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Abstract: The construction of a shale rock physics model and the selection of an appropriate 
brittleness index (BI) are two signifi cant steps that can infl uence the accuracy of brittleness 
prediction. On one hand, the existing models of kerogen-rich shale are controversial, 
so a reasonable rock physics model needs to be built. On the other hand, several types 
of equations already exist for predicting the BI whose feasibility needs to be carefully 
considered. This study constructed a kerogen-rich rock physics model by performing the self-
consistent approximation and the differential effective medium theory to model intercoupled 
clay and kerogen mixtures. The feasibility of our model was confi rmed by comparison with 
classical models, showing better accuracy. Templates were constructed based on our model to 
link physical properties and the BI. Different equations for the BI had different sensitivities, 
making them suitable for different types of formations. Equations based on Young’s Modulus 
were sensitive to variations in lithology, while those using Lame’s Coeffi cients were sensitive 
to porosity and pore fl uids. Physical information must be considered to improve brittleness 
prediction.
Keywords: Rock physics modeling, brittleness, shale, anisotropy

Introduction

Shale hydrocarbon reservoirs  typically have 
low permeability and low porosity, so traditional 
exploration methods are insufficient to deal with most 

shale reservoirs. In order to obtain commercially 
viable production of hydrocarbons, oil companies 
often perform hydraulic fracturing to create artificial 
fractures and increase both permeability and porosity. 
This reduces the diffi culty of exploration and enhances 
production (Goodway et al., 2010). Accurate prediction 
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of the brittleness of the reservoir rock is essential for 
effective hydraulic fracturing, and three-dimensional 
(3D) elasticity measurements from geophysical data 
allow prediction of 3D brittleness. 

The construction of a rock physics model and the 
selection of a suitable brittleness index (BI) equation 
are two key steps that may influence the accuracy of 
brittleness prediction. A rock physics model can be 
used to convert physical properties obtained from well 
logging data (e.g., mineralogy and pore structure) to 
elastic parameters (e.g., Young’s Modulus and Poisson’s 
Ratio) (Mavko et al., 2009). The reasonability of the 
model can significantly influence the accuracy of the 
calculated elastic parameters. A BI equation is capable of 
predicting brittleness using both the physical properties 
and the elastic parameters of the shale, but only when a 
suitable equation is applied. 

Many studies have focused on discovering the intrinsic 
quality of brittleness, and many brittleness equations 
have been proposed by experts in the field. Based on 
Barnett shale samples, Rickman et al. (2008) found that 
a high Young’s Modulus (YM) and a low Poisson’s Ratio 
(PR) are indicators of high brittleness, so they proposed 
a brittleness index equation based on these parameters. 
Their discovery has been widely accepted in the industry, 
and a series of improved equations were built based on 
their proposal. Guo et al. (2012a) modifi ed the equation 
by dividing YM by PR, justifi ed by the idea that the BI is 
positively correlated with YM and negatively correlated 
with PR. Liu et al. (2015) improved upon Guo’s equation 
by using normalized values for YM and PR.

In recent years, experts have proposed other elastic 
parameters to describe brittleness. Guo et al. (2012a, 
2012b) proposed using the ratio between Lame’s 
Coefficients (LC) to predict brittleness. Chen et al. 
(2014) found that the ratio between YM and LC can 
be used to identify brittle areas. Huang et al. (2015) 
derived a brittleness equation for tight reservoirs after 
comparing the sensitivities of different brittleness 
equations. Published equations have mostly focused on 
describing the sensitivities of different mathematical 
combinations of elastic parameters to brittleness, while 
largely have ignored the physical meanings of these 
elastic parameters. However, the brittleness of rock is 
also infl uenced by pore structure, mineralogy, and other 
physical properties. Analyzing the relationship between 
physical properties and brittleness-sensitive parameters 
is helpful for demonstrating the feasibility and sensitivity 
of different BI equations. A reasonable rock physics 
model can link two categories of parameters, so building 
a proper rock physics model seems both signifi cant and 

straightforward. 
In terms of rock physics modeling, the construction of 

shale rock physics models is still in its exploratory stage. 
Geophysicists have committed to building a reasonable 
rock physics model for shale, but its properties have 
proven complicated and diffi cult to be described using a 
single model. For example, before an anisotropic model 
can be constructed, we need to understand the origins 
of the shale’s anisotropy and choose a reasonable set of 
theories to describe these origins. Shale usually exhibits 
strong vertical transverse isotropy (VTI), and the origins 
of shale anisotropy can be attributed to lamination, 
micro-fractures, and mineralogy. (1) Depositional 
lamination of clay and kerogen particles serves as a main 
contributing factor to VTI properties (Johansen et al., 
2004; Vernik et al., 1992, 1997). (2) Scanning Electron 
Microscopy (SEM) images indicate an abundance of 
irregular pores and horizontal micro-fractures in shale, 
which can also enhance its anisotropy (Sayers, 1994). (3) 
Clay minerals are diverse and include kaolinite, chlorite, 
and illite, which can result in intrinsic anisotropy of clay 
minerals (Sayers, 2005; Guo et al., 2015). Clay mineral 
modeling is a significant foundation for shale model 
construction. Meanwhile, the properties of kerogen 
present another issue that cannot be ignored (Vanario et 
al., 2008);. Kerogen modeling is one of the diffi culties in 
shale modeling because of its special physical properties 
(very low bulk modulus and shear modulus).

Vernik and Nur (1992) attempted to model a laminated 
clay and kerogen mixture based on its Backus average 
(Backus, 1962), which yielded a good prediction except 
for C33. Vernik and Landis (1996) identified the source 
of this predicted error as the lamination of clay/kerogen 
and introduced an empirical parameter to correct the 
problem. Sayers et al. (2013) raised concerns that the 
Backus average is not sufficient to model kerogen in 
shale since the empirical fi tting index seems to have no 
physical meaning. In addition, Guo et al. (2013) claimed 
that the Backus average could only perform well when 
the mineralogy of the shale is simple. Zhu et al. (2012) 
treated kerogen as a solid substitution based on the 
Brown-Korringa theory (Brown and Korringa, 1975), 
and they divided the pore space into solid and fl uid pore 
spaces. Bandyopadhyay (2009) and Wu et al. (2012) 
simulated kerogen-rich shale based on an anisotropic 
differential effective medium (DEM) approach, and 
they found that when they treated kerogen as the matrix 
material, they obtained better predictions of C33 than 
did Vernik (1996). However, DEM has the drawback 
of requiring a background material and a set order for 
the other minerals. Varying this order can introduce 
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theoretical error, and while setting kerogen as the 
background can result in better predictions, the reality is 
that it is usually embedded in a clay background (Figure 
1). Sayers (2013) claimed that this disagreement between 
theoretical modeling and ground truth may result from 
the disconnection between clay and kerogen. 

Our study aimed to address the problems described 
above. We started by constructing a shale rock physics 
model based on an anisotropic self-consistent approxi-
mation (SCA) and a DEM theory to model kerogen in 
shale. SCA+DEM allowed us to build an intercoupled 
clay-kerogen block (CKB), which may solve the discon-
nection issues identifi ed by Sayers (2013). The feasibil-
ity of this model was proved by comparing it with other 
models. In addition, sensitivity analysis of different elas-
tic parameters was conducted for anisotropic conditions, 
and the model linked the physical parameters with the 
sensitive parameters of brittleness.

Rock physics model 
for kerogen-rich shale

Model construction
 Based on anisotropic SCA+DEM theory (Hornby 

et al., 1994), we simulate the kerogen in shale by 
constructing mutually coupled clay kerogen blocks and 

obtain SEM images.  The SEM images present detailed 
information of shale in underground reservoirs. The 
detailed features will provide valuable information 
for the construction of reasonable rock physical 
models. Figure 1 are SEM images that show a shale 
formation from X well in Southwest China. It is from 
the geological report of our target formation and shows 
the typical character of kerogen-rich shale. These 
images show bright white dots corresponding to brittle 
minerals (quartz or calcite), and light- and dark-brown 
background minerals corresponding to clay and kerogen, 
respectively, which are both ductile minerals. Based 
on the geochemical test report, this shale is mainly 
composed of quartz and feldspar, and the matrix is 
primarily clay and kerogen. The structural forms of 
brittle and ductile minerals are typically quite different. 
Ductile minerals (clay and kerogen) are usually formed 
from laminated deposition, while brittle minerals (quartz, 
calcite, and feldspar) are separately embedded in this 
laminated background. Hence, in our model, we first 
dealt with clay and kerogen by building a laminated 
clay-kerogen background, and then we added other 
brittle minerals into this background. As mentioned 
above, clay and kerogen are fi ne-grained sediments that 
form the matrix of the shale, and they intercouple with 
each other quite well. So, the first step to construct a 
model was to select a proper effective theory to simulate 
this intercoupled clay-kerogen background with its 
laminated form. 

 
 (a) Scanning scale: 2 mm                                                         (b) Scanning scale: 1 mm

Fig.1 SEM images of shale formation from X well, Southwest China.

As mentioned above, kerogen has unique physical 
and elastic properties. For instance, the bulk and shear 
moduli of kerogen are as low as 2.9 GPa and 2.7 GPa, 
respectively, while those of quartz are 37 GPa and 44 
GPa, respectively. Meanwhile, the density of kerogen 
is relatively low, which causes kerogen-rich shale 
formations to have comparatively low densities. As a 

result, kerogen behaves more like a fluid rather than a 
mineral, and traditional theories that are used to model 
mineral skeletons are not able to model a kerogen-rich 
background. 

The n-phase SCA method (Berryman, 1980, 1995) is 
popular in shale modeling since it can model all mineral 
phases and the fluid phase simultaneously. However, 
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many studies have shown that for a mixture of fluid 
and solid, the elastic modulus predicted by SCA often 
coincides with the upper bound of the Hashin-Shtrikman 
(HS) bound (Hashin and Shtrikman, 1963) at porosities 
below 40% (Hornby et al., 1994; Das and Batzle, 2009), 
which means that the softer fluid phase in the rock is 
surrounded by the harder mineral phase, and the pore 
fl uid is isolated in this scenario.

The HS bound can be used to test the feasibility of 
SCA. If the detailed mineral arrangement of the rock 
is unknown, the HS bound can provide a reasonable 
prediction range (Mavko et al., 2009). Assuming two 
mineral phases, one softer and the other stiffer, the lower 
bound indicates the scenario in which the stiffer mineral 
is surrounded by the softer mineral, and the upeer bound 

indicates the opposite. If the prediction falls between 
these bounds, the two phases are intercoupled.

Bulk and shear modulus predictions made by SCA 
are shown in Figure 2. The bulk and shear modulus 
values for clay were 25 GPa and 9 GPa, respectively, 
and kerogen’s elastic modulus values were as defined 
above. The SCA predictions reached the lower HS bound 
around 80%, which means the bi-connected range for the 
clay-kerogen mixture is around 20–80%. Since the shear 
modulus of kerogen is not zero, the bi-connected range 
for this mixture is wider than that of fl uid-saturated rock 
(40–60%). However, the volume fraction of kerogen is 
still unlikely to reach that range in real reservoirs, which 
means SCA is insuffi cient to model kerogen in shale on 
its own.

To address this limitation, we modeled the clay-
kerogen mixture based on SCA+DEM theory. Different 
from SCA theory (Berryman, 1980), this combined 
approach is able to keep the mineral phase (clay) and 
fluid phase (pore fluid) connected with each other. 
We treated kerogen as a fluid for the purposes of 
SCA+DEM. This model doesn’t require the selection of 
a background mineral, so we avoided that weakness of 
the DEM approach as well. Sayers (2013) proposed that 
the prediction errors of C33 in Vernik (1996) were caused 
by ignoring the connectivity between clay and kerogen. 
Hence, SCA+DEM can hopefully solve this issue at the 
same time. 

After building an intercoupled CKB, we modeled a 
typical lamination similar to the striation in Figure 1. 
Bond transforms and Voigt-Reuss-Hill (VRH) averages 
were performed in our modeling. Bond transforms 
helped us model different types of CKBs with different 
deviation angles. As shown in Figures 3a and 3b, 
variations of the angle caused the properties of the CKB 

to vary, even from VTI to HTI. The physical meaning 
of the deviation angle is the dip angle of the formation. 
A dip angle of zero indicates that all clay and kerogen 
are perfectly laminated; however, real shale formations 
never exhibit perfect lamination due to tectonic transfer 
(Hornby et al., 1994). Thus, based on the CKBs that 
we calculated by Bond transform, we introduced VRH 
theory to combine several identical CKBs with different 
dip angles and we simulated their effective properties. 
Each CKB had a unique deflection angle, θ, with a 
Gaussian distribution (Figure 3c). The mean value of this 
distribution was zero, which indicates that the majority 
of CKBs were laminated to represent VTI properties. 
The extent of lamination was controlled by the variance, 
i.e., low variance means the majority of the deflection 
angles are near zero, and therefore shows the strongest 
lamination. Based on empirical observations from the 
SEM images, we set the variance 20 (this would vary 
according to the extent of lamination for other real 
formations). 

     (a) Bulk modulus                                                            (b) Shear modulus
Fig.2 Predictions of effective bulk and shear moduli based on SCA as kerogen concentration varies. 

The red line indicates the effective result of SCA, and the blue dashed lines indicate the upper and lower boundaries of HS.
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After constructing the ductile VTI background, the 
next step was to simulate the discrete brittle minerals 
(quartz, feldspar, etc.) within it. All kinds of brittle 
minerals were mixed using the VRH average, and an 
anisotropic DEM was proposed to add the brittle mixture 
into the ductile background. DEM makes a high-
frequency assumption such that its inclusion phase is 
discrete, which makes it suitable for brittle minerals that 
are usually isolated.  

Rock with complicated mineralogy (like shale) usually 
develops a range of pore types (Ba et al., 2008, 2011; 
Huang et al., 2015). For instance, inter-particle pores, 
organic pores, and micro-fractures usually exist in clay 
and kerogen. Our target formation was over-mature, 
which means the majority of micro-fractures were 
cemented or compacted, so we did not consider micro-
fractures in our model. Meanwhile, the low porosity and 
permeability of shale usually result from the separate 

distribution of clay-related pores. Hence, we assumed 
that clay-related pores were isolated and we used 
anisotropic DEM to model them.

Based on the criteria described above, we built our 
kerogen-rich shale model as follows (Figure 4): 
(1) Anisotropic SCA+DEM was performed to build 

the intercoupled CKBs.
(2) The lamination of each CKB was modeled by 

rotating and combining many identical CKBs. The 
properties of these rotated CKBs were calculated based 
on Bond transforms, and VRH averages were used to 
simulate the effective combination medium. 

(3) Brittle minerals were mixed by VRH averages.
(4) The brittle mixtures and pores were added into the 

clay-kerogen backgrounds to obtain our final effective 
results. The pore fluid mixture was calculated by the 
Wood equation.
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Model test and theoretical analysis
In order to test the feasibility and accuracy of our 

model, especially its capacity to model kerogen in shale, 
we compared the predictions of the SCA+DEM model 
with other theoretical results (e.g., Backus average, 
DEM, etc.). We then selected a real shale sample from 
the Bazhenov formation and predicted its effective 
properties using our model.  

(a) Feasibility of SCA+DEM
Figure 5 shows theoretical results of SCA+DEM 

and three other models as compared with real data. The 
elastic parameters of pure kerogen and pure shale are 
shown in Table 1, which were derived by Sayers (2013) 
and based on shale samples quoted from Vernik and 
Landis (1996).

Table 1 Properties of kerogen and shale quoted from Sayers (2013)
Component Density (g/cc) C11 (GPa) C33 (GPa) C44 (GPa) C66 (GPa) C13 (GPa)

Kerogen 1.25 9.8 9.8 3.2 3.2 3.4
Shale 2.73 85.6 65.5 24.6 29.7 21.1

From Figure 5, we see that the traditional Backus 
average overestimates the data, as Vernik et al. (1996) 
and Sayers (2013) have found. The DEM models are 
better, but they overestimate the values when the kerogen 
is included in shale and underestimate them when shale 
is included in a kerogen background. The best fi t comes 
from the dashed blue lines calculated by using the 
SCA+DEM theory. From this, we concluded that the 

feasibility of the SCA+DEM approach is verifi ed.

(b) Feasibility of rock physics model
Based on our constructed model, we predicted values 

for a real core sample that were published by Vernik 
and Landis (1996), which is shown in Table 2. And 
the properties of individual mineral were quoted from 
Mavko et al. (2009). The data were also used by Wu et 
al. (2012) to test their model.

Table 2 Volume percentage and elastic moduli for each ingredient of the Bazhenov shale
Quartz/Feldspar Carbonate Clay Pyrite Kerogen Porosity Fluid (brine)

% Vol. 46 3 48 3 16.8 4.12 N/A
K (GPa) 37 76.8 22.9 147.4 2.9 N/A 2.2
μ (GPa) 44 32 10.6 132.5 2.7 N/A 0
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 (a) C11                                                                           (b) C66

Fig.5 Theoretical predictions of elastic parameters based on different models with different kerogen inclusion. 
The abscissa is the volume fraction of kerogen, and the ordinate is the elastic tensor, either C11 (a) or C66 (b). The red lines represent 
the predictions of the Backus average, the pink lines represent the predictions of an anisotropic DEM with a shale background, the 
solid blue lines represent the predictions of an anisotropic DEM with a kerogen background, and the dashed blue lines represent the 
predictions of our SCA+DEM method. The black dots are data points from Bakken shale, quoted from Vernik and Liu (1997).

The stiffness of the CKBs that were predicted using 
SCA+DEM were C11 = 20.18 GPa, C33 = 14.57 GPa, C44 

= 5.20 GPa, C66 = 6.60 GPa, and C13 = 5.99 GPa. Many 
identical CKBs were rotated based on the distribution 
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function (Figure 3c). Mean values and variances of 
the Gaussian distribution were equal to zero degree 
and 20 respectively, which represent the lamination of 
shale. The stiffness of the brittle mineral composite was 
calculated by VRH, where K = 39.9 GPa and μ = 42.4 
GPa. DEM was performed to add the brittle mixture into 
the ductile background. Finally, the anisotropic DEM 

was used to add the brittle mixture into the effective 
mixture with an aspect ratio of 0.3.

Table 3 shows that our model (in bold) closely matches 
the real data and is better suited to estimate the stiffness 
of the Bazhenov samples than the other models. The 
SCA+DEM method yielded the minimum relative error, 
which proves the feasibility and capability of our model. 

Table 3 Empirical measurements and predictions of stiffness of a shale fi eld sample based on different models, 
with error analysis. The shale sample was from the Bazhenov formation as quoted from Vernik et al. (1997)

C11 (GPa) C33 (GPa) C44 (GPa) C66 (GPa) Error
Real measured values by 

Vernik et al. (1997) 42.38 26.23 8.68 15.23 0

Wu et al. (2012) 45.45 31.33 6.87 17.62 0.0089
Our result (SCA+DEM) 40.93 24.48 10.07 15.75 0.0017
Result (Backus average) 42.00 22.33 9.81 16.13 0.0115

Result (DEM with shale background) 41.23 22.92 9.68 15.88 0.0068
Result (DEM with kerogen background) 42.19 23.8 10.0 16.14 0.0054

Since the YM and PR of shale samples from the 
Barnett shale fall mainly in the ranges 1–8 and 0.15–
0.4, respectively, ΔYM and ΔPR were proposed as the 
normalized Young’s Modulus and normalized Poisson’s 
Ratio, respectively. 

The standard defi nitions of Rickman’s equations are

              

100( ) ,
( )

100( ) ,
( )

_1 .
2

min
norm

max min

max
norm

min max

norm norm

YM YMYM
YM YM

PR PRPR
PR PR

YM PRBI  (2)

where YMnorm and PRnorm are the normalized terms, which 
correspond to ΔYM and ΔPR in equation (1). 

Guo et al. (2012) constructed their BI as

                             _ 2 .YMBI
PR

 (3)

Liu et al. (2015) defined the BI by the ratio of the 
normalized YM to the normalized PR as

                        ._3 norm

norm

YMBI
PR

 (4)

BI_4 and BI_5 are WCM-based brittleness index 
equations given by

Analysis of brittleness index equation

In this section, the sensitivity and characteristics of 
different classical BI equations are analyzed based on 
our constructed model in terms of anisotropy.

Classical brittleness index equations
As mentioned above, the most commonly used 

brittleness equations can be divided into two categories: 
weight content methods (WCMs), which represent the 
brittleness of rock by using the volume percentage of 
brittle minerals, and elastic parameter methods (EPMs), 
which describe the brittleness of rock based on elastic 
parameters such as YM, PR, and LC. In addition, we 
subdivided EPMs into YM/PR-based equations and 
Lame’s Coeffi cient equations according to their different 
types of elastic parameters. According to equations 
(1)–(9), BI_1 through BI_3 and BI_6 through BI_8 are 
EPMs, while BI_4 and BI_5 are WCMs. In addition, 
BI_1 through BI_3 are YM/PR-based brittleness index 
equations. 

Rickman et al. (2008) proposed an average brittleness 
equation based on their analysis of the Barnett shale 
given by

1,
8 1

YMYM  0.4 ,
0.4 0.15

PRPR

100,
2

YM PRBI                        (1)
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                   _ 4 *100%,QuartzBI
Total

  (5)

                   
1_ 5 *100%,shVBI
Total

 (6)

where Quartz, Total, and Vsh represent the weight 
contents of quartz, total minerals, and clay content, 
respectively.

Guo et al. (2012) defi ned the BI using LC as

                        2_ 6BI .  (7)

Chen et al. (2014) indicated that the ratio of the YM 
and Lame’s Coeffi cient can be used to represent a highly 
brittle formation as

                           _ 7 YMBI .  (8)

Note that BI_6 through BI_8 are brittleness indexes 
based on LC.

Huang et al. (2015) proposed a BI that compares the 
sensitivity of different types of combinations of elastic 
parameters as

          3 5 2 2 1_ 8 4,BI   (9)

where κ is the bulk modulus.
Different BI equations have different areas of focus. 

As a result, we selected an appropriate equation 
while doing brittleness analysis of different types of 
formations. The suitability of each equation is described 

in Figure 6.
BI_1 through BI_3 all show that the brittleness index 

is proportional to YM and inversely proportional to PR. 
The weighted average in BI_1 treats YM and PR equally, 
and it doesn’t consider the difference between YM and 
PR to be related to brittleness. This kind of rough average 
has no physical meaning and should be continuously 
improved and calibrated by more shale data.

BI_2 and BI_3 have similar forms, with both using 
the ratio between YM and PR. The only difference is 
that BI_2 uses actual values of YM and PR while BI_3 
normalizes YM and PR. This normalization process can 
avoid abnormal predictions resulting from the different 
magnitudes of YM and PR and can enhance the stability 
of BI_3’s predictions. However, it varies the magnitude 
of YM and PR toward the same level, which may reduce 
the sensitivity of BI_3’s predictions. Meanwhile, the 
value of PR may drop to 0 after normalization, which 
may also yield abnormal values, so these equations must 
be handled with care. 

BI_4 and BI_5 are WCMs. BI_4 treats quartz as the 
brittle mineral while BI_5 treats both quartz and calcite 
as brittle minerals. BI_4 and BI_5 are simple to use, 
requiring just the volume fractions of brittle minerals as 
inputs, which makes WCMs effective and widely used.

WCMs need to assume that the rock is isotropic and 
that the prediction contains no anisotropic information. 
While the elastic parameters in EPMs, such as YM, 
PR, and Lame’s parameters, are based on the isotropic 
concept, they can still be analyzed in an anisotropic way 
(equation (10)). In addition, EPMs take the effect of pore 
shape and pore fluid into consideration while WCMs 
only consider the mineralogical effects, thus making 
them rougher by comparison. 
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Fig.6 Defi nitions and comparison among different types of brittleness index equations.
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Brittleness index sensitivities
In order to analyze the ability of a brittleness index 

equation to distinguish between different types of rock, 
the concept of a sensitivity index of brittleness (BI_
sensitivity) has been introduced in recent papers (Huang 
et al., 2015). The brittleness values of silica-rich shale 
(volume fraction ratio of quartz:clay is 4:1) and clay-
rich shale (ratio is 1:4) were calculated. The differences 
between these brittleness values were quantifi ed, with a 
wide gap representing a high sensitivity.

This kind of sensitivity analysis relies on the other 
parameters being held constant. However, the brittleness 
of rock is usually a result of a combination of many 
parameters, which means that the sensitivities of 
different equations may vary as the physical properties 
of the rock vary. Hence, the sensitivities of BI equations 
must be discussed under the assumption of a specific 
physical condition. In order to analyze the effect of 
physical properties (e.g., mineralogy, pore fl uid, and pore 
structure) on the sensitivity of BI, our study varied the 
mentioned physical properties based on our previously 
constructed model and quantitatively discovered 
the sensitivity values under different scenarios by 
introducing the sensitivity index.

Since our model is anisotropic, the sensitivity analysis 
was performed using a calculated elastic tensor,

6*6 *

*

2 0 0 0
2 0 0 0

2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C ,

 (10)

where  and  represent the horizontal LC,  and 
represent the vertical LC, and * is the shear modulus 
that is related to both vertical and horizontal directions 
(Sun, 2007).

Figure 7 shows the sensitivity analyses of the elastic 
moduli by varying the mineralogy. The ratio between 
quartz and clay volume content varied from 1:4 to 4:1, 
while the other physical parameters were unchanged 
(porosity was held at 10% and the volume fractions 
of kerogen and calcite were equal to 10% and 40%, 
respectively). 

The sensitivity index equation for mineral variations 
is given by

2 2
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Fig.7 Sensitivity analyses of different elastic 
moduli by varying the mineral content.

                       

quartz clay
min eral

quartz

C C
SI

C
,          (11)

where SI is the sensitivity index, C represents the 
sensitive elastic parameters (e.g., λ, μ, and λ+2μ), and 
the subscripts indicate the silica- or clay-rich shale. 
Goodway et al. (2010) pointed out that highly brittle 
formations usually have low λρ and medium μρ. 
They also mentioned that λ is usually called the “fluid 
factor,” which is sensitive to fluid variations, while μ 
often represents the shear capability of the skeleton 
and is therefore called the “lithology factor.” Figure 7 
reinforces these definitions where the lithology factor, 
μ, shows the highest sensitivity to varying lithologies, 
while the fl uid factor, λ, has the lowest sensitivity.

In order to analyze the sensitivity by varying the other 
types of minerals, our study also scaled the volume 
fraction of calcite and kerogen. The prediction of the 
SImineral showed that the trend of the sensitivity was 
consistent, and the magnitude of SImineral varied according 
to the variations of the elastic moduli. 

Figure 8 shows the sensitivity analyses of the elastic 
moduli by varying the pore fl uid. The pore fl uid varied 
from water-saturated to gas-saturated, while the other 
parameters were unchanged, i.e., the volume fractions of 
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Fig.8 Sensitivity analyses of different elastic 
moduli by varying the pore fl uid.
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quartz, calcite, clay, and kerogen were set to 10%, 40%, 
40%, and 10%, respectively, while the porosity was 10% 
and the pore aspect ratio was 1.

The sensitivity index for fl uid variations is given by

                    

water gas
fluid

water

C C
SI

C
,  (12)

where the subscripts indicate water-saturated or gas-
saturated shale. In this situation, the sensitivity of the 
fl uid factor, λ, is higher than that of the lithology factor, μ.

Figure 9 shows the sensitivity analyses of the elastic 
moduli when the pore structure of the shale was altered. 
The pore aspect ratio was varied from 1 to 0.1, while 
the other parameters were unchanged, i.e., the volume 
fractions of quartz, calcite, clay, and kerogen were 10%, 
40%, 40% and 10%, respectively, while the porosity was 
held at 10% and the pore fl uid was water. 

target areas with low porosity and complicated lithology, 
a lithology-sensitive BI may yield better predictions. 

BI_2 and BI_6 are based on YM /PR  and LC , 
respectively. If λ has the same order of magnitude as μ, 
then BI_2 can be approximated as BI_6*μ. Since μ is the 
lithology factor, the YM/PR-based BI_2 is more sensitive 
to variations in lithology. Meanwhile, BI_6 through BI_8 
are based on the form of Vp/Vs, which indicates that 
Lame’s Coeffi cients-based equations are more sensitive 
to pore fl uid variations, as described by

3 2E , ,
2( )

                      
3 2_ 2 .EBI  (14)

Case study

The models and equations described above were used 
to predict the brittleness of the shale from a well located 
in Southwest China. Our target formation is part of the 
Longmaxi and Wufeng formations at a depth of 1900 to 
2060 m at our well location.

Figure 10 displays a range of pertinent information 
related to this shale deposit, including logging data and 
predictions of brittleness based on different types of 
equations. The results of BI_1 and BI_2, which are both 
based on YM and PR, are similar to each other, which 
indicates the stability of this category of equations. 
BI_4 and BI_5, which are based on weight content, are 
not different to each other, which suggests that WCMs 
are rougher than EPMs. The predictions of WCMs 
rely too much on the accuracy of the mineral inversion 
procedure, and they usually result to lower precision. 
The predictions made by BI_6, BI_7, and BI_8, all of 
which are based on LCs, are very similar. 

Although the EPMs based on YM/PR and LCs share 
some fundamental aspects, their overall prediction 
trends are quite dissimilar, especially at 2020 and 2060 
m, which shows the different sensitivities of these two 
approaches.

One term in equation (14), 
3 2

, is quite similar 

to the definition for BI_6, 
2_ 6BI , since λ 

and μ have the same order of magnitude. Hence, the 
predictions from BI_2 are similar to the product of μ 
and BI_6. Since μ is a lithology factor, BI_1 and BI_2 
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Fig.9 Sensitivity analyses of different 
elastic moduli by varying the pore shape.

The sensitivity index for pore shape variations is given by

                    spherical flat
asp

spherical

C C
SI

C
,  (13)

where the subscripts indicate pore aspect ratios equal 
to 1 (spherical) or 0.1 (flat). Figure 9 shows that the 
sensitivities of the elastic parameters in the vertical 
direction are vastly higher than those in the horizontal 
direction.

Figures 7–9 demonstrate that the sensitivities of our 
elastic parameters are related to mineralogy, pore fl uid, 
and pore structure; thus, they will vary for different types 
of shale. In order to analyze the brittleness of different 
types of formations, we needed to take into consideration 
a range of physical effects rather than only analyzing 
the effect of mineralogy. For a formation with relatively 
high porosity and complicated pore fluid phases, it is 
better to choose a fl uid-sensitive BI equation, while for 
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are more sensitive to variations of lithology than BI_6 
through BI_8 (e.g., at 2020 m). By contrast, BI_6 

through BI_8 are more sensitive to formations with 
higher porosity (e.g., at 2060 m). 

In order to discover the inner relationship between 
these three types of methods, we built crossplots of BI 
and colored the data points using physical properties 
measured in the target Wufeng Formation.

Figure 11 shows a crossplot between two YM/PR-
based equations, i.e., BI_1 (equation (2)) and BI_2 
(equation (3)) proposed by Rickman et al. (2008) and 
Guo et al. (2012), respectively. The fi gure demonstrates 
that the two types of predictions coincide well with each 
other and that the brittleness of the rock is positively 
related to pore aspect ratio. As the pore aspect ratio 
increases, the elastic velocity of the rock increases, even 
as the density of rock stays constant. The increase in 
velocity can cause an increase in LC, and fi nally, result 
in an increase in YM and brittleness.

Figure 12 shows a crossplot between BI_2 an d BI_6. 
Although the linear relationship is not as clear as in 
Figure 11, it still shows a generally positive relationship. 
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Fig.10 Observations and predictions of brittleness index from Well X. 
The third through the sixth panels contain interpretations of empirical logging data. The seventh, eighth, and ninth panels show sets of 
predictions of brittleness, as grouped by equation type (YM/PR EPMs, weight-based WCMs, and LC EPMs, respectively). The red arrows 
and blue arrows highlight depths at which the EPMs behaved very differently from each other due to lithology and porosity, respectively.
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represents the shape of the pore space (Qian et al., 2014).
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When the pore aspect ratio is taken into consideration, 
the sensitivity of BI_6 clearly differs from that of BI_2 as 
the pore aspect ratio varies. BI_6 is more sensitive than 
BI_2, which means that it is able to better distinguish 
the brittleness of two data points. However, BI_2 has 
a higher sensitivity than BI_6 as the pore aspect ratio 
reaches high values.

Figure 13 shows a crossplot between BI_1 and BI_4. 
From the fi gure, it can be seen that BI_1 is much more 

sensitive than BI_4, which is based on the volume 
fraction of quartz. BI_4 cannot distinguish between 
different data points if the variations of the quartz 
content is minor, while BI_1 can clearly differentiate 
by aspect ratio. This is because BI_1 considers the 
effects of pore space, while BI_4 doesn’t. This further 
reinforces our assertion that variations in pore structure 
can infl uence brittleness.

Fig.12 Crossplot of brittleness indexes BI_2 and BI_6.
The background color indicates the inverted pore aspect ratio, 
which represents the shape of the pore space. The red rectangle 
indicates data points with relatively low pore aspect ratio while the 
blue rectangle indicates points with high pore aspect ratio.
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Fig.13 Crossplot of brittleness indexes BI_1 and BI_4. 
The background color indicates the inverted pore aspect ratio, which 

represents the shape of the pore space.

Analysis of rock physics templates

Brittleness index analysis based on our model
We built crossplots of brittleness based on our model, 

with the intent to discover the relationship between 
physical parameters and the BI. 

Figure 14 shows the variations of YM and PR in terms 
of quartz content and porosity. Increases in porosity 
can cause an decrease of both YM and PR. However, 
increases in quartz content may increase the YM but 
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the variation of mineralogy with quartz content increasing from 10% to 40% and clay content dropping from 
40% to 10%.
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decrease the PR. In addition, PR is more sensitive to 
porosity than to mineralogy. Calcite and kerogen were 
held at 40% and 10%, respectively. The pore fl uid was 
water, and the pore aspect ratio was set to 0.3, with mean 
value and variance of the normal distribution set to 0 and 
20, respectively. 

Figure 15 shows the variations of different types of 
brittleness indexes in terms of porosity and quartz content. 
The tendencies of BI_1 and BI_2 are similar, as are BI_6 
through BI_8. BI_6 and BI_8 differ in magnitude by a 
value of 3, even though the trends are indistinguishable, 
which agrees with our previous discussion. 

                                     (a) BI_1                                                                (b) BI_2                                                                     (c) BI_6 
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Fig.15 Variations of brittleness indexes from different porosity and quartz content. The purple point A represents a porosity 
of 2% and a quartz content of 40%, the yellow point B represents a porosity of 2% and a quartz content of 10%, and the gray 
point C represents a porosity of 12% and a quartz content of 10%.

In addition, as mentioned above, the differences 
between BI_1, BI_2, and BI_6 through BI_8 result from 
the term μ. 

In order to analyze the sensitivity of the different 
brittleness indexes, we chose three representative points 
in Figures 15a and 15c. The three points represent 
three of the extreme combinations of porosity and 
quartz content. The predictions of these points based 
on Equations (2) and (7) are BI_1_A = 75.99, BI_1_B 
= 18.12, BI_1_C = 17.37, BI_6_A = 4, BI_6_B = 2.823, 
and BI_6_C = 3.536. Based on equations (11)–(13), we 
introduced a sensitive index to describe this sensitivity.

Points A and B both have relatively low porosity (2%) 
but with signifi cantly different mineralogy, i.e., a quartz 
content from 40% to 10% and a clay content from 10% 
to 40%. Hence, we derived (15) to analyze the sensitivity 
of the BI to mineralogy as

                  _ _ ,
_BI

BI A BI BSI
BI A

 (15)

where BI_A and BI_B indicate the brittleness index 
at point A and point B, respectively, and SIBI is the 
sensitivity index of brittleness. Note that a high value of 
SIBI indicates high sensitivity.

SIBI_1 and SIBI_6 were calculated as 0.76 and 0.29, 
respectively. BI_1 is more sensitive to variations of 
mineralogy than BI_6, which means that YM/PR-based 
equations are more sensitive to mineralogy, confi rming 
the results of our previous analysis. 

Similarly, points B and C have similar mineral 
content (quartz content is 10% and clay content is 40%) 
but significantly different porosity, i.e., 2% to 12%, 
respectively. Hence, (16) can be used to describe the 
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sensitivity of the BI to porosity as

                   _ _ ,
_BI

BI B BI CSI
BI B

 (16)

where BI_B and BI_C indicate the brittleness index at 
point B and point C, respectively. SIBI_1 and SIBI_6 were 
found to be equal to 0.04 and 0.25, respectively, which 
means that BI_6 is more sensitive to porosity than BI_1.

Analysis of seismic attributes based on our 
model 

The fi nal application of this model is to decipher the 
relationship between seismic attributes and BI. Figure 
16 is a set of crossplots four brittleness indexes BI_1, 
BI_2, BI_4, and BI_6. Porosity ranged from 2% to 12%, 
clay content ranged from 10% to 40%, pore fluid was 
a mixture of gas, oil, and water with volume ratios of 
0.1:0.1:0.8, and the pore aspect ratio was 0.3. Based on 

this fi gure, the elasticity-based brittleness indexes (BI_1, 
BI_2, and BI_6) were all affected by porosity, while the 
Lame’s Coeffi cients-based indexes were more sensitive 
to pore fluid. The mineralogy-based brittleness index 
BI_4 had no relationship with porosity, which is a critical 
drawback.

The porosity of a shale reservoir is usually higher 
than its surroundings. Hence, the sensitivity analysis 
in a high-porosity formation seems significant. Based 
on Figure 16d, when considering the mineralogical and 
porosity effects simultaneously, it is better to choose a 
zone with medium YM and low PR, instead of a zone 
with high YM and low PR.

In summary, brittleness predictions differed between 
the BI equations, which indicates that mechanical 
parameters are not only related to the mineralogy but 
also to the physical characteristics of the rock. A medium 
YM value and a low PR value indicate high brittleness 
with high porosity, which may be a potential area for 
shale exploration. These results match those of previous 

0.16 0.18 0.2 0.22 0.24 0.26 0.28
20

25

30

35

40

45

50

55
Crossplot of PR vs YM color-coded by BI_1

PR (unitless)

YM
 (G

Pa
)

20

30

40

50

60

70

20

25

30

35

40

45

50

55

120

140

160

180

200

220

240

260
Crossplot of PR vs YM color-coded by BI_2

YM
 (G

Pa
)

20

25

30

35

40

45

50

55

50

55

60

65

70

75

80
Crossplot of PR vs YM color-coded by BI_4

YM
 (G

Pa
)

0.16 0.18 0.2 0.22 0.24 0.26 0.28
PR (unitless)

20

25

30

35

40

45

50

55

3

3.5

4

4.5

5

5.5

Crossplot of PR vs YM color-coded by BI_6

YM
 (G

Pa
)

0.16 0.18 0.2 0.22 0.24 0.26 0.28
PR (unitless)

0.16 0.18 0.2 0.22 0.24 0.26 0.28
PR (unitless)

(a) BI_1                                                                            (b) BI_2

(c) BI_4                                                                            (d) BI_6
Fig.16 Crossplot of YM and PR for different brittleness indexes. 



477

Qian et al.

3

3.5

4

4.5

5

5.5

50

55

60

65

70

75

80

120

140

160

180

200

220

240

260

8 8.5

1.55

1.6

1.65

1.7

1.75

1.8

9 9.5 10 10.5 11 11.5 12
Ip (km/s×g/cm3)

Ip vs Vp/Vs backgroundcolor: BI_1

Vp
/V

s

20

30

40

50

60

70

8 8.5

1.55

1.6

1.65

1.7

1.75

1.8

9 9.5 10 10.5 11 11.5 12
Ip (km/s×g/cm3)

Ip vs Vp/Vs backgroundcolor: BI_2

Vp
/V

s

8 8.5

1.55

1.6

1.65

1.7

1.75

1.8

9 9.5 10 10.5 11 11.5 12
Ip (km/s×g/cm3)

Ip vs Vp/Vs backgroundcolor: BI_4

Vp
/V

s

8 8.5

1.55

1.6

1.65

1.7

1.75

1.8

9 9.5 10 10.5 11 11.5 12
Ip (km/s×g/cm3)

Ip vs Vp/Vs backgroundcolor: BI_6

Vp
/V

s

work (Huang et al., 2015).
Figure 17 shows crossplots between Ip and Vp/Vs 

together with empirical results from our target well. Our 
templates can cover the majority of data points, which 
demonstrates the practical utility of our model. 

The tendencies of BI_1 and BI_6 vary significantly, 
which indicates that the sensitivities of these brittleness 
indexes vary with the physical properties of the shale. 
As porosity increases from 2% to 12%, the sensitivity 

of BI_1 to lithology was largely static, while BI_6 
showed far greater sensitivity to lithology in the high-
porosity range than the low-porosity range. As clay 
content increases from 10% to 40%, BI_1 becomes 
more sensitive to lithology than BI_6 in the low-porosity 
range, which proves that YM-based equations are more 
sensitive to lithology, while Lame’s Coefficients-based 
equations are more sensitive to porosity/pore fl uid. 

  (a) BI_1                                                                           (b) BI_2

  (c) BI_4                                                                          (d) BI_6
Fig.17 Crossplots of Ip and Vp/Vs for different brittleness indexes. 

The black dots are from the target formation, which were calculated based on well logging data.

Conclusions

This study utilized a seismic rock physics model to 
analyze the brittleness of a kerogen-rich shale formation. 
By building crossplots of seismic attributes in terms of 
BI, we accurately predicted the BI of a shale deposit in 
Southwest China. The main conclusions of the study are 
the following.

 (1)  An anisotropic rock physics model  was 
constructed for kerogen-rich shale formations. The 
SCA+DEM approach used by our model avoided the 
major drawbacks of traditional methods. SCA+DEM can 
be used to model intercoupled clay and kerogen mixtures 
that can improve the accuracy of shale modeling.

(2) Based on sensitivity analysis of brittleness, the 
predictions of EPMs are more accurate than WCMS 
and were related to the physical properties of the rock 
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(e.g., lithology, pore fluid, and pore structure). These 
properties were inherited by the brittleness indexes 
based on EPMs. YM-based brittleness indexes are 
more sensitive to variations in lithology, while Lame’s 
Coeffi cients-based brittleness indexes are more sensitive 
to variations in pore fluid. Therefore, models need to 
account for the physical properties of formations when 
predicting brittleness.

 (3) Results of crossplot from our model demonstrated 
the following: (i) an increase in clay content may cause 
the sensitivity of Vp/Vs to porosity to decrease; and 
(ii) as clay content increases, YM decreases and PR 
increases. However, as porosity increases, the sensitivity 
of YM to lithology gradually decreases and PR remains 
largely unaffected. This phenomenon indicates that PR 
is more reliable at distinguishing lithology than YM 
under high-porosity conditions. Low PR and medium 
YM indicate a brittle shale formation with relatively high 
porosity, which may indicate a “sweet spot” for shale 
exploration.  
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