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Abstract: With the continuous development of full tensor gradiometer (FTG) measurement 
techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in 
oil and gas exploration. In the fast processing and interpretation of large-scale high-precision 
data, the use of the graphics processing unit process unit (GPU) and preconditioning methods 
are very important in the data inversion. In this paper, an improved preconditioned conjugate 
gradient algorithm is proposed by combining the symmetric successive over-relaxation 
(SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm 
(ICCG). Since preparing the preconditioner requires extra time, a parallel implement 
based on GPU is proposed. The improved method is then applied in the inversion of noise-
contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results 
show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves 
a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central 
Processing Unit (CPU). Real airborne gravity-gradiometry data from Vinton salt dome (south-
west Louisiana, USA) are also considered. Good results are obtained, which verifies the 
effi ciency and feasibility of the proposed parallel method in fast inversion of 3D FTG data. 
Keywords: Full Tensor Gravity Gradiometry (FTG), ICCG method, conjugate gradient 
algorithm, gravity-gradiometry data inversion, CPU and GPU

Introduction 

With the  dramat ic  development  of  a i rborne 
geophysical equipment and technology, gravity 
gradiometry has become a method of exploration used 

in mineral, oil, and gas exploration in recent years (Bell 
et al., 1997). Compared with ground gravity methods, 
airborne full tensor gravity gradiometer measurements 
have the advantage of providing fast speeds with high 
effi ciency. In addition, they are not affected by conditions 
within the survey area or terrain relief. Gravity gradient 
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measurements are more affected by near-surface density 
variations, because the gradient of the gravity field 
decays with inverse distance cubed, while the decay 
of the vertical gravity field is inverse distance squared. 
Compared with gravity data, the gradient of the gravity 
field can reflect slight changes caused by changes 
in the underground density, and it also has a higher 
resolution, thereby improving the accuracy of geological 
interpretation. Based on the development of fast mobile 
platform exploration technology (airborne and shipborne), 
the volume of gravity gradient data is increasing, and the 
accuracy of measurements are becoming more reliable. 

However, it is well known that inversion of gravity 
gradient data is often ill-posed, and it requires certain 
prior information and constrains to guarantee results that 
are unique and stable. Based on regularization methods, 
scholars have attempted to overcome the non-uniqueness 
problem. For example, Li and Oldenburg (1996, 1998) 
adopted the depth-weighing function of the objective 
function in magnetic susceptibility inversion and density 
inversion. An effective way of counteracting the inherent 
decay of kernel function (“skin effect”) is to provide 
more weight to rectangular prisms as depth increases. In 
this respect, Portniaguine and Zhdanov (2002) proposed 
the focusing inversion to invert magnetic susceptibility 
by using the gradient of the model parameter., and a 
three-dimensional gravity inversion algorithm was 
proposed by combining Lagrange’s formula with 
multiple constraints by Boulanger and Chouteau (2001). 
In addition, Tontini et al. (2006) developed an inversion 
algorithm for magnetic data by inserting a depth-
weighing function into model regularization function, 
and Shamsipour et al. (2010) adapted the cokriging 
method to gravity data inversion. Furthermore, Qin et al. 
(2016) used additional information in the inversion by 
introducing the spatial gradient weighing function. 

Full tensor graviometer (FTG) data provide six times 
the amount of gravity anomaly data for the same survey 
conditions, and therefore, the solution of large-scale 
3D gravity gradient data inversion necessitates that 
two obstacles are tackled. Firstly, sufficient computer 
memory is required to store the matrices, and secondly, 
there needs to be adequate computational time for 
matrix-vector multiplications to solve the central system 
of equations (Čuma and Zhdanov, 2014; Hou et al., 
2015). Pilkington (1997) introduced the conjugated 
gradient (CG) method for three-dimensional magnetic 
susceptibility inversion in order to save computing 
time and storage space. With a suitable preconditioner, 
preconditioned conjugated gradient (PCG) has proven 
its efficiency and increasing performance in a wide 

range of geophysical applications (Smith, 1985; Canning 
and Scholl, 1996; Pilkington, 1997; Chen et al., 2000, 
2002). However, although the preconditioned method 
can improve the efficiency of inversion and reduce 
the number of inversion iterations (thus reducing the 
computation time), additional computational time is 
required to prepare the preconditioner. Computational 
efficiency is determined by both the iteration number 
and total computing time, and the time taken for iteration 
inversion increases significantly when the order of the 
coeffi cient matrix is large. Therefore, using a computer 
to achieve the parallel method is an effective way of 
improving the speed of the solution.

With the continual increase in computing power and 
programmability of the graph process unit (GPU), the 
use of GPU for calculations has become the focus of 
a considerable amount of research. CUDA (Compute 
Unified Device Architecture) is a general-purpose 
parallel computing architecture from NVIDIA Corp. 
(NVIDIA, 2007), which is a leading manufacturer of 
GPUs that made the first GPU-only graphic rendering 
tool for massively parallel computing. CUDA is one 
of the most suitable means of parallel computing for 
applications, and it has been successfully used in many 
potential computing fi elds (Moorkamp et al., 2010; Chen 
et al., 2012; Čuma and Zhdanov, 2014; Hou et al., 2015).

In the present paper, we develop an improved 
incomplete Cholesky preconditioned method to integrate 
the symmetric successive over-relaxation (SSOR) 
technique and the incomplete Cholesky decomposition 
conjugate gradient algorithm (ICCG). The new method 
is tested on a single model with different grid sizes 
to illustrate GPU acceleration in conjugate gradient 
inversion for large-scale data, and the algorithm fl ow of 
the parallel SSOR-ICCG method based on GPU is then 
provided. Results and acceleration ratio are provided for 
a synthetic noisy model test, and differences between 
our algorithm and the conventional CG algorithm in 
3D inversion of FTG data are discussed. Finally, the 
approach is applied for inversion of real FTG data. 
In addition, the applicability of the improved parallel 
preconditioned algorithm for 3D fast inversion of FTG 
data is verified by a comparison with the conventional 
method and with results of previous studies.

Forward modeling and inversion of 
full tensor gradiometer (FTG) data

 Forward modeling
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In the three-dimensional (3D) Cartesian coordinate 
system, the gravitational potential, V, can be calculated 
by the underground density distribution, ρ, based 
on Newton’s law. The three components of gravity 
anomalies can then be obtained by derivation of the 
gravitational potential (Blakely, 1995),

                     ( , , ) .TV V V
x y z

g   (1)

The nine gravity gradient components, namely the full 
tensor gravity gradient (FTG), are the three-directions of 
the gravity components and are written in a matrix form 
(Forsberg, 1984),
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As the gravity gradient tensor is a symmetric tensor, 
i.e., Txy = Tyx, Txz = Tzx, Tyz = Tzy, and it satisfies the 
Laplace equation Txx + Tyy + Tzz = 0, there are only fi ve 
independent components of the gravity gradient tensor 
(FTG). 

Generally, the 3D subsurface domain is divided into 
a finite number of rectangular cells with a constant 
density for calculating the gravity anomaly and gravity 
gradient tensor (discretization). We use the Cartesian 
coordinate system, where the x–axis and y-axis point in 
horizontal directions and the z–axis points downwards. 
Following the formula of Haáz (1953), gravity data 
produced at a point of coordinates O = (x0, y0, z0) by a 
single rectangular cell with constant density, ρ, is (Li and 
Chouteau, 1998)
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The gravity gradient tensor equation is defi ned as
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and G is Newton’s gravitational constant, and ξ, η, 
ζ define the eight corners of one rectangular cell. 
Considering the linear relationship between the gravity 
gradient tensor and density, equation (4) can thus be 
expressed in a matrix form as
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where T is a vector of the six gravity gradient tensor 
data at n observation points; ρ is a density vector of the 
order m; and A is the matrix of the geometric terms. 

Inversion method
When conducting the 3D inversion of gravity 

gradient data, we use the observed gravity gradient 
data, T, to recover the unknown density distribution, 
ρ. The inversion problem is usually under-determined 
with infinite and unstable solutions, and therefore 
regularization should be introduced to ameliorate 
instability in the inversion process (Čuma and Zhdanov, 
2014). We adopt the 3D gravity inversion method 
introduced by Li and Oldenburg (1998) to minimize the 
Tikhnov parametric functional as
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2 2
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In equation (6), φs(ρ) is the stabilizing functional, φd(ρ) 
is the data-misfit functional of measured and inversion 
predicted data, and α is the regularizing parameter, 
which makes a big difference to the gravity inversion 
results. In addition, Wd is the diagonal data-misfit 
weighing matrix normalizing self-respective standard 
deviation, Wz is a depth-weighing function of the form 
Wz = (z + z0)−3/2 used to counteract the inherent decay of 
the kernel function, A, and prevent most of the density 
from occurring close to the surface, z is the average 
rectangular cell depth, and z0 depends on the block size 
of model discretization and the observation height of the 
data. 

The depth-weighing function was first proposed by 
Li and Oldenburg (1996) and has been well applied in 
many geophysical inversion algorithms (Boulanger and 
Chouteau, 2001; Caratori Toniti et al., 2006; Cella and 
Fedi, 2011). We use the adaptive regularization, which 
decreases the stabilizer contribution as the inversion 
approaches the converged result. The value of α after the 
fi rst iteration is expressed as (Zhdanov, 2002)

                               1 ,d

s
  (7)

and during the inversion process the value for α is 
determined by decreasing α to q times that of its previous 
value, using the expression,

        1 1
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Equation (8) can then be rewritten as
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To solve a large-scale linear system such as that of 
equation 9, use of the conjugate gradient method is 
benefi cial as it is a fast and effective iterative algorithm. 
With only matrix-vector multiplication and inner vector 
products, the CG method does not need to continue with 
the inverse operation of the matrix, and it is therefore 
widely used in geophysical inversion. We improve the 
gravity inversion algorithm proposed by Pilkington 
(1997) and obtain the full tensor gravity gradient 

inversion algorithm as follows,
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From this algorithm, it is possible to easily find the 
inverse of matrix, M, that has not been calculated, 
which saves a considerable amount of time and requires 
minimal storage space. However, when the domain 
of the data obtained grows, the number of discretized 
cells also increases. In practical problems, the iteration 
number and computational cost needs to be considered 
in 3D FTG data inversion. In addition, for density 
inversion, the condition number of the coeffi cient matrix 
is large, and the convergence speed of the inversion 
is controlled by the condition number. To reduce the 
iteration number, many researchers have accelerated 
the rate of convergence by proposing preconditioners to 
cluster the eigenvalues in a few small intervals (Smith, 
1985; Canning and Scholl, 1996; Pilkington, 1997; Chen 
et al., 2000, 2002). The method used to improve the 
number of conditions of the system is called the PCG 
method, and the algorithm is as follows
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where P is the preconditioner matrix used to accelerate 
the CG inverse algorithm.

                          T T .M M M b  (10)

In the inversion of FTG data, the kernel function 
matrix, M, is relatively large, and its computation 
and storage require a large amount of time and space, 
respectively. To reduce the iteration number and improve 
the convergence rate, equation (10) above can be 
rewritten as

                        T T .PM M PM b  (11)

Under ideal conditions, P is an approximation of 
(MTM)-1, so that PMTM is approximately equal to the 
identity matrix. Compared with the original symmetric 
positive definite matrix, MTM, the eigenvalues of 
PMTM are more clustered; therefore, the condition 
number is reduced and the convergence rate of the CG 
method is accelerated. Obviously, it is very important to 
choose an effective preconditioner to reduce the iteration 
number of 3D FTG data inversion.

Incomplete Cholesky (IC) decomposition is a kind of 
common preconditioned method. In equation (10), the 
coeffi cient matrix MTM is a symmetric positive defi nite 
matrix, and the preconditioner can be prepared with the 
IC method as,

                         T T ,M M = LL R   (12)

where L is the sparse lower triangular matrix, and R is 
the residual matrix. Therefore, the preconditioner P = 
(LLT)−1.

Golub and Van Loan (1996) demonstrated that the 
ICCG PCG algorithm can reduce the number of iterations 
in the inversion and hence improve the convergence 
rate. Moreover, the decomposition of the preconditioned 
matrix directly infl uences the convergence and speed of 
the method, 

Another approximate inverse of the coeffi cient matrix 
MTM can be obtained using SSOR. We assume that the 

matrix MTM is decomposed as follows (Sajo-Castelli et 
al., 2014),
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where D is the diagonal matrix of diagonal elements of 
MTM, and LAA is the negative lower triangular matrix 
of MTM. ω (0 < ω < 2) is an important parameter, and it 
has a signifi cant infl uence on the convergence and result 
of CG inversion. However, there is no good choice for 
the value of ω, and we therefore choose it empirically. 
In addition, the successive over-relaxation (SSOR) 
preconditioner is defi ned by
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We combine the SSOR decomposition method 
with the ICCG, which means that the decomposition 
result obtained by equation (13) is brought into the 
conventional ICCG algorithm, and the improved SSOR-
ICCG algorithm is obtained. The iterative process is as 
follows,
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This method contains a greater amount of information 
about the coefficient matrix than the conventional 
ICCG algorithm, and thus more subsurface geophysical 
information can be used in the 3D gravity gradient 
inversion to reduce the number of iterations and speedup 
the convergence speed of inversion.
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However, due to the huge amount of 3D FTG data, the 
inversion iterations consume a large amount of computer 
memory and a long computational time. In this respect, 
research has been focused on high-performance parallel 
computing using a CPU (Central Processing Unit) and 
GPU (Graphics Processing Unit) to enable the fast 
processing of a large amount of high-precision data. 

Parallel algorithm using graphics 
processing unit (GPU)

GPU and CUDA
A graphics processing unit (GPU) has the advantages 

of providing a high bandwidth and strong computing 
power, and it enables highly parallel calculations 
compared to CPU computing. However, as it was 
originally used to complete image rendering, the early 
GPU did not enable programmability (Zhang, 2009). In 
recent years, general-purpose computing based on GPU 
has been widely adopted, and the graphics card maker 
NVIDIA Corporation have released a unifi ed computing 
architecture for a general-purpose computing platform 
(Compute Unifi ed Device Architecture, CUDA). Faced 
with the demand for large-scale high-precision data 
processing, the GPU has been successfully applied in a 
considerable amount of geophysical parallel computing 
research (Moorkamp et al., 2010; Chen et al., 2012; 
Liu et al., 2012; Čuma and Zhdanov, 2014). CUDA 
is a hardware and software co-parallel computing 
architecture that allows the GPU and CPU to work 
together, and thus gives full-play to the GPU’s high-
speed floating-point performance, with the aim of 
realizing accelerated calculations of complex and time-

consuming problems. Initially, CUDA only supported 
C and C++ language and required a high level of 
programming (Liu, 2012). With the development of 
GPU, MATLAB began to support CUDA based on 
version R2010b (Szymczyk and Szymczyk, 2012) and 
offered a Parallel Computing Toolbox (PCT) to simplify 
MATLAB parallel computing. The powerful GPU 
computing capabilities achieved in MATLAB require the 
use of the MATLAB of version R2010b, recent CUDA-
capable NVIDIA GPUs, such as the NVIDIA Tesla 
10-series or 20-series products supporting a compute 
capability of 1.3 or above. 

The main task of this research is designed using 
MATLAB R2015a, which enables discussion of the 
algorithm optimization problems found with CPU and 
GPU.

Algorithmic programming
The conjugate gradient algorithm was run with a 

regular serial code and execution was timed. The update 
operations for r0, αk, and rk per iteration were found to be 
the most time-consuming. In general, the crucial time-
consuming problems in gravity gradient inversion are 
the matrix-vector multiplications and the inner product 
about matrix M. Therefore, we computed these with 
GPU and performed the rest of the inversion steps in 
sequence. Operation and implementation of the algorithm 
used the following hardware configuration: the CPU 
was Intel Xeon E5-2620 6-core 2.0 GHz, 7.2 GT/s, and 
the GPU was NVIDIA Tesla C2050. To test the GPU 
acceleration of the CG algorithm, we completed the 
conjugate gradient inversion of 3D gravity gradient data 
using model with different grid sizes and recorded the 
spend time of 500 iterations of CPU serial and CPU/ 
GPU parallel algorithms. As shown in Figure 1, it is 
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Fig.1 CPU and CPU/GPU computing time for CG algorithm in 3D FTG data inversion; the 
ordinate on the left is linear and the ordinate on the right is logarithmic.
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evident that CPU/GPU computing can largely improve 
the effi ciency, particularly for inverting large volumes of 
data. We also noticed that the parallel CG algorithm is 
62.56 times faster than its CPU implementation for a grid 
size of 9000.

The above-mentioned PCG can reduce the condition 
number of the coefficient matrix and the iteration 
number, which leads to faster convergence and is less 
time-consuming. However, the computational cost has to 
be considered with an increase in the amount of data and 
grid size, since the preconditioner occupies additional 
memory which needs to be recalculated per iteration. 
GPU is currently used to accelerate the PCG method in 
3D FTG data inversion, not only to reduce iterations but 
also to solve the time-consuming problem. It is of note 
that GPU has a limited memory (like CPU). Therefore, 
for calculations using large-scale data, the storage and 
removal of the matrix should be considered to avoid 
exceeding the memory and causing the calculation to 
stop.

In summary, the computational flow of the PCG 
parallel algorithm is (Figure 2): (1) initialize the 
MATLAB environment; (2) load the observed FTG 
data and start timing; (3) parallel-compute the model 
weights, Wm, and the depth weighs, Wz, then gather 
all the results to CPU with the gather () function; (4) 

initialize ρ0 and compute M, b; (5) use the gpuArray () 
function to gather the data to GPU and start iterations, 
where the preconditioner, P, the conjugated direction, 
Pk, and the search direction, αk, are computed with GPU 
while the rest are in serial with CPU; (6) stop timing 
at the end of the iteration and gather the density result, 
ρ, to the CPU to plot Figures. The PCT provided by 
MATLAB provides gpuArray () and gather () as the data 
transmission and collection functions between CPU and 
GPU.

Model test
In the above section,  we have illustrated acceleration 

of the inversion based on GPU using a single model. 
A complex model consisting of five prism bodies is 
constructed illustrate the advantages of the improved 
parallel PCG algorithm in 3D FTG data inversion, 
and the spatial distribution is shown in Figure 3. The 
model parameters (including grid size, density, and 
central depth) are shown in Table 1. The subsurface 
is divided into 20 × 20 × 10 small rectangular cells 
with a volume of 100 × 100 × 100 m in the x, y, and z 
directions. 3D models are arranged underground with 
different sizes and have a constant residual density at 
different depths. Random Gaussian noise (10%) is then 
added to the synthetic gravity gradient data to simulate 
the real geophysical information. The maximum depth 
of the underground subspace is 1000 m and 20 × 20 = 
400 data observations are distributed at an interval of 
100 m. Contour maps of the observed gravity gradient 
components are shown in Figure 4.

Table 1 Synthetic model parameters
Model 
number

x × y × z 
dimensions (m)

Depth 
(m)

Residual density 
(g/cm3)

1 700 × 300 × 300 350 0.4
2 300 × 300 × 300 450 0.9
3 200 × 300 × 400 400 0.7
4 300 × 200 × 400 500 1.0
5 300 × 300 × 200 400 0.8

Read file data and innitial data CPU

CPU

CPU

CPU

No
CPU

CPU

Yes

Yes

Parallel computing model weights Wm,Wz

Calculate preconditioner P and conjugate direction Pk

Computing inner product rk, qk
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Fig.2 Flowchart of parallel PCG algorithm.
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To compare the performance and acceleration 
capability of the proposed algorithm, gxx, gxz, gyy, gyz, 
gxy, gzz data are selected in the serial CG inversion 

and parallel SSOR-ICCG preconditioned inversion, 
respectively. The model gravity anomaly data are 
then applied to the 3D inversion using our improved 

Fig.4 Contour maps of observed gravity gradient components contaminated by 10% Gaussian noise. 

Fig.5 Depth section (a) and vertical sections (b, c) of true model; inversion results of FTG data ((d, e, f) using conventional CG 
algorithm, and (g, h, i) using SSOR-ICCG algorithm); results of model gravity data (j, k, l) where the true position of the anomaly 
is shown by the black rectangular border in the fi gure.
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preconditioned algorithm, to demonstrate the advantages 
of the inversion of FTG data. Figure 5 shows slices of 
the true model and inversion results of FTG data and 
gravity data. The depth slices of the recovered model at 
Z = 400 m are shown in Figures 5d, 5g, and 5k, while 
vertical sections at a horizontal position of X = 1600 
m, Y = 1700 m are shown separately in Figures 5e, 5h, 
and 5j, and Figures 5f, 5i, and 5l. Results show that 
the recovered model using the parallel preconditioned 
algorithm presented in this paper is more reasonable 
than the traditional CG algorithm, and it is closer to the 
density value of the true model. A comparison between 
Figures 5g, 5h, and 5i and Figures 5j, 5k, and 5l shows 
that the inversion results of FTG data are more compact 

than the gravity inversion, and the shape of the recovered 
model is refined. Table 2 shows the standard deviation 
of Gaussian noise, and the estimated standard deviation 
of the residual between predicted data and observed 
data for the two algorithms. It is clear that compared 
with the conventional conjugate gradient algorithm, the 
standard deviation of the residual between predicted 
and observed data obtained from our parallel SSOR-
ICCG preconditioned algorithm is closer to the standard 
deviation of Gaussian noise. Results again quantitatively 
confi rm that inversion results are improved and that they 
are in line with the more compact recovered models in 
Figures 5g, 5h, and 5i.

Table 2 Standard deviation (in E) of Gaussian noise and estimated standard deviation
of residual between predicted data and observed data for two algorithms

gxx gxy gxz gyy gyz gzz

Noise 5.0324 2.4458 5.1922 4.9766 4.6654 9.4016
CG-CPU 5.7855 2.7372 5.4833 6.0064 4.9914 11.9590

PCG-GPU 5.1792 2.7133 6.0955 5.1804 5.0213 9.5759
PCG (gravity) 7.1574 3.6041 8.1508 7.2017 7.3696 15.8269

In this paper, the residual error curve (T-Aρ)T(T-
Aρ)/ N proposed by Pilkington (1997) is adopted to 
show improvement in the convergence (see Figure 6). 
Compared with the CG algorithm, there is an evidently 
faster decrease in the residual error norm of the SSOR-
ICCG method, which indicates that the SSOR-ICCG 
algorithm converges signifi cantly faster. When assuming 
500 iterations, the conventional CG algorithm with no 
preconditioner reaches a minimum residual error of 306, 
whereas the improved SSOR-ICCG algorithm reaches 
a minimum value of 213.2. For the same residual error, 
the iteration number in relation to computing time can 
be obtained from the black line in Figure 6; at the same 
residual error of 350, the iteration number of the no-
preconditioner CG method is 50, while that of the SSOR-
ICCG preconditioned algorithm only requires 8 iterations 
to achieve this residual. Additional computational time 
is required to prepare (decompose) the preconditioner, 
and therefore computational effi ciency is determined by 
both the numbers of iterations and the total computing 
time used. The GPU time includes computation of the 

preconditioner in all iterations, which has a considerable 
time cost in the total runtime. In Table 3, with the same 
iteration number (500), the total computation time of the 
SSOR-ICCG algorithm in the CPU serial code is 1644.4 
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SSOR-ICCG algorithm
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Fig.6 Residual error curve: dashed line represents 
conventional CG algorithm and plus sign represents 
the improved SSOR-ICCG algorithm. The number of 
iterations at the same residual error can be identifi ed 
by the black horizontal line. 

Table 3 Runtime comparison 

Method Time taken to complete 
500 iterations

Iteration number for 
inversion result Runtime Speedup

CG-CPU 2224.7 s 50 204.47 s 1.0x
SSOR-ICCG-CPU 1644.4 s 8 46.51 s 9.5x
SSOR-ICCG-GPU 235.5 s 8 8.21 s 24.9x
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s, which is 1.4 times faster than the conventional CG 
algorithm in CPU. However, our GPU-based parallel 
SSOR-ICCG algorithm only costs 235.5 s, which is a 
speedup of 9.5x. In fact, for the convergent results with 
the same residual error, the parallel PCG algorithm (8.66 
s) in this paper achieves a speedup of 5.7x compared 
to its serial code (46.5 s), and the speedup ratio rises 
to 24.9x compared to the conventional CG algorithm 
on CPU. This confi rms that the parallel preconditioned 
algorithm presented in this paper can reduce the number 
of iterations in the 3D inversion of FTG data, thereby 
reducing the time cost and achieving a fast inversion.

Application to real data

The improved method is applied to real airborne FTG 
data taken from the Vinton salt dome (in southwest 

Louisiana, USA), to further illustrate the effectiveness 
and applicability of our parallel preconditioned 
algorithm. Data were provided by Bell Geospace Inc., 
and were measured by Air-FTG from July 3 to July 6, 
2008. The survey was conducted at a height of 80 m in a 
north-south direction; the sampling distance was 50 m; 
and the fl ying line spacing was 250 m. This region has 
been previously studied and presented in papers (Coker 
et al., 2007; Oliveira Jr and Barbosa, 2013; Geng et al., 
2014; Qin et al., 2016), and such results have shown that 
the anomaly of the salt dome is predominantly caused by 
the cap-rock with a mean residual density of 0.55 g/cm3 
and a depth between 200 and 600 m, approximately. 
We removed the regional fi eld and chose a 3000 × 3000 
m subset in the middle part of the survey area. The 
inversion domain was discretized into 20 × 20 × 20 = 
8000 rectangular cells with a dimension of 150 × 150 
× 50 m. Figure 7 shows contour maps of the gravity 
gradient components over Vinton salt dome. 
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Fig.7 Observed data for Vinton salt dome. 

To test our improved GPU-based SSOR-ICCG 
algorithm with real data, we applied the inversion to 
six components of the FTG data. According to Ennen 
and Hall (2011), the depth of the cap-rock is 160 m, 
with a density of 2.75 g/cm3; the density of surrounding 
sediments (shale and sandstone) is 2.2 g/cm3. In this 
case, the main anomaly is predominantly caused by 
the cap-rock, and thus the upper and lower bounds 
for the residual density are 0 g/cm3 and 0.55 g/cm3, 
respectively. Figure 8 shows the 3D inversion result 
using our method. Two perpendicular cross-sections 

through the center of the recovered model are shown 
in Figure 8a, and Figure 8b shows a volume-rendered 
image of the 3D density-contrast model. The recovered 
model clearly indicates that the maximum east-west and 
north-south lengths of the anomaly are 1100 m and 900 
m, respectively, which is in agreement with the result by 
Thompson and Eichelberger (1928). The southern part of 
inversion result is about 200 m and it deepens further to 
the north to reach 400 m (with an elongated form from 
northeast to southwest), which is consistent with the 
main fault described in the study by Coker et al. (2007). 
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The solution for the Euler deconvolution of gravity 
in this region is shown in Figure 9. The central depth 
of the interpreted cap-rock in this paper is about 300 
m, which is little shallower than Euler deconvolution 
depths (average depth 400 m), but is close to the result 
of Thompson and Eichelberger (1928) (average depth 
of 304.5 m) and the recovered model by Oliveira Jr 
and Barbosa (2013) (of 335 m), further verifying the 
reasonableness of the inversion results. In calculation, 
the total computational time for convergence of the result 
using the conventional conjugate gradient algorithm was 

518 s with 51 iterations. However, applying the parallel 
SSOR-ICCG preconditioned method to 3D FTG data 
inversion took only 136 s and used 30 iterations. This 
result also confi rms that the improved method can reduce 
the number of iterations and reduce the computation time 
compared with the serial program, thereby achieving a 
fast inversion when using a real application. Therefore, 
the improved parallel SSOR-ICCG preconditioned 
algorithm is shown to be an effective speedup algorithm 
that provides a feasible method for large-scale fast 3D 
density inversion of gravity gradient data.

Fig.8 3D inversion result: (a) two perpendicular cross-sections at Northing = 1500 m and Easing = 1800 m, (b) volume-rendered 
image of 3D density-contrast model with density contrast 0.1 g/cm3 removed. Central depth is approximately 300 m.
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Fig.9 Euler deconvolution results of Vinton gravity data.

Conclusions

In this study, an improved fast preconditioned 
conjugated gradient (SSOR-ICCG) algorithm is 
proposed by combining the symmetric successive 
over-relaxation (SSOR) technique with the incomplete 

Cholesky decomposition conjugate gradient algorithm 
(ICCG). The parallel preconditioned algorithm based on 
GPU is applied to the inversion of 3D full tensor gravity-
gradiometry data. One-single model conjugate gradient 
inversion tests show that GPU can improve the effi ciency 
of inversion for large-scale data. Compared with the 
conventional CG algorithm, the parallel PCG method 
not only reduces the iteration number but also negates 
the need for extra time preparing the preconditioner to 
achieve a fast inversion.  

The inversion results for a synthetic model show that 
the resolution of FTG inversion is higher than inversion 
of single gravity data. Compared with the traditional 
CG method, our algorithm provides a better density 
value and the geometric position is closer to that of the 
actual model. The computational effi ciency is evaluated 
by the iteration number and total computing time, and 
the improved algorithm converges faster and costs less 
time in three-dimensional inversion. In addition, results 
are given with a speed approximately 25 times faster 
than that of the serial code for the CG method on CPU. 
However, the computation matrix and precondition 
matrix need to be reasonably allocated between the CPU 
and GPU to ensure that the video memory does not 
overfl ow. 
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Finally, the method is applied in the 3D inversion of 
airborne FTG data acquired over the Vinton salt dome 
(Louisiana, USA). The inversion results are found to 
be in agreement with geological data and the central 
depth is close to that determined in previous research. 
Although the recovered depth is a little shallower than 
that provided with Euler deconvolution results, but the 
speed of inversion is improved, which thus verifi es the 
efficiency and applicability of the improved parallel 
preconditioned algorithm in fast inversion of 3D FTG 
data.

Acknowledgments

The authors would like to thank Bell Geospace Inc. 
for providing FTG data from the Vinton salt dome. We 
also thank the reviewers for their detailed comments and 
suggestions, which helped to improve the paper.

References

Bell, R. E., Anderson, R., and Pratson, L., 1997, Gravity 
gradiometry resurfaces: Leading Edge, 16(1), 55−59.

Blakely, R. J., 1995, Potential Theory in Gravity and 
Magnetic Applications: Cambridge University Press, 
Cambridge, UK.

Boulanger, O., and Chouteau, M., 2001, Constraints in 3d 
gravity inversion: Geophysical Prospecting, 49(2), 265−
280.

Canning, F. X., and Scholl,  J.  F.,  1996, Diagonal 
preconditioners for the EFIE using a wavelet basis: IEEE 
Transactions on Antennas & Propagation, 44(9), 1239−
1246.

Cella, F., and Fedi, M., 2011, Inversion of potential field 
data using the structural index as weighting function rate 
decay: Geophysical Prospecting, 60(2), 313−336.

Chen, R. S., Yung, E. K. N., Chan, C. H., and Fang, D. G., 
2000, Application of preconditioned CG–FFT technique 
to method of lines for analysis of the infinite-plane 
metallic grating: Microwave & Optical Technology 
Letters, 24(3), 170−175.

Chen, R. S., Yung, K. N., Chan, C. H., Wang, D. X., 
and Fang, D. G., 2002, Application of the SSOR 
preconditioned CG algorithm to the vector fem for 3D 
full-wave analysis of electromagnetic-field boundary-
value problems: IEEE Transactions on Microwave 
Theory & Techniques, 50(4), 1165−1172.

Chen, Z., Meng, X., Guo, L., and Liu, G., 2012, GICUDA: 

a parallel program for 3D correlation imaging of large 
scale gravity and gravity gradiometry data on graphics 
processing units with CUDA: Computers & Geosciences, 
46(3), 119−128.

Coker, M. O., Bhattacharya, J. P., and Marfurt, K. J., 2007, 
Fracture patterns within mudstones on the fl anks of a salt 
dome: Syneresis or slumping?: Gulf Coast Association of 
Geological Societies Transactions, 57, 125−137.

Čuma, M., and Zhdanov, M. S., 2014, Massively parallel 
regularized 3D inversion of potential fi elds on CPUs and 
GPUs: Computers & Geosciences, 62(1), 80−87.

Ennen, C., and Hall, S., 2011, Structural mapping of the 
Vinton salt dome, Louisiana, using gravity gradiometry 
data: 81st Annual International Meeting, SEG, Expanded 
Abstracts, 30(1), 830−835.

Forsberg R., 1984, A study of terrain reductions, density an
omalies and geophysical inversion methods in gravity fi e
ld modelling: Report 355, Department of Geodetic Scien
ce and Surveying, Ohio State University. 

Geng, M., Huang, D., Yang, Q., and Liu, Y., 2014, 3D 
inversion of airborne gravity-gradiometry data using 
cokriging: Geophysics, 79(4), G37−G47.

Golub, G. H.,  and Van Loan, C. F.  1996, Matrix 
computations (3rd edition.): Johns Hopkins University 
Press, Baltimore, America.

Haáz, I. B., 1953, Relationship between the potential of the 
attraction of the mass contained in a finite rectangular 
prism and its first and second derivatives: Geophysical 
Transactions, II, 57–66

Hou, Z. L., Wei, X. H., Huang D. N., et al., 2015, Full 
tensor gravity gradiometry data inversion: performance 
analysis of parallel computing algorithms: Applied 
Geophysics, 12(3), 292–302

Li X., and Chouteau M., 1998, Three- dimensional gravity 
modelling in all space: Survey in Geophysics, 19(4), 339
–368. 

Li, Y., and Oldenburg, D. W., 1996, 3-D inversion of 
magnetic data: Geophysics, 61(2), 394−408.

Li, Y., and Oldenburg, D. W., 1998, 3-d inversion of gravity 
data: Geophysics, 63(1), 109−119.

Liu, G., Meng, X., and Chen, Z., 2012, 3D magnetic 
inversion based on probability tomography and its GPU 
implement: Computers & Geosciences, 48(9), 86−92.

Liu, W., 2012, Parallel program design of Matlab: Beihang 
University Press, Beijing.

Moorkamp, M., Jegen, M., Roberts, A., and Hobbs, R., 
2010, Massively parallel forward modeling of scalar 
and tensor gravimetry data: Computers & Geosciences, 
36(5), 680−686.

NVIDIA, 2007, NIVIDIA CUDA compute unified device 
architecture programming guide. Santa Clara, CA.

Oliveira Jr, V. C., and Barbosa, C. F., 2013, 3-D radial 



313

Wang et al.

gravity gradient inversion: Geophysical Journal 
International, 195(2), 883−902.

Pilkington, M., 1997, 3-D magnetic imaging using conjugate 
gradients: Geophysics, 62, 1132−1142.

Portniaguine, O., and Zhdanov, M. S., 2002, 3-D magnetic 
inversion with data compression and image focusing: 
Geophysics, 67(5), 1532−1541.

Sajo-Castelli  A M, Fortes M A.,  and Raydan M., 
2014,Preconditioned conjugate gradient method for 
finding minimal energy surfaces on Powell–Sabin 
triangulations. Journal of Computational & Applied 
Mathematics, 268(1), 34−55.

Qin, P., Huang, D., Yuan, Y., Geng, M., and Liu, J., 2016, 
Integrated gravity and gravity gradient 3d inversion using 
the non-linear conjugate gradient: Journal of Applied 
Geophysics, 126, 52−73.

Shamsipour, P., Marcotte, D., Chouteau, M., and Keating, 
P., 2010, 3D stochastic inversion of gravity data using 
cokriging and cosimulation: Geophysics, 75(1), I1−I10.

Smith, G. D., 1985, Numerical solution of partial 
differential equations: fi nite difference methods: Oxford 
University Press, England.

Szymczyk, M., and Szymczyk, P., 2012, Matlab and parallel 
computing: Image Processing & Communications, 17(4), 

207−216.
Thompson, S. A., and Eichelberger, O. H., 1928, Vinton 

salt dome, Calcasieu Parish, Louisiana: AAPG Bulletin, 
12, 385−394.

Tontini, C. F., Cocchi, L., and Carmisciano, C., 2006, 
Depth-to-the-bottom optimization for magnetic data 
inversion: magnetic structure of the latium volcanic 
region, Italy: Journal of Geophysical Research 
Atmospheres, 111(B11), 220−222.

Zhang, S., 2009, GPU high performance computing of 
CUDA: China Water & Power Press, Beijing.

Zhdanov, M. S., 2002, Geophysical inverse theory and 
regularization problems: Elsevier, Salt Lake City, USA.

Wang Tai-Han received his B.S. (2013) in Geophysics at 
the College of Geo-Exploration Science 
and Technology, Jilin University, and 
is currently a Ph.D. candidate in Solid 
Geophysics at the college. His major 
research interests are in the field of 
processing and fast inversion of gravity, 
magnetic, and gradient tensor data.


