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Abstract: Multi-wave exploration is an effective means for improving precision in the 
exploration and development of complex oil and gas reservoirs that are dense and have low 
permeability. However, converted wave data is characterized by a low signal-to-noise ratio 
and low resolution, because the conventional deconvolution technology is easily affected 
by the frequency range limits, and there is limited scope for improving its resolution. The 
spectral inversion techniques is used to identify λ/8 thin layers and its breakthrough regarding 
band range limits has greatly improved the seismic resolution. The difficulty associated 
with this technology is how to use the stable inversion algorithm to obtain a high-precision 
reflection coefficient, and then to use this reflection coefficient to reconstruct broadband 
data for processing. In this paper, we focus on how to improve the vertical resolution of 
the converted PS-wave for multi-wave data processing. Based on previous research, we 
propose a least squares inversion algorithm with a total variation constraint, in which we 
uses the total variance as a priori information to solve under-determined problems, thereby 
improving the accuracy and stability of the inversion. Here, we simulate the Gaussian fi tting 
amplitude spectrum to obtain broadband wavelet data, which we then process to obtain a 
higher resolution converted wave. We successfully apply the proposed inversion technology 
in the processing of high-resolution data from the Penglai region to obtain higher resolution 
converted wave data, which we then verify in a theoretical test.  Improving the resolution of 
converted PS-wave data will provide more accurate data for subsequent velocity inversion 
and the extraction of reservoir refl ection information. 
Keyword: spectral inversion, resolution, broadband wavelet, thin reservoir

Introduction

Multi-wave exploration is advantageous in reservoir 

and structural imaging, lithology and fl uid identifi cation, 
and crack detection. Converted PS-wave data is 
characterized by a low signal-to-noise (S/N) ratio and 
low resolution. The frequency range of a single shot is 



248

Spectral inversion technique in frequency domain

narrow, the effective reflection energy is weak, and its 
continuity is poor, so it is difficult to extract reservoir 
refl ection information. To improve the resolution of the 
converted PS-wave target layer, the frequency band must 
be broadened.

After conventional deconvolution processing, the 
resolution of shallow layer data can be improved, but 
the ability to improve the resolution of the deep target 
layer is limited and the thin-layer recognition ability is 
weak. Partyka et al. (1999) found that discrete Fourier 
spectral decomposition can be used to increase the 
resolution of seismic data. Portniaguine (2004) proposed 
the spectral inversion method, which can obtain the 
reflection coefficient while also improving the layer 
thickness. Puryear and Castagna (2008) proposed a 
multi-layer geological objective function for the spectral 
inversion method and obtained reasonable information 
regarding the formation thickness by solving the 
objective function. Chopra et al. (2009) used the spectral 
inversion techniques to invert the refl ection coeffi cients 
of thin-layer data, and was able to detect thin subtle 
anomalies from the inversion results. Yuan et al. (2009) 
proposed a global optimization algorithm known as the 
particle swarm optimization inversion algorithm that 
attempts to improve the accuracy and stability of spectral 
inversion. Nguyen and Castagna (2010) used logging 
information to successfully control the spectral inversion 
of the reflection coefficient, which can improve its 
inversion fi delity. Yang et al. (2011) used the matching 
tracking algorithm to conduct spectral inversion of the 
reflection coefficient and obtained a good resolution 
of the thin layer. To improve the accuracy of the 
inversion algorithm, Zhang and Castagna (2011) used 
a model as a priori information to conduct spectral 
inversion. Chai et al. (2012) used the LSQR algorithm 
to evaluate the spectral inversion model and found 
that a better inversion algorithm could improve the 
accuracy of the refl ection coeffi cient. Oyem et al. (2013) 
conducted a detailed analysis of spectral inversion in 
the time-frequency domain to improve the resolution 
of the thin-layer thickness, which yields a significant 
advantage in breaking up the bottleneck associated 
with conventional deconvolution techniques. Yuan et 
al. (2013) investigated the sparse Bayesian inversion 
method in the frequency domain and used the spectral 
inversion method to identify the thin layer, thereby 
recovering more information from outside the frequency 
band of the seismic data. Zhou et al. (2014) used the 
spectral inversion method to improve the resolution of 
thin reservoirs and successfully identified both oil and 
water reservoirs. Using the reflection coefficient and 

broadband wavelet, Chi et al. (2015) reconstructed thin 
sand body data, which can distinguish the Fuyu oil layer, 
and successfully predicted the compact sand body. Liu 
et al. (2016) used the basis pursuit spectral inversion 
algorithm to improve the resolution of deep reservoirs 
and the accuracy of reservoir fluid identification. In 
short, the continuous application of spectral inversion 
technology worldwide has proved its merits with respect 
to improving thin-layer resolution and identifi ed the need 
for a stable inversion algorithm to improve inversion 
accuracy for a wideband wavelet extraction technology.

In view of the low resolution of converted PS-wave 
data, we must broaden its spectrum and improve its 
vertical resolution to increase it similarity with the PP-
wave. Based on previous research, in this paper, we 
use total variance as a priori information to help solve 
under-determined problems. We propose a least squares 
inversion algorithm based on the total variation constraint 
to improve the accuracy and stability of the inversion and 
use the Gaussian fi tting amplitude spectrum to simulate 
wide-band wavelet data. We then apply this technology 
in the Penglai region for high-resolution data recovery 
processing and obtain a higher resolution converted 
wave, which will facilitate subsequent multi-wave 
inversion and reservoir prediction.

Methods and principles

Spectral inversion algorithm with total variance 
constraints in frequency domain

According to the theory of seismic signal processing 
and analysis, using the spectral information in seismic 
wavelet and seismic data, we can construct an inversion 
objective function using the refl ection coeffi cient, which 
is composed of parity components in the frequency 
domain. We can express the multi-layer model objective 
function in the frequency domain as shown in equation 
(1) (Puryear and Castagna, 2008):
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In equation (1), S(t, f ) is the amplitude spectrum of 
the seismic data, W(t, f ) is the amplitude spectrum of 
the wavelet, ao(t) and ae(t) are the odd–even weight 
coeffi cients, respectively, ro(t) and re(t) are the odd–even 
components of the refl ection coeffi cient, respectively, T 
is the time thickness, and tw is the half-window length.

To facilitate computation, we write equation (1) as a 
discrete odd–even matrix, as follows:
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Then, we can abbreviate equation (2), as follows:
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where bo(t) and be(t) are parity components of the 
wavelet correlation matrix, Ao(t) and Ae(t) are parity 
components of the weight matrix, and Ro(t) and Re(t) are 
parity components of the refl ection coeffi cient matrix.

In accordance with equations (1)−(3), we can express 
the objective function as follows:
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There are many algorithms for solving the objective 

function (equation (4)). Here, we use total variance as 
a priori information, propose a least squares inversion 
algorithm based on the total variation constraint to 
improve its stability, and obtain the optimal solution 
with a highly accurate objective function.

If we write this objective function (equation (4)) as 
a more general optimization problem, we obtain the 
objective function expressed in equation (5):

 
                              ,b Ax   (5)

where x is the desired refl ection coeffi cient matrix.
In equation (5), we can express the objective function 

of the weighted least squares estimation as follows:

        1

x
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where W is the diagonal weight matrix.
If we add a total variation item to the objective 

function in equation (6), we obtain:
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where D is the set of profi les and xi, j is the jth element of 
the i-th row.

We can convert the objective function problem in 
equation (6) into the objective function in equation (8), 
as follows:

  11arg min ( ) ( ) TV( ),
2

T

x
xAx b W Ax b  (8)

where β is a weight coeffi cient greater than zero.
If we then introduce the intermediate variable z, 

according to Lagrange’s theorem, we can convert 
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the solution of equation (8) into an unconstrained 
optimization problem (equation (9)):
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where α is the Lagrange penalty factor.
The necessary condition for the optimal solution 

of equation (9) is 2

2
0x - z , so the optimal solution 

of equation (9) is also the solution for equation (8). 
Then, the optimization problem of equation (9) can 
use the relaxation method of alternating iterations. We 
can decompose the solution of equation (9) into two 
equations:
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Since the objective function of equation (10) is a 
quadratic convex optimization problem, an optimal 
solution exists. So, we can obtain the linear equation for 
equation (10). We can iteratively obtain the solution for 
x using the following relaxation iteration equation:
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where D is a diagonal matrix, in which the main diagonal 
elements consist of ATW-1b + aI, and the relaxation 
factor is in the range 0 < 1 < 2 .

After solving the optimal solution xk + 1 of equation (10), 
we can solve for the total variation minimization using 
equation (11). We can then directly derive the objective 
function and obtain the optimal iteration equation, as 
follows:
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We obtain the optimal solution for the objective 
function by equations (12) and (13) as the initial solution 
of the next iteration until the iterative condition is 
satisfied, thereby finding the optimal solution for the 
objective function.

High-resolution data recovery using wideband 
wavelet

After obtaining the high-precision refl ection coeffi cient 
by spectral inversion, we must perform high-resolution 
data recovery. Generally, we achieve high-frequency 
reconstruction with the high-frequency wavelet or Yu-shi 
wavelet (Yu, 1996; Cai, 2000). However, although this 
method can obtain high-resolution processing data, the 
low-frequency aspect of the seismic data will inevitably 
be missing.

Many geophysicists believe the low-frequency 
component of refl ected wave data and anomalous records, 
such as underground rock pores and fluids, are a rich 
source of information, so the potential significance and 
technical application value of retaining low-frequency 
data are paid increasing attention by data interpreters. 

Here, we extract the wide-frequency wavelet by the 
Gaussian fi tting method to maintain the low frequencies 
and extend the high frequencies, and then perform high-
resolution recovery processing with this wavelet to 
obtain a high-resolution converted PS-wave profi le with 
low-frequency information.

We assume that the Gaussian fitting amplitude 
spectrum function f(ω) of the converted PS-wave before 
high-resolution processing is as follows:
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where ω is frequency and K and L are pending frequency 
parameters.

From both sides of equation (14), we take the 
logarithm and shift items as follows: 
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in equation (15), then we can reduce equation (15) to 
equation (16):

                         2a b c.s  (16)

Then, the error squared sum between logarithm s of 
the Gaussian fitting spectrum and logarithm s of the 
discrete amplitude spectrum of the converted wave is as 
follows:

                        2( ) .
n

i i
i

E s s  (17) 



251

Zhang et al.

If we then bring equation (16) into equation (17) 
and the derivative of the pending parameter is zero, the 
values of parameters a, b, c are as follows:

 

1 2
4 3 2

3 2

2

.

i
i i i

i i i

i

i
i

i i i

i i
i i i i

i
ii i

i

s
a
b s
c

n s

 (18)

By solving equation (18), we can obtain the pending 
parameter value of the curve fi tting spectrum in equation 
(14):
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We can plot the converted PS-wave Gaussian fitting 
amplitude spectrum in equation (14) on the interactive 
panel and use the Gaussian fitting curve to extend the 
high-frequency amplitude spectrum into the broadband 
amplitude spectrum, while maintaining the low-
frequency amplitude information. We can then use 
this broadband amplitude spectrum as the amplitude 
spectrum of the Ricker wavelet or Yu wavelet, obtain the 
broadband wavelet in the time domain, and reconstruct 
the high-resolution converted PS-wave data using the 
reflection coefficient convolution and the broadband 
wavelet.

Model building and fi eld data 
application  

Thin lens interbedding model for spectral 
inversion

First, we established a thin lens body interbedding 
velocity model with small velocity changes. The velocity 
of each layer is shown in Figure 1a, the velocity model 
grid contains 1000 × 2000 points, and the overall grid 
size is 20 m × 10 m. We used this model to conduct a 
forward simulation with a 30-Hz Ricker wavelet, with 

a spatial sampling interval of 20 m and a time sampling 
interval of 1 ms, and obtained the forward profi le (Figure 
1b), the resolution of which is obviously low. 

We obtained the inversion results of Figures 1c 
and 1d by reflection coefficient inversion using the 
conjugate gradient inversion algorithm and the inversion 
algorithm proposed in this paper, respectively. From the 
analyses shown in Figures 1c and 1d, compared with 
the traditional conjugate gradient inversion technique, 
we see that the spectral inversion algorithm can obtain 
a reflection coefficient with high polarity, position 
accuracy, and S/N ratio. 

To obtain high-frequency profiles, we performed 
convolution processing using the refl ection coeffi cients 
of Figures 1c and 1d and the 50-Hz Ricker wavelet, 
respectively, as shown in Figures 1e and 1f. By 
comparing and analyzing Figures 1e and 1f, we found 
the resolution of the recovered high-frequency profile 
to be significantly higher than that of Figure 1b, thus 
proving that we can improve the profile resolution by 
using the spectral inversion method. At the same time, 
because the refl ection coeffi cient accuracy and S/N ratio 
of Figure 1d is signifi cantly higher than those of Figure 
1c, the resolution and S/N ratio of the profi le (Figure 1f) 
after convolution processing are also much better than 
those in Figure 1e. This proves that the high-precision 
reflection coefficient provides the basis for subsequent 
high-frequency profi le recovery. 

Resolving λ/8 thickness by spectral inversion 
using a wedge model

We established a wedge velocity model with low 
velocity (Figure 2a), in which the velocity of the wedge 
is 1300 m/s, the velocity of the other regions is 2100 m/s, 
the velocity model grid contains 140 × 1000 points, and 
the overall grid size is 10 m × 10 m. We used this model 
to conduct a forward simulation with the 35-Hz Ricker 
wavelet. Using a spatial sampling interval of 20 m and a 
time sampling interval of 1 ms, we obtained the forward 
profi le (Figure 2b), from which we can distinguish only 
a 20-m wedge thickness. 

To improve the resolution of the profile in Figure 
2b, we used conventional predictive deconvolution 
with a prediction step length of 8 ms. As shown in 
Figure 2c, the resolution of this profi le is improved to a 
certain extent in that we can distinguish a 12-m wedge 
thickness, but we still cannot obtain its tuning resolution 
thickness, and this method inevitably produces noise 
interference.

Next, we obtained the refl ection coeffi cient and zero-
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Fig.1 Thin lens interbedding model for spectral inversion experiment, (a) thin lens interbedding model, (b) 30-Hz forward data, (c) 
refl ection coeffi cient obtained by traditional conjugate gradient spectral inversion algorithm, (d) refl ection coeffi cient obtained 
by our proposed spectral inversion algorithm, (e) 50-Hz high-frequency recovery profi le using the data in Figure 1c, (f) 50-Hz 
high-frequency recovery profi le using the data in Figure 1d.

phase broadband wavelet using the method we propose 
in this paper. The obtained refl ection coeffi cient (Figure 
2d) is more accurate and has less noise interference. The 
main and side lobes of the broadband wavelet (Figure 
2e) are also well compressed, and there is less side lobe 
interference. We then performed a high-resolution data 
recovery process using the broadband wavelet (Figure 
2e) and the refl ection coeffi cient (Figure 2d) to obtain a 
higher resolution record (Figure 2f). From the analyses 
shown in Figures 2d–2h, we can conclude the following: 
Using this method, the reconstructed high-resolution data 
(Figure 2f) can reach 4 m in thickness, which exceeds the 
thickness limit of λ/8 = 4.64 m. Because the broadband 
wavelet involved in the reconstruction maintains low-
frequency information, this data not only effectively 
expands the high-frequency amplitude spectra, but also 
retains the low-frequency component (Figure 2h), which 
proves that this method can break up the bottleneck 
experienced in conventional frequency technology and 

distinguish the thin layer to the greatest extent.

High-resolution processing in the multi-wave 
data model

   Based on the stratum structure of actual data in the 
Penglai area, we established the 5-layer velocity model 
shown in Figure 3a, in which the number of grid points 
is 200 × 2000; the overall grid size is 10 m × 10 m; the 
P-wave velocities are, respectively, v1 = 1200 m/s, v2 = 
2000 m/s, v3 = 2500 m/s, v4 = 2900 m/s, and v5 = 4000 
m/s; the Vp/Vs ratio is 3 1; the low-frequency Ricker 
wavelet is a P-wave source; the spatial sampling interval 
is 10 m; and the time sampling interval is 1 ms. We 
used the model to conduct a forward simulation using 
the time–distance curve equation for elastic wave field 
separation (Li, 2007). We obtained shots of the PP and 
PS refl ected waves, and then obtained the post-migration 
stack profiles after the cut, gather sort, migration, and 
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Fig.2 Experimental spectral inversion results for resolving λ/8 thickness using a wedge model. (a) wedge-shaped 
model with low velocity, (b) 35-Hz synthetic record, (c) results using conventional deconvolution method, (d) refl ection 
coefficient obtained by the spectral inversion algorithm proposed in this paper, (e) broadband wavelet obtained by 
the Gaussian fi tting method of this paper, (f) high-resolution data obtained by the method proposed in this paper, (g) 
amplitude of Fig. 2(b) and Fig. 2(f).
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other shot preprocessing steps. Figure 3b shows the 
P-wave stack data with a 25-Hz main frequency after 
processing, and Figure 3c shows the converted PS-wave 
stack data with a 15-Hz main frequency after processing. 
We can see that the resolutions of the P-wave and the 
converted PS-wave profi les are all low and the horizon 
information cannot be effectively matched.

Then, we performed reflection coefficient spectral 
inversion processing on Figures 3b and 3c to obtain 
the reflection coefficient (Figure 3d) and the PS-wave 
refl ection coeffi cient (Figure 3e) with higher resolutions 
than those of the original profile. We reconstructed 
the data using a 35-Hz broadband wavelet to obtain 
the high-resolution P-wave profile (Figure 3f) and the 
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converted PS-wave profile (Figure 
3g). The results (Figures 3f−3g) 
show that the resolutions of the 
P-wave and converted PS-wave data 
are obviously improved, with richer 
layer information, and the identified 
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Fig.3 High-resolution processing results for the multi-wave data model: (a) velocity model, (b) forward profi le of PP-wave, 
(c) forward profi le of converted PS-wave, (d) PP-wave refl ection coeffi cient obtained by spectral inversion, (e) converted PS-
wave refl ection coeffi cient obtained by spectral inversion, (f) broadband recovery data for a PP-wave, and (g) broadband 
recovery data for a converted PS-wave.

Application of real converted 
PS-wave data

To  f u r t h e r  d e t e r m i n e  t h e 
distribution of the Xujiahe Formation 
reservoirs in the study area, we 
used the difference between the 
PP-wave and the converted PS-
wave, and performed a multi-wave 
exploration in the Penglai South area. 
This area is located in the middle 
trending tectonic belts in the middle 
of Sichuan Province. The sandstone 
and mudstone receiving conditions 
of the surface outlet are good, but 
the gravel in the outflow along the 
river is less favorable. Due to the 
large population density and wide 
span of the target layer, the S/N ratio 
of the seismic data recorded by the 
multi-component digital detector was 
low and the frequency range was 
narrow. Specifically, in processing 

the main frequency of the converted 
PS-wave, we found that it reached 
20 Hz but not the 30 Hz of the PP-
wave. Therefore, the resolution of 
the converted PS-wave must be 
improved while maintaining the S/N 
ratio, which has been an ongoing 
difficulty in converted PS-wave 
processing. To verify the practical 
application effect of our proposed 
theories and methods, we selected 
the target layer of the converted 
PS-wave in the Penglai area of the 
Sichuan Basin for application testing, 
as shown in Figure 4.

The results of our comparison 
of the high-resolution effects of 
converted PS-waves before and 
after processing (Figures 4a–4c) 
suggest that by using this method, 
the resolution is obviously improved, 
the construction details are obvious, 
the fault is clearer, the frequency is 

increased from 20 Hz to 30 Hz, and 
the frequency band is effectively 
expanded by retaining the low-
frequency information.

Comparat ive  analysis  of  the 
logging synthetic records (Figures 4d
−4g): The converted PS-wave data 
before high-resolution processing 
matches only the 20-Hz logging 
record, the resolution of the velocity 
inversion is not high, and the low-
velocity reservoir cannot be resolved. 
In contrast, the converted PS-wave 
data after high-resolution processing 
better matches the 30-Hz logging 
record, the resolution of the velocity 
inversion is obviously improved, and 
the low-veolocity and high-porosity 
sandstone reservoir segment is 
more easily identified, which lays a 
solid foundation for the quantitative 
prediction of subsequent reservoirs.

As the vibration characteristics 

horizon information is convenient 
for subsequent multi-wave horizon 
matching process, thereby proving 
that this method can achieve the 
desired effect in multi-wave high-
resolution processing.
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differ in the PP-wave and the converted PS-wave, the 
same tectonic wave will have different responses. As 
shown in Figures 4b and 4h, their fault recognition 
ability differs, which reveals the advantage of multi-
wave joint interpretation. 

As shown in Figure 4i, the gas well is located in the 
strong amplitude region (red-yellow) of the PP-wave 
and in the weak amplitude region (blue-green) of the 
PS-wave. This is consistent with the predicted results of 
the gas phase in the reservoir, in which the refl ection of 
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the PP-wave is strong and that of the PS-wave is weak. 
Based on these results, we can conclude that this method 
can effectively improve the resolution of converted PS-
wave data and that the joint interpretation of the high-
resolution converted PS- and PP-waves can also improve 
the accuracy of oil and gas exploration.

Conclusions

In this paper, we investigated the high-resolution 
processing of the spectral inversion technique for 
converted PS-wave data in the Penglai area in the 
Sichuan Basin. We reached the following conclusions:

1. Based on the basic principle of spectral inversion, 
we can deduce the objective function of the multi-
layer sparse reflection coefficient and improve the 
accuracy of this reflection coefficient using the least 
squares inversion algorithm based on the total variation 
constraint.

2. We can convolute the refl ection coeffi cient obtained 
by the spectral inversion method and the Gaussian-
fitting broadband wavelet to obtain broadband seismic 
data, which improves the recognition accuracy of thin 

reservoirs and faults.
3. Results from our theoretical testing and converted 

PS-wave real data application show that this method 
can greatly improve the resolution of converted PS-
wave data and meet the requirements of multi-wave 
joint interpretation. It can also provide a clearer fault, 
richer low-frequency information, and higher resolution 
data for subsequent multi-wave combined reservoir 
prediction.
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