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Abstract: Edge refl ections are inevitable in numerical modeling of seismic wavefi elds, and 
they are usually attenuated by absorbing boundary conditions. However, the commonly 
used perfectly matched layer (PML) boundary condition requires special treatment for the 
absorbing zone, and in three-dimensional (3D) modeling, it has to split each variable into 
three corresponding variables, which increases the computing time and memory storage. 
In contrast, the hybrid absorbing boundary condition (HABC) has the advantages such as 
ease of implementation, less computation time, and near-perfect absorption; it is thus able to 
enhance the computational effi ciency of 3D elastic wave modeling. In this study, a HABC is 
developed from two-dimensional (2D) modeling into 3D modeling based on the 1st Higdon 
one way wave equations, and a HABC is proposed that is suitable for a 3D elastic wave 
numerical simulation. Numerical simulation results for a homogenous model and a complex 
model indicate that the proposed HABC method is more effective and has better absorption 
than the traditional PML method.
Keywords: 3D elastic wave equation, hybrid absorbing boundary condition, forward 
modeling

Introduction

Seismic wave numerical modeling is a technology 
used to numerically simulate seismic wave propagation 
and is the key to reverse time migration and to obtain full 
waveform inversion. While studying seismic exploration, 
underground media are always regarded as semi-infi nite 
media. However, numerical simulations are limited by 
computer memory and require artificial boundaries to 
truncate the computational domain. Absorbing boundary 

conditions (ABCs) are therefore necessary to attenuate 
spurious refl ections resulting from artifi cial boundaries. 
In this respect, the current and commonly used boundary 
conditions absorb incident waves in a certain range 
around boundaries with the aim of ultimately attenuating 
boundary reflections. Three types of frequently-used 
ABCs exist, which are described in the following 
paragraphs.

The fi rst type is a wavefi eld-prediction-based boundary 
condition. Clayton and Engquist (1977) proposed a 
wavefi eld-prediction-based boundary condition based on 
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one way wave equations (OWWEs), and Reynolds (1978) 
derived another OWWE-based ABC, which is known as 
the transparent boundary condition. Higdon (1991) and 
Heidari and Guddati (2006) then employed high-order 
OWWEs and arbitrarily wide-angle wave equations, 
respectively, to accurately estimate the incident 
wavefield in the boundary zone; both enhance the 
absorption of the wavefield-prediction-based boundary 
condition. In summary, this type of ABC works well for 
small angle incident waves but fails with respect to large 
angle incident waves.

The second type of ABC is the damping boundary 
condition. Cerjan et al. (1985) proposed the absorption 
of incident waves by multiplying wavefi eld values with 
an exponential damping function in the boundary zone. 
Sochacki et al. (1987) proposed several types of damping 
functions, and Liu et al. (2014) developed a double 
absorbing boundary condition based on the damping 
boundary condition, aiming to boost its performance. 
However, although this ABC usually utilizes the 
exponential damping factor to attenuate incident waves, 
its absorption is poor and the damping factor is diffi cult 
to determine.

The third type of ABC is the perfectly matched layer 
(PML) boundary condition. Bérenger (1994) proposed 
the PML boundary condition in an electromagnetic wave 
simulation, and Chu and Weedon formulated the PML 
boundary condition using complex coordinate stretching. 
Collino and Tsogka (2001) subsequently applied the 
PML boundary to a seismic wavefield simulation 
in anisotropic media, and Du et al. (2010) used the 
PML boundary condition in elastic wave reverse time 
migration. Furthermore, Zhao and Shi (2013) applied the 
PML boundary condition to an elastic wave numerical 
simulation in irregular topography model. The PML 
boundary condition has been widely used because it can 
absorb incident waves of any angles and frequencies. The 
traditional PML boundary condition is usually applied 
to first-order wave equations. However, computational 
cost and memory storage increases and a proper decay 
factor needs to be selected to achieve good absorption 
because the traditional PML boundary condition needs 
to split each variable into separate variables that are 
either vertical or parallel to the boundary, and wave 
equations have to be modified accordingly to include 
decay factors. Komatitsch and Tromp (2003) applied 
the PML method to second-order wave equations, this 
method necessitates splitting of the displacement terms 
into four terms and 3rd order temporal derivatives need 
to be calculated; therefore, this method is both ineffi cient 
and computationally costly. Furthermore, Bécache et 

al. (2003) and Festa et al. (2005) showed clearly that 
the traditional PML boundary condition fails to absorb 
large angle incident waves. With the aim of improving 
these disadvantages, many researchers have proposed a 
nonsplit-PML boundary condition (Martin et al., 2008; 
Qin et al., 2009; Li et al., 2013). However, although the 
convolution of the PML boundary condition has better 
absorption for large angle incident waves, it has to bring 
in auxiliary variables and is computational costly.

Among the above-mentioned three types of ABCs, the 
wavefield-prediction-based boundary condition offers 
moderate computational costs and good absorption. 
This method generally utilizes OWWEs to predict the 
wavefield near the boundary and uses two-way wave 
equations (TWWEs) to calculate the wavefield in the 
non-absorbing zone. However, the difference between 
the two types of wave equations results in certain 
differences between the wavefields computed by two 
types of wave equations. The wavefi eld difference is one 
of the primary causes of strong boundary reflections. 
To reduce this difference, Liu and Sen (2010) inserted a 
transition zone between the internal non-absorbing zone 
and external boundaries and reduced the difference in 
the transition zone by linearly weighting the OWWE and 
TWWE wavefi eld. This HABC has the advantages such 
as ease of implementation, less computation time, and 
near-perfect absorption. Chang and Liu then used the 
HABC in high-order implicit fi nite-difference numerical 
modeling, and Ren and Liu (2013) developed the 
HABC into frequency domain seismic wave numerical 
modeling. Ren and Liu (2014) subsequently proposed 
two HABCs for the first-order velocity-stress wave 
equations based on the 1st and the 2nd Higdon OWWEs 
and determined that the HABC based on 1st Higdon 
OWWEs has the advantage over the traditional PML by 
providing higher effi ciency and better absorption. With 
developments in seismic exploration moving from two-
dimensional (2D) survey lines to a three-dimensional 
(3D) work area, there has been a rapid increase in the 
amount of research being conducted on fi nite-difference 
numerical modeling of 3D seismic waves (Moczo, 2000; 
Liu and Sen, 2011; Chu and Stoffa, 2012; Cai et al., 
2015); therefore, it is considered benefi cial to apply the 
1st Higdon HABC to 3D elastic wave modeling.

In this study, the 1st Higdon HABC is developed for 
the 1st order stress-velocity equation of a 3D elastic 
wave, and the least-square-based global optimal implicit 
staggered-grid finite-difference scheme is utilized to 
simulate wave propagation in both a homogenous and 
complex model. In addition, memory storage, computing 
time, and absorption of the split-PML boundary 
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condition and the 1st Higdon HABC are all analyzed, 
and results validate the advantages of using the 1st 
Higdon HABC in numerical modeling of 3D elastic 
waves.

Method

3D elastic wave equation and high order fi nite-
difference method

The 3D elastic wave equations in homogenous 
isotropic media are expressed by (Graves, 1996)
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where in ( , , )x y zv v v  represents particle velocity, (σxx, 
σyy, σzz, τxy, τxz, τyx) represents particle stress, ρ represents 
density, and (λ, μ) represent Lamé constants.

The high-order staggered-grid fi nite-difference method 
is used to calculate equation (1) (Virieux, 1984 and 
1986).

Generally, the second-order central-difference scheme 
is used to calculate temporal derivatives; for example, 
the temporal derivative of vx is expressed by (e.g., Dong, 
2000)
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For spatial derivatives, the least-square-based global 
optimal implicit staggered-grid fi nite-difference scheme 
is generally utilized. For example, the spatial derivative 
of vx in the x-direction can be written as (Liu and Sen, 
2009; Liu, 2014)
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and the corresponding constants in equation (3) can be 
estimated using the following equations
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where in (i, j, l) and t are the spatial and temporal 
coordinates, respectively; h and ∆t are the temporal 
and spatial interval, respectively; M is the FD operator 
length; and k is the wavenumber.

The corresponding error of the dispersion relation for 
the spatial derivatives calculated using this method is 
(Liu and Sen, 2009; Liu, 2014)
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If the spatial derivative of vx in the x-direction is used 
as an example, the three steps used to implement the 
least-square-based global optimal implicit staggered-grid 
fi nite-difference scheme are as follows:

(1) Substitute equation (5) into equations (6) and (4) 
to obtain the fi nite-difference coeffi cients, cm and a.

(2) Substitute cm and a into equation (7). If the 
error reaches the defined requirement, proceed to next 
step; if not, return to the previous step and adjust the 
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wavenumber range or the FD operator length.
(3) Substitute cm and a into equation (3) to obtain a 

linear system of equations and then calculate the spatial 
derivative of vx in the x-direction on all grids. Finally, 
use the computed spatial derivatives and temporal 
derivatives to calculate equation (1).

Hybrid absorbing boundary condition for 3D elastic 
wave equations

The HABC is extended to 3D modeling, as shown 
in Figure 1. Corresponding 3D Higdon OWWEs are 
expressed by
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where in [ , , , , , , , , ]T
x y z xx yy yy xy xz yzv v vu , and Q1 

is dependent on boundary types.
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where in (1 / ) / 2p sv v , (vp, vs) are P-wave and 
S-wave velocities, respectively.

The OWWEs discretization scheme for vx is (Higdon, 
1994)
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and the coeffi cients in this equation can be expressed by
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where in pv t
r

h
 and b is a constant ranging from 0.3 to 

0.5.

Boundary edges
Taking the boundary edges (LDC in Figure 1) as an 

example (which are the intersection line of the boundary 
normal to the negative x-direction (ΩDCGH in Figure 1) 
and the boundary normal to the negative y-direction 
(ΩABCD in Figure 1), the 1st Higdon HABC is illustrated 
for vx on the boundary edge.

Higdon (1994) showed that OWWEs expressed 
by equation (10) can perfectly absorb the incident 
wave propagating in the x-direction. Therefore, the 
discretization scheme of the boundary condition for LDC 

can be obtained by taking the weighted average of the 
discretization schemes of the two absorbing boundary 
surfaces. The discretization scheme for LDC can be 
expressed by
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Boundary apexes
The boundary apex (PD in Figure 1) is used as an 

example, which includes the cross-point of the boundary 
normal to the negative x-direction (ΩDCGH in Figure 1), 
the boundary normal to the negative y-direction (ΩABCD 

in Figure 1) and the boundary normal to the negative 

B1 B2 BN...

...

3D computational
domain Area III Area II Area I

Inner area

y
x

A
D

H E
G

F

B
Cz

Fig.1 Illustration of 1st Higdon HABC for 3D elastic wave 
numerical simulation (Liu and Sen, 2011).

For each layer of the absorbing boundary it is 
necessary to consider six boundary surfaces, 12 
boundary edges, and eight boundary apexes. The 
discretization schemes proposed by Higdon (1991) 
are used to calculate the OWWEs. In addition, if the 
1st Higdon HABC for the particle velocity, vx, in the 
x-direction is different at the boundary surfaces, edges, 
and apexes, it is then described separately.

Boundary surfaces
If the boundary surface normal to the negative 

x-direction (ΩDCGH in Figure 1) is taken as an example, 
the 1st Higdon HABC can be illustrated for vx on the 
boundary surface. At ΩDCGH, Q1 can be expressed by 
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z-direction (ΩADHE in Figure 1). The 1st Higdon HABC is 
illustrated here for vx at the boundary apex.

To attenuate incident waves from all angles, it is 
assumed that the incident wave at PD in Figure 1 has 
equal angles between the x-direction, y-direction, and 
z-direction. Therefore, the discretization scheme for the 
boundary condition of PD can be obtained by taking the 
weighted average of the discretization schemes of the 
three absorbing boundary surfaces. The discretization 
scheme for PD can be expressed by
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The 1st Higdon HABC utilized in this study divides 
the computing domain into three parts. The parts (from 
the outside inwards) are as follows: the boundary (Area 
II, B1), transition zone (Area III, B2 to BN), and inner 
area (Area I, non-absorbing zone), as shown in Figure 1. 
Implementation of the 1st Higdon HABC is conducted as 
follows:

(1) Wavefield values, utwo, within Areas I and II are 
calculated by equation (1);

(2) Wavefi eld values, uone, within Areas II and III are 
calculated by equations (10), (12), and (13);

(3) Wavefield values within Area II are weighted 
using (1 )

i i i i iB B B B Bw wone twou u u  and wBi 
= (i–1)/N, i = 

2, 3, …, N wherein subscript Bi indicates the variables 
of the ith layer and wBi

 is a weight that varies from 0 to 1 
from Area III to Area I, so that one

ii uu  at Area III and 
two
ii uu  at the boundary of Area I.

If N = 1, it can thus be seen that Area II vanishes 
and the 1st Higdon HABC degenerates to the OWWEs 
boundary condition.

Forward modeling examples

To analyze the effectiveness and superiority of the 
1st Higdon HABC, the memory storage of the split-
PML boundary condition and the 1st Higdon HABC are 
compared. In addition, the split-PML method and the 
1st Higdon HABC are applied to a numerical simulation 
of seismic wave propagation in a homogenous model 
and in the SEG/EAGE salt model. The N-layer HABC 
and LPML-layer PML method (N = LPML = 10) are used to 
absorb artifi cial boundary refl ections and the absorption 
and computing time are compared. Magnitudes of 

information pertaining to the snapshots and seismic 
records in this study are uniformly 10-10.

Occupied memory at boundary zone
As shown in Table 1, the split-PML method has to 

split each variable into three separate variables in the 
absorbing zone; therefore, wavefields belonging to as 
many as 18 variables need be stored. However, it is 
not necessary for the 1st Higdon HABC to split any 
variables, and thus the wavefi elds of only six variables 
need be stored. Consequently, the use of the 1st Higdon 
HABC saves a large amount of computer memory 
when its thickness, N, is equal to the LPML, which is the 
thickness of the split-PML method.

Tabel 1 Stored variables of two types of absorbing boundary 
conditions

Absorbing boundary 
condition Stored variables

PML boundary condition
vx

x, vy
x, vz

x, vx
y, vy

y, vz
y, vx

z, vy
z, vz

z, σx
xx, 

σy
xx, σz

xx, σx
yy, σy

yy, σz
yy, σx

zz, σy
zz, σz

zz, 
τx

xy, τy
xy, τz

xy, τx
xz, τy

xz, τz
xz, τx

yz, τy
yz, τz

yz

1st Higdon HABC vx, vy, vz, σxx, σyy, σzz, τxy, τxz, τyz 

Homogenous model
The P- and S-wave velocities of the homogenous 

model are 3480 m/s and 2420 m/s, respectively. The 
model dimension is 1000 m × 1000 m × 1000 m, with 
a grid size of h = 10 m and a temporal sampling rate 
of τ = 1 ms. An 18-Hz Ricker wavelet located at the 
model’s center is applied to the x-component of particle 
velocity, and a receiver is located at (150 m, 200 m, 
100 m). Figure 2a, 2d, and 2g show snapshots obtained 
when no absorbing boundary is used and the 1st Higdon 
HABC and split-PML boundary condition. Figure 3 
shows the corresponding seismic records wherein the 
survey line is located at x = 0 m–1000 m, y = 500 m, 
and z = 10 m. Table 2 shows the computing times of 
the simulating wave propagating for 900 ms using the 
different boundary conditions. In addition, Figure 4 
shows the seismic waveforms observed at the receiver 
(150 m, 200 m, 100 m) using the different boundary 
conditions and the residual waveforms between the 
observed waveforms and the reference waveform; these 
are obtained by extending the homogenous model so that 
it is large enough to avoid artifi cial boundary refl ections. 
The computer used is a ThinkPad with an Intel(R) 
Core(TM) i7-4790 CPU @ 3.6 GHz.

The following are shown in Figures 2, 3, 4, 5, and 
Table 2:

(1) artifi cial boundary refl ections of the P- and S-wave 
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Fig.2 Elastic wave snapshots of homogenous model: (a), (b), and (c) are 3D snapshots at 280 ms, 400 ms and 600 
ms, respectively, wherein no boundary condition is used; (d), (e), and (f) are 3D snapshots at 280 ms, 400 ms, and 
600 ms, respectively, using the 1st Higdon HABC; and (g), (h), and (i) are 3D snapshots at 280 ms, 400 ms, and 600 
ms, respectively, using the split-PML boundary condition.

Fig.3 Elastic wave seismic records of homogenous model: (a) and (b) are seismic records obtained 
using the 1st Higdon HABC and the split-PML boundary condition, respectively.
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are almost attenuated by the 1st Higdon HABC (Figure 
2d, 2e, and 2f) and the split-PML boundary condition 
(Figures 2g, 2h, and 2i), respectively;

(2) the 1st Higdon HABC (Figure 3a) has a better 
absorption than the split-PML boundary condition 

(Figure 3b);
(3) the three components of the observed seismic 

waveforms (Figure 4) indicate that the 1st Higdon 
HABC has better absorption than that of the split-PML 
boundary condition;
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(4) Table 2 shows that the 1st Higdon HABC takes 
less time than the split-PML boundary condition to 
conduct the numerical simulation; in particular, it 
enhances the computational effi ciency by approximately 
20% for this homogenous model.

Table 2 Computing times used in homogenous model numerical 
simulation using different boundary conditions
Absorbing boundary condition CPU time (s)
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S-wave velocity are computed using empirical formulas. 
The model has a dimension of 1500 m × 1500 m × 1500 
m, grid size of h = 10 m, and temporal sampling rate of 
τ = 0.5 ms. An 18-Hz Ricker is located at the top of the 

Fig.4 Seismic waveforms obtained using different boundary conditions at the receiver (150 m, 200 m, 100 m) and 
residual waveforms between the observed waveforms and the reference waveform. The reference waveform is obtained 
by extending the model so that it is large enough to avoid artifi cial boundary refl ections. (a), (c) and (e) show the three 
components of the observed waveforms; and (b), (d) and (f) show the three components of the residual waveforms 
between the observed and the reference.

SEG/EAGE salt model
An elastic wave numerical simulation is performed for 

part of the 3D SEG/EAGE salt model. Figure 5 shows 
the P-wave velocity, and the corresponding density and 

Fig.5 Velocity model of the SEG/EAGE salt model and 3D snapshots at 1.2 s obtained using different boundary conditions: 
(a) P-wave velocity; (b) No absorbing boundary condition; (c)Split-PML boundary condition; and (d) 1st Higdon HABC.
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model (750 m, 750 m, 20 m) to generate an explosive 
energy source. The survey line is located at x = 0 m–
1500 m, y = 750 m, and z = 10 m. Figures 5b, 5c, and 
5d show 1.2 s snapshots obtained using no absorbing 
boundary condition and the 1st Higdon HABC and split-
PML boundary condition.

The dashed box in Figure 6a shows the artificial 

boundary reflections obtained when no boundary 
condition is used. In addition, as shown in Figure 6b 
and 6c, although both boundary conditions have good 
absorption, the dashed boxes indicate that the 1st 
Higdon HABC has better absorption than the split-PML 
boundary condition.

Fig.6 Seismic records obtained using different boundary conditions: (a) no absorbing boundary condition; (b) 1st Higdon HABC; 
and (c) split-PML boundary condition.

Conclusions

The 1st Higdon HABC is extended from a 2D to 
3D elastic wave equation, and the least-square-based 
global optimal staggered-grid finite-difference method 
is employed in numerical modeling. The computing 
time, memory storage, and absorption of the 1st Higdon 
HABC and the split-PML boundary condition are 
compared. Results indicate that the 1st Higdon HABC 
has advantages such as less computing time, requirement 
of less memory storage, and enablement of better 
absorption in 3D forward modeling. Therefore, the 1st 
Higdon HABC is considered capable of enhancing the 
effi ciency of reverse time migration and full waveform 
inversion.
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