, ,s x t , is obtained by calculating the 2-D 
convolution of the prediction filter and noisy seismic 
data, d(x, t):

                     , , , ,s x t d x t h x t    (5)

where, the noise can be predicted as

                   , , , ,n x t d x t p x t   (6)

where p(x, t) = δ(x, t) – h(x, t) represents the PEF.
This is the basic theory of the prediction filtering 

method and the basic procedure to estimate noise and 
signal. Further extending equation (6) provides

         

, , , ,

, , .

n x t s x t n x t p x t

n x t p x t  (7)

Equation (7) shows that the noise estimated by 

prediction fi ltering is not true noise; it is the convolution 
of the PEF and noise. This is because in equation (1) 
the noisy data consists of signal and noise (additive-
noise model), whereas noise is considered as the 
convolution of the PEF and the noisy data in equation 
(6) (source-noise model). Thus, the two noise models 
are inconsistent before and after fi ltering. Noise model 
inconsistency not only decreases the accuracy of the 
prediction filter but also decreases the method’s noise 
attenuation and signal-preservation performances.

Inversion-based t-x domain random noise 
attenuation 

 The prediction filter, h(x, t), can’t be used to 
obtain denoised results by convolving with noisy data 
calculated by minimizing equation (4). For this problem, 
the corresponding PEF of the prediction fi lter should be 
calculated and used as a regularization constraint in the 
inversion procedure; the inversion result is the denoised 
result. The objective function of the inversion problem 
can be expressed: 

2

      

, ,

 , , ,

ix it

k

jx jt L

J d ix it s ix it

p jx jt s ix jx it jt  (8)

where L is norm and k is index. When L = 1, the second 
term is l1 norm, and when L = 2, the second term is l2 
norm (λ is a trade-off parameter). The fi rst term describes 
the misfi t between estimated and original seismic data, 
which can also be taken as the energy of the estimated 
noise. The second term describes the predictability of 
the seismic data. When L = 2, rewriting equation (8) to 
matrix form results in

                     2 ,kJ d - s ps  (9)

and making k = 2, equation (9) becomes

                     2 2 ,J d - s ps  (10)

by taking the derivative of equation (10) with regard to 
s  and making its derivative equal to 0. The estimated 
signal can then be expressed by equation (11):

                       
1

.Ts I p p d  (11)

When applied, the PEF, p(x, t), is calculated from 
the noisy data. However, it cannot predict the signal 
perfectly. Thus, by fi rst calculating a PEF from the noisy 
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seismic data, first-estimated denoised seismic data, 
1 ,s x t , can then be obtained by solving equation (10). A 

new PEF, p1(x, t), can then be recalculated from 1 ,s x t , 
and second-estimated denoised seismic data, 2 ,s x t , can 
be obtained. After several iterations, the final denoised 
seismic data, ,s x t , is acquired.

Yuan et al. (2012) proposed a Bayesian inversion 
filtering method to suppress random noise. The basic 
theory assumes that seismic data is blocky in space, 
which means the fi rst derivatives of seismic data along 
both space and time directions are sparse. In this case, 
the objective function is

                     
2

1
,J d - s s   (12)

where 1,1  is the difference operator in the 
space or time direction. Comparing equations (9) 
and (12), when the 2-D PEF degenerates to 1-D and 
p(x)= (–1, 1), the two filters exhibit exactly the same 
formation; Equation (12) can then be considered as a 
special case of equation (9). The method prescribed by 
Yuan et al. (2012) is based on the blocky model, and 
the PEF is given before filtering and its value is fixed; 
therefore, their method is an inversion-based model-
driven random noise attenuation method. In contrast, 
the proposed method directly calculates the PEF, p1(x, 
t), from seismic data. Thus, the proposed method is an 
inversion-based data-driven random noise attenuation 
method, and the PEF describes the space variation of the 
seismic refl ection structure. The fi lter driven mode is the 
essential difference between the two methods.

For 3-D seismic data, the PEF exhibits the form shown 
Figure 1, where the dark-shadowed area in the center 
is the position of the seismic data being predicted, and 
the other data samples, except for the light-shadowed 
parts, are used to predict the data sample in the center. 
After the 3-D prediction fi lter is calculated, for a value 
in the center equal to −1 and the other values unchanged, 

the 3-D PEF can be obtained. The filter describes 
the predictability of seismic data in 3-D space. It can 
suppress noise and recover 3-D seismic data signal when 
used as a constraint in equation (9).

Synthetic model tests

To test the validity of the inversion-based random 
noise attenuation method, 2-D and 3-D model tests were 
performed. The synthetic models were composed of 
lateral, tilt, and curved events, which are common event 
types in real seismic data. The determination of filter 
size and the selection of trade-off parameters are briefl y 
discussed.

2-D synthetic data random noise attenuation 
test

The synthetic data shown in Figure 2a consisted of 
three linear events and two curved events and each 
event consisted of a different dip. A 40-Hz, zero-phased 
Ricker wavelet was used with a time sample interval 
of 4 ms. The seismic data comprised 200 traces with 
501 samples in each trace. Figure 2b shows the noisy 
seismic data; the SNR of the noisy data is 1. Figures 2c 
and 2d represent the denoised result from f-x prediction 
filtering and its corresponding removed noise section, 
respectively. Figures 2e and 2f denote the denoised 
result of t-x prediction filtering and its corresponding 
removed noise section, respectively. Figures 2g and 
2h illustrate the denoised result of inversion-based t-x 
domain random noise attenuation and its corresponding 
removed noise section, respectively. These three methods 
effectively removed the noise and preserved the signal 
of the linear events with small dips (Figures 2c, 2e, and 
2g). However, prediction fi ltering reduces the energy of 
linear events with big dips and curve events. The energy 
of the denoised seismic data was very weak, and obvious 
signals existed in the removed noise sections (Figures 
2d and 2f). In contrast, the proposed inversion-based 
t-x domain random noise attenuation method not only 
preserved the energy of the linear events with big dips 
but also preserved the energy of the curved events; there 
was very little signal in the removed noise section (Figure 
2h).

For inversion-based t-x domain random noise 
attenuation, it is important to verify the methods to 
determine the fi lter size and select a trade-off parameter 
so that a relatively accurate PEF can be calculated. To 

x
y

t

Fig.1 3-D prediction error fi lter (PEF).
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Fig.2 2-D synthetic seismic data random noise attenuation test.
(a) Clean synthetic seismic data; (b) noisy synthetic seismic data (SNR = 1); (c) denoised result from f-x prediction fi ltering; (d) removed noise section 
corresponding to (c); (e) denoised result from t-x prediction; (f) removed noise section corresponding to (e); (g) denoised result from inversion-based t-x 
domain random noise attenuation; and (h) removed noise section corresponding to (g).

determine the fi lter size, usually enough seismic traces 
in the space direction are chosen so that the signal can 
be well predicted. Filter size in the time direction should 
be determined by the dip of the seismic events. A larger-
sized filter is needed in the time direction if the dip of 
the event is large. If the dip of the event is not very 
steep, the denoised result is not sensitive to the size of 
the filter in the time direction (Abma and Claerbout, 
1995). The trade-off parameter, λ, should not be too large 
or too small; if it is too large, the function of the PEF is 
stronger and the signal is easily harmed; if λ is too small, 
it cannot remove noise effectively. In addition, λ should 
be increased with decreasing SNR. In this synthetic data 
example, the fi lter sizes chosen were 8 and 5 in the time 
and space directions, respectively, and the value of λ was 1.

To determine the iteration number, after a few tests, it 
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Fig.3 Changes of objective function values with 
number of iterations.

was found that the value of the cost function converged 
for general SNRs normally after 10 iterations. Figure 
3 demonstrates the changes of the objective function 
values with the number of iterations for this example.

3-D synthetic data random noise attenuation test
A 3-D model was used to test the inversion-based 

t-x-y domain random noise attenuation. The model 
consisted of two linear events and a curved event, and 
each event comprised different dips. A 40-Hz, zero-
phased Ricker wavelet was used with a time interval of 2 
ms to synthesize the clean data shown in Figure 4a. Each 
trace consisted of 501 samples, and the seismic data 
consisted of Nx × Ny traces, where Nx = 20 and Ny = 20. 
Figure 4b shows the noisy data with a SNR of 1, which 
was obtained by adding Gaussian noise to the clean data 
shown in Figure 4a. For this test, the size of the chosen 
prediction filter was 5, 3, and 3 in the time, xline, and 
inline directions, respectively, and the value of the trade-
off parameter was 5. Figure 4c shows the denoised 
result from t-x-y prediction fi ltering, whereas Figure 4d 
demonstrates the denoised result from inversion-based 
t-x-y domain random noise attenuation. Figures 4c and 
4d indicate that both of these methods removed noise 
effectively; however, the prediction fi ltering method also 
removed some signal, and a small amount of random 
noise remained, as shown in Figure 4c. In contrast, the 
signal energy was strong and the whole profi le was very 
clean in Figure 4d.
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Fig.4 3-D synthetic seismic data random noise attenuation test.
(a) Clean synthetic seismic data; (b) noisy synthetic seismic data (SNR = 1); (c) denoised result from t-x-y prediction fi ltering; 

and (d) denoised result from inversion-based t-x-y domain random noise attenuation.

Field data examples

2-D fi eld data example
The proposed method was applied to field data 

acquired from oilfi elds located in East China (Figure 5a). 
The field area is located in a depression zone between 
two faults and contained strong random noise, indicating 
a low SNR. There were 200 traces with 501 samples in 
each trace with a time interval of 2 ms. The events’ dips 
were relatively small in comparison with the dip events 
in the synthetic data; therefore, the fi lter sizes were 5 and 
3 in the time and space directions, respectively, and the 
trade-off parameter, λ, was 2. Figures 5b and 5c show 
the denoised result from f-x prediction filtering and 
its corresponding removed noise section, respectively. 
Figures 5d and 5e demonstrate the denoised result from 
t-x prediction filtering and its corresponding removed 
noise section, respectively. Figures 5f and 5g illustrate 
the denoised result from inversion-based t-x domain 
random noise attenuation and its corresponding removed 
noise section, respectively. Comparing the denoised 
results and the removed noise sections from these three 
methods, the prediction filtering method removed the 

noise effectively, but it also removed some signals; 
there were some signifi cant signals in the removed noise 
section (Figures 5c and 5e). Comparing Figures 5b, 5d, 
and 5f, it was observed that the denoised result from 
the proposed method exhibited the highest resolution 
(indicated by the red arrows in Figures 5b, 5d, and 5f). 
The f-x and t-x prediction filtering methods smoothed 
the subtle structures, which decreased the resolution 
of the seismic data. The proposed method achieved a 
superior trade-off between random noise attenuation and 
amplitude preservation for effective signals. Therefore, 
the proposed method was better able to preserve the 
weak signals and subtle structures of the noisy seismic 
data, and it demonstrated better signal-preservation 
ability and fi delity than the other methods.
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Fig.5 2-D seismic fi eld data processing example.
(a) 2-D seismic fi eld data; (b) denoised result from f-x prediction fi ltering; (c) removed noise section corresponding to (b); (d) denoised t-x prediction 
fi ltering; (e) removed noise section corresponding to (d); (f) denoised result from inversion-based t-x domain random noise attenuation; and (g) 
removed noise section corresponding to (f).

3-D fi eld data example
Figure 6a shows the 3-D seismic fi eld data. The events 

were discontinuous, and there were many weak signals 
that overwhelmed by random noise. There were 1001 
samples in each trace, and the time interval was 2 ms. 
The trace numbers were Nx × Ny = 1701, where Nx 
= 81 and Ny = 21. The filter sizes were 5 for the time 

direction and 3 in the both xline and inline directions. 
Figures 6b and 6c demonstrate the denoised inversion-
based t-x domain random noise attenuation result and its 
corresponding removed noise section, respectively. The 
proposed method improved the continuity of the seismic 
events and preserved the weak signals (Figure 6b). The 
denoised result exhibited higher resolution and fi delity, 
and effective signals were barely seen in Figure 6c.
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Fig.6 3-D seismic fi eld data processing example.
(a) 3-D seismic fi eld data; (b) denoised inversion-based t-x-y domain random noise attenuation; and (c) removed noise section corresponding to (b).

Conclusions

When suppressing noise, seismic signal damage 

should be reduced as much as possible and the kinetic 
characteristics of the seismic reflection kept relatively 
intact so that high quality data is available for attribute 
analysis and seismic inversion processes. In line with 
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the basic idea of random noise attenuation, an inversion-
based data-driven time-space domain random noise 
attenuation method was proposed. Differing from 
conventional prediction filtering methods, a prediction 
fi lter was used to describe signal predictability and bring 
its corresponding PEF to the seismic data inversion 
system and inverse the signal directly from the noisy 
data; the prediction filter improved signal preserving 
performance. In addition, compared with model-driven 
seismic data inversion, the proposed method calculates 
a prediction fi lter from seismic data adaptively and uses 
it to characterize the space structure of seismic data; 
therefore, this proposed method performs better for 
complex seismic data. Because the proposed method 
requires simultaneous retrieval of all sample points in a 
3-D time window, it improves denoising accuracy but 
concurrently reduces computational efficiency to some 
extent. Therefore, low computational efficiency is the 
method’s main obstacle to practical application. Finding 
methods to improve computational effi ciency is the key 
for our future  research.
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