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Abstract: The accurate interpretation and analysis of seismic data heavily depends on 
the robustness of the algorithms used. We focus on the robust detection of salt domes 
from seismic surveys. We discuss a novel feature-ranking classification model for salt-
dome detection for seismic images using an optimal set of texture attributes. The proposed 
algorithm overcomes the limitations of existing texture attribute-based techniques, which 
heavily depend on the relevance of the attributes to the geological nature of salt domes and 
the number of attributes used for accurate detection. The algorithm combines the attributes 
from the Gray-Level Co-occurrence Matrix (GLCM), the Gabor fi lters, and the eigenstructure 
of the covariance matrix with feature ranking using the information content. The top-ranked 
attributes are combined to form the optimal feature set, which ensures that the algorithm 
works well even in the absence of strong reflectors along the salt-dome boundaries. 
Contrary to existing salt-dome detection techniques, the proposed algorithm is robust and 
computationally efficient, and works with small-sized feature sets. I used the Netherlands 
F3 block to evaluate the performance of the proposed algorithm. The experimental results 
suggest that the proposed workfl ow based on information theory can detect salt domes with 
accuracy superior to existing salt-dome detection techniques.
Keywords: Seismic interpretation, salt-dome detection, texture attributes, GLCM

Introduction

Traditionally, seismic interpretation has largely been 
carried out by human experts with extended training and 
experience. Moreover, manual or subjective methods 
are slow, require a large amount of manpower, and can 
be affected by human errors and fatigue, among other 
factors. With the growing amount of data to be analyzed, 
and in order to reduce processing time and bias, we 
have witnessed, in recent years, an increasing interest in 
developing computer-based systems that could be used 
in the analysis of such data automatically without human 

intervention. The major goal from such an analysis is the 
extraction of important geological features, which are 
then used in detecting different seismic events including 
faults, salt domes, horizons, etc. However, it is worth 
noting that the success of such automated event detection 
systems rely heavily on the robustness of the different 
attributes extracted from the data, and the use of such 
attributes in the classifi cation and detection stages, and 
subsequently in decision making.

Seismic attributes are critical tothe interpretation 
process. A good seismic attribute is directly sensitive 
to the geologic feature or reservoir property of interest.
Seismic attributes have long been used in exploration 
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even beforethere weredigital recordings. The fi rst seismic 
attribute used in oil exploration was the NR (zones of no 
refl ection) attribute (Chopra and Marfurt, 2005), which 
was used to detect faults in analog recordings of seismic 
data. Currently, geologists areable to compute important 
seismic attributes, such as structural elevation, refl ectors 
dip, and discontinuities. Reflectors dip and structural 
elevation are used in estimating hydrocarbon traps, 
whereas the discontinuity attribute is used to highlight 
faults (Chopra and Marfurt, 2005).

Digital recording of seismic data was introduced in the 
1960s. It was noted that reflections from hydrocarbon-
bearing rocks show large amplitudes compared to 
their surroundings. The large amplitudes were named 
“bright spots”and were extensively used to detect gas 
reservoirs (Forrest, 2000). Seismic attributes, such as 
amplitude, flat spots, and frequency loss, were used to 
identify the “bright spots” in seismic data. In the 1970s, 
three additional attributes, instantaneous amplitude, 
instantaneous phase, and instantaneous frequency, 
derived from trace analysis, were introduced to seismic 
interpretation. Instantaneous amplitude and frequency 
were used to estimate the presence of hydrocarbons, 
whereas instantaneous phase was used to label faults 
in seismic data. Later on, several new attributes, such 
as dominant frequency, average amplitude, and zero-
crossing frequency, were used to improve the accuracy 
of hydrocarbon estimation and fault detection.

Trace attributes suffer from waveform interferences 
and are strongly affected by refl ections from neighboring 
surfaces. To overcome these limitations, curvature 
maps from 3D seismic data and texture attributes from 
2D and 3D seismic data were proposed (Lisle, 1994). 
The curvature attribute is used to estimate the regional 
dip and small-scale features that are associated with 
open fractures and fault depth. The idea of applying 
texture-based attributes to seismic applications became 
more popular over the last decade or so. In particular, 
attributes derived from the gray-level co-occurrence 
matrix (GLCM) were used to detect salt domes, faults, 
etc. Some of the common GLCM attributes are energy, 
contrast, entropy, and homogeneity.

One of the key tasks in seismic data interpretation 
is the detection of salt bodies because oil and gas are 
associated with salt domes owing to the excellent sealing 
that they provide. Salt-dome detection is a diffi cult and 
time-consuming task, especially in the case of 3D seismic 
data (Berthelot et al., 2013). Most of the automated and 
semi-automated salt-dome detection algorithms in the 
literature use either edge-detection methods (Zhou et al., 
2007; Aqrawi et al., 2011; Amin and Deriche, 2015a), 

normalized cuts and image segmentation (Lomask et al., 
2004; Lomask et al. 2006), active contours (Zhang and 
Halpert, 2012; Haukås et al., 2013) or methods based on 
texture attributes (Berthelot et al., 2012; Berthelot et al., 
2013; Shafi q et al., 2015), and hybrid edge-detection and 
texture-based methods (Amin and Deriche, 2015b) or 
patch-based classification methods (Amin et al., 2015; 
Amin and Deriche, 2016).

Numerous attributes have been proposed but very 
limited efforts have been extended in identifying and 
ultimately ranking such attributes with respect to the 
task of interest; that is, accurate salt-dome detection 
or the detection of other important events in seismic 
data. In this study, we solve the problem by proposing 
a new robust framework for salt-dome detection based 
on an optimal set of attributes using information theory 
concepts. We start by computing the GLCM attributes, 
the Gabor fi lter-based attributes, and the eigenstructure-
based attributes. Then, I select an optimal set of features 
using three popular feature-selection approaches; namely, 
the minimum redundancy maximum relevance (mRMR), 
the mutual information feature selection (MIFS), and 
the joint mutual information (JMI) algorithms. We rank 
the attributes according to their importance in terms of 
information content and salt-dome relevance and select 
the most important ones for detecting salt domes. 

The proposed salt-dome detection 
algorithm

Seismic attributes can reveal the textural differences 
between salt areas and the surrounding geology more 
robustly when compared to edge-based attributes (Amin 
and Deriche, 2015b). A salt structure can be defi ned as an 
area of incoherent texture compared to its surroundings. 
The proposed algorithm selects the most important texture 
attributes, using a feature selection criterion, from the 
features extracted from the co-occurrence matrix together 
with those from the Gabor filter and eigenstructure 
attributes. The different attributes in this study represent 
the diversity in the feature characteristics in the space 
and transform domains. The final selected feature set 
is then used to train a classifier. The classifier estimates 
the probability of each pixel in the seismic image. The 
probabilities are used to divide the target salt boundary. 
Figure 1 shows the overall structure of the proposed 
system. The detection accuracy is directly linked to the 
selected texture attributes. The different attributes used in 
this study are listed in Table 1 and discussed below.
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where qd, θ(i, j) is the number of occurrences of gray 
levels separated by distance d in direction θ. From the 
GLCM, the following attributes can be obtained.

GLCM contrast
The GLCM contrast measures the gray-level variations 

of neighboring pairs in an image using the following 
equation (Haralick et al., 1973):

          2

,

 = ( , ),
i j

GLCM Contrast i j P i j  (2)

where P(i, j) is the joint probability distribution given by 
the co-occurrence matrix. If the neighboring pixels have 
very similar gray-level values, then the image contrast 
is very low. Salt regions and horizons have smooth 
textures; therefore, the contrastis low in these areas. The 
GLCM contrast is high for salt boundaries that are rich 
in texture.

GLCM entropy
The GLCM entropy measures the spatial disorder in 

textures. The GLCM entropy is (Haralick et al., 1973):

   = ( , ) log ( , ).
i j

GLCM Entropy P i j P i j  (3)

The value of this attribute is high for dipping refl ectors 
and low for salt areas.

GLCM dissimilarity 
The GLCM dissimilarity is similar to the GLCM 

contrast but different in power, and it measures the 
amplitude variations of neighboring pairs in an image 
(Haralick et al., 1973):

      
,

 = ( , ).
i j

GLCM Dissimilarity i j P i j  (4)

The GLCM dissimilarity is low when the neighboring 
pairs have similar gray levels. This attribute has high 
values along salt boundaries, where large amplitude 
variations are also observed.

D. GLCM energy
The GLCM energy attribute is (Haralick et al., 1973):

         

1
2

2 = ( , ) .
i j

GLCM Energy P i j  (5)

This attribute is high for strong refl ectors along salt-

Seismic data

GLCM, gabor filter
eigenstructure attributes

Rank the features using
information theoretic model

Select top k features

Classifier

Final segmented boundary

Fig.1 Steps of the proposed methodology.

Gray-level co-occurrence matrix 
(GLCM) attributes

The GLCM is used in image processing to describe 
the spatial dependencies of gray levels. The GLCM 
approximates the joint probability distribution of two 
gray levels. The high values away from the diagonal in 
the GLCM show the sharp gray level changes, whereas 
the high values close to the diagonal show the small 
variations in the gray levels. The GLCM-based attributes 
discussed by Haralick et al. (1973) were first applied 
by Gao (2003) to detect salt-dome boundaries. These 
attributes can detect the changes in texture among a 
pairs of pixels along a chosen direction and a given 
neighborhood (Berthelot et al., 2013).
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Table 1 Texture-based seismic attributes
Seismic attributes

1. GLCM contrast
2. GLCM entropy
3. GLCM dissimilarity
4. GLCM energy
5. Gabor attribute (d = 1, θ = 0)
6. Gabor attribute (d = 1, θ = π/4)
7. Gabor attribute (d = 1, θ = π/2)
8. Gabor attribute (d = 1, θ = 3π/4)
9. Trace attribute
10. Coherency estimate
11. Largest eigenvalue attribute
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dome boundaries.
Figure 2 shows the GLCM contrast,  entropy, 

dissimilarity, and energy attributes computed for Inline 
image 411 (see Figure 5a,, image taken from the F3 
dataset in the experimental results section). The GLCM-
based attributes can differentiate between textures 
related to salt-dome boundaries and non-related textures. 
We observe here that the GLCM entropy and energy 
maps highlight the strong amplitudes whereas the 

GLCM contrast and dissimilarity maps give high values 
for variations across the salt boundaries. The GLCM 
dissimilarity is similar to GLCM contrast attribute with a 
difference in power; contrast, unlike dissimilarity, grows 
quadratically and measures local gray level variations. 
The dissimilarity attribute measures the amplitude 
variations of neighboring pairs in an image taking a 
maximum value of 1 (Berthelot et al., 2013).

(a) (b)

(c) (d)

Gabor fi lter-based attributes
The periodicity and orientation of seismic textures can 

be described using attributes derived from the Fourier 
spectrum. Frequency-based texture attributes are used 
to extract the impact of reflectors. Gabor filters, as 
discussed in Randen and Sønneland (2005), can be used 
in seismic image processing to extract frequency-based 
attributes. These attributes are computed by summing the 
energy covered by Gabor fi lters normalized by the total 
energy. Different choices of parameters can discriminate 
between seismic textures with different frequency 
content. Gabor fi lters are designed to fi nd the dominant 
size and orientation of different textures in an image. 

Fig.2 GLCM attributes for Inline411: (a) contrast, (b) entropy, (c) dissimilarity, (d) energy.

The Gabor filter attributes were selected in this study 
to complement the GLCM texture-oriented attributes 
because such linear fi lters were proven effi cient in many 
edge-detection problems.

Gabor fi lters with orientation θ and a given radial fi lter 
center FR are given by (Jain and Farrokhnia, 2001):

' 2 2

2 2
' '
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(a) (b) (c) (d)

Fig.3 Gabor fi lter masks (d = 1): (a) θ = 0, (b) θ = π/4, (c) θ = π/2, and (d) θ = 3π/4.



453

Mohamed Deriche

(a) (b)

(c) (d)

Fig.4 Gabor fi lter attributes for Inline411: (a) θ = 0, (b) θ = π/4, (c) θ = π/2, and (d) θ = 3π/4.

Eigenstructure attributes

The self-similarity properties of seismic waveforms 
have traditionally been modeled using the concept of 
correlation. In particular, the covariance matrix has 
been efficiently used in estimating the coherence and 
trace attributes (Randen and Sønneland, 2005). Such 
attributes are crucial in detecting salt-dome boundaries. 
The covariance, or eigenstructure attributes, is computed 
using the covariance matrix from the gradients in the x-, 
y-, and z-directions

                ,
xx xy xz

yx yy yz

zx zy zz

C C C

C C C

C C C

C  (7)

3
, ,

1 ( ( , , ) )( ( , , ) ),ab a a b b
x y x

C G x y z G x y z
N

 (8)

where N is the window size (N = 9 for 3 × 3 windows), 
Ga and Gb are the gradients in directions a and b, and μa 
and μb is the mean in the a-and b-direction, respectively. 
From the covariance matrix, the most important 
attributes (Berthelot et al., 2012) are the following.

Trace Attribute 
The covariance matrix is fi rst estimated from the data 

and then decomposed into a set of ordered eigenvalues 
and corresponding eigenvectors. The eigenvalues of the 
covariancematrix are used to obtain the trace attribute 
(Berthelot et al., 2012):

                             ,i
i

Tr  (9)

where λis are the eigenvalues of the covariance matrix.
Strong reflections from the salt domes create strong 
amplitudes across the boundaries, whereas the profile 
of the salt domes is relatively smooth. Therefore, this 
attribute is high along boundaries and low in non-
boundary regions.

Coherency estimate
The coherency estimate (Berthelot et al., 2012) is given 

as:

                        1 ,c
ii

E  (10)

where λ1 is the highest eigenvalue and λ1…. λp are 
the eigenvalues obtained from the eigenvector 
decomposition of the covariance matrix, is based 
on the eigenstructure of the covariance matrix. The 
coherence attribute represents the contrast information 
present in seismic slices. The attribute exhibits high 
values in smooth areas and low values across salt-dome 
boundaries with typically high-amplitude variations.

where u′ = u cosθ + vsinθ, v′ = −usinθ + vcosθ, and σu 

and σv specify the fi lter bandwidth. In Figure 3, the Gabor 
filter masks correspond to θ = 0, π/4, π/2, and 3π/4. 
In Figure 4, Gabor-filtered image maps representing 

Inline411 are shown. The blue color, here, corresponds to 
the minimum value and the red color correspond to the 
maximum value.
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(a) (b)

(c) (d)

Attribute ranking based on the 
information content

The initial survey of the different attributes used in 
seismic interpretation revealed a long list of correlations. 
Unfortunately, the dimensionality principle dictates 
that it is important to balance the minimum number 
of relevant attributes while preserving the important 
interpretation characteristics of selected features. Thus, 
in this study, the various attributes are tested and show 
the existence of a minimum set of attributes that are 
optimum in relation to the accurate detection of salt 
domes. To obtain this optimum set of attributes, I rank 
the different attributes based on their information content 
and the task at hand. 

For the experiments, I selected three commonly used 
techniques for feature ranking; namely, the mutual 
information feature selection (MIFS) algorithm, the 
minimum redundancy maximum relevance (mRMR) 
algorithm, and the joint mutual information (JMI) 
algorithm. The MIFS algorithm, proposed by Battiti 
(1994), iteratively creates the optimal feature set by 
selecting the feature with the highest Jmifs score at every 

iteration

        = ( ; ) ( ; ),
j

mifs k k j
X s

J I X Y I X X  (12)

where S is the set that includes the currently selected 
features, Y is the class label, and Xk is the kth feature. 
I(X, Y) is the mutual information between variables X 
and Y

       ( )( ; )= ( ) log ,
( ) ( )x X y Y

p xyI X Y p xy
p x p y

 (13)

where p(xy) is the joint probability mass function, and 
p(x) and p(y) are the marginal probabilities. 

The I(Xk;Y) term in Jmifs maximizes the feature 
relevance. The second term is introduced to ensure 
the low correlation with features already selected in S. 
Iteratively, the features are ranked from best to worst. 
By selecting different values of β, different feature 
selection criteria are obtained. Choosing β = 0 results 
in the independent selection of features; the criterion is 
also known as mutual information maximization (MIM). 
As discussed by Battiti (1994), in most feature selection 
applications, the optimal value of β is 1. In this study, I 

Fig.5 (a) Inline411; eigenstructure attributes: (b) trace, (c) coherency estimate, (d) largest eigenvalue.

The largest eigenvalue attribute
The largest singular value attribute is itself used as 

attribute (Berthelot et al., 2012):

                              1 max( ).i  (11)

Salt-dome boundaries are often represented by strong 
edges in seismic data. The largest eigenvalue attribute 
corresponds to the edge strength in a chosen volume. The 

value of this attribute is high for salt-dome boundaries 
for strong edges and weak for the surrounding areas, 
Figure 5 shows the feature maps obtained using the 
eigenstructure attributes for Inline411. We observe here 
that the trace and the largest eigenvalue attributes give 
high values for strong edges across the salt boundaries 
whereas the coherency attribute gives low values 
for smooth areas and high values for strong contrast 
variations.
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have also used β = 1.
The mRMR algorithm, proposed by Peng et al. (2005), 

is similar to the MIFS algorithm. The β coefficient in 
the mRMR is equal to the inverse of the size of the 
current feature selection set. As S increases, the value 
of β approaches zero, which means that the selection of 
features will be carried independently, as in case of the 
MIM. The selection criteria for mRMR are

        1= ( ; ) ( ; ).
j

mRMR k k j
X s

J I X Y I X X
S

 (14)

The JMI algorithm (Yang and Moody, 1999; Meyer 
et al., 2008) uses the concept of mutual information. In 
particular, the selection criterion for the JMI is

                    ( ; ).jmi k j
j s

J I X X Y  (15)

After some manipulation (see Brown et al., 2012), the 
above relation can be rewritten as

  
1( ; ) ( ; ) ( ; | ) .jmi k k j k j

j s

J I X Y I X X I X X Y
S

 (16)

Similar to the mRMR, the JMI also selects the features 
independently as the size of feature set S increases.

Experimental results

I have used the publicly available Netherlands offshore 

F3 block (North Sea) to analyze the performance of 
the proposed salt-dome detection algorithm. The block 
covers an area of 24 × 16 km2.The algorithm starts 
by extracting the salt- and nonsalt-dome boundary 
points from the labeled data. The labels were obtained 
in collaboration with Dr. A. Al Suhail, who worked 
extensively with Earth data. 

From the training data, I compute the GLCM, the 
Gabor, and the eigenstructure-based features. The 
training features are then ranked using the MIFS, the 
mRMR, and the JMI algorithms. The top K-ranked 
features were used to train a supervised Bayesian 
classifier. For a given Inline and at each point, the 
algorithm computes the top K-ranked GLCM, the 
Gabor, and the eigenstructure attributes. Each point is 
then classifi ed as either a salt-dome boundary or a non-
salt-dome boundary. The final salt-dome boundaries 
are obtained by joining all the classified points and 
removing the noisy and unwanted regions using basic 
morphological operations. 

In Table 2, I list the ranking of the features according 
to the three criteria. Figure 6a shows the histogram of 
the top ranked feature (obtained from 400 data points). 
The distributions of the salt-dome and nonsalt-dome 
boundary samples are separate and the overlapping is 
very small. The receiver operating characteristic (ROC) 
curve confirmed the results (>0.97 AUC). Figure 6b 
shows the histogram of the salt-dome and non-salt-dome 
boundary samples for the lowest ranked feature. The 
two distributions overlap completely and therefore the 
classifi cation accuracy using this feature is expected to 
be very low.

Table 2 Feature ranking using the mRMR, MIFS, and JMI selection criteria

Seismic Attributes Ranking using mRMR Ranking using MIFS Ranking using JMI

1. GLCM Contrast 5 5 8
2. GLCM Entropy 9 9 9
3. GLCM dissimilarity 11 11 11
4. GLCM energy 3 3 4
5. Gabor attribute (θ = 0) 10 10 10
6. Gabor attribute (θ = π/4) 1 1 1
7. Gabor attribute (θ = π/2) 2 2 2
8. Gabor attribute (θ =3π/4) 8 8 3
9. Trace attribute 4 4 6
10. Coherency estimate 7 7 7
11. Largest eigenvalue attribute 6 6 5

The experiments suggested that the salt-dome 
boundary classifi cation using the six top-ranked features 
is the most accurate. Adding more attributes in the 
classifi cation did not improve the overall accuracy; this 

validates the concept of the “curse of dimensionality”.
In Table 3, the six top-ranked features using the mRMR, 
MIFS, and JMI feature selection criteria are listed. The 
top six features using mRMR and MIFS are the same. 
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(a) (b)

(c) (d)

Table 3 Top six features selected using the mRMR, MIFS, and JMI criteria
mRMR MIFS JMI

Gabor attribute (θ = π/4) Gabor attribute (θ = π/4) Gabor attribute (θ = π/4)
Gabor attribute (θ = π/2) Gabor attribute (θ = π/2) Gabor attribute (θ = π/2)

GLCM energy GLCM energy Gabor attribute (θ = 3π/4)
Trace attribute Trace attribute GLCM energy
GLCM contrast GLCM contrast Largest eigenvalue attribute

Largest eigenvalue attribute Largest eigenvalue attribute Trace attribute

Fig.7 (a)Salt-dome boundary for Inline411; (b) Outline of the boundary in (a); (c) Salt-dome boundary for 
Inline364; and (d) Outline of boundary in (c).

method without ranking (Berthelot et al., 2013), the 
3D edge-detection method (Aqrawi et al., 2011), and 
the multidirectional 3D edge-detection method (Amin 
and Deriche, 2015a) are listed. The texture attributes-
based method using the JMI selection criteria has 
average accuracy of 91.4%, which is 7% higher than 
the 3D Sobel-based method, 5% higher than the texture 

Figure 8 shows the classifi cation accuracy of the salt-
dome boundary for Inlines411 to 421 detected using the 
proposed method (ranking was based on mRMR/MIFS 
and JMI) and the texture attributes based on the method 
without ranking. In Table 5, the average classification 
accuracies of the proposed method (ranking was based 
on mRMR/MIFS and JMI), the texture attributes-based 

15
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10

5

0
0.02 0.04 0.06 0.08 0.1 0.12

Salt Boundary
Non salt Boundary

15

20

10

5

0
0.01 0.02 0.03 0.04 0.05 0.06 0.07

Salt Boundary
Non salt Boundary

This is expected, as all three algorithms are based on the 
information content of the features with respect to the 
class labels. Figure 7 shows the salt-dome boundaries 

detected for Inline 364 and Inline411 using the top six 
attributes ranked by using the JMI criteria.

Fig.6 (a) Histogram of the highest ranked feature. (b) Histogram of the lowest ranked feature.
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attributes-based method without ranking, 2% higher 
than the multidirectional edge-based method, and 0.5% 
better than the texture attributes-based method using 
mRMR or MIFS. Note that the proposed method with 
ranking is approximately 40% more computationally 
effi cient than the texture-based method without ranking 
(see Table 4). It is important to mention that the training 
and feature ranking procedure is only carried once. The 
listed execution times provide an idea of the order of 
differences between the techniques when implemented 
on a generic i7 desktop machine.

classification model for accurate salt-dome detection 
in 3D seismic volumes. The proposed algorithm uses 
an optimal feature set created from the ranking of the 
attributes computed using the co-occurrence matrix, 
Gabor filters, and the eigenstructure of the covariance 
matrix. The concept of information content with respect 
to the class labels (salt- and non-salt-related) has been 
used to rank the features. Experiments using the F3 
dataset showed that the proposed salt-dome detection 
algorithm based on the feature ranking is robust, 
computationally efficient, and can detect the salt-dome 
boundaries with accuracy outperforming existing edge-
based and texture-based salt-dome detection methods.

Acknowledgments

The work presented in this paper has been supported 
by the Center for Energy and Geo-Processing (CeGP) 
at King Fahd University of Petroleum & Minerals 
(KFUPM), under Project no. GTEC 1401–1402. The 
author would like also to thank Asjad Amin for his help 
with the software implementation and testing of the 
algorithms.

References

Amin, A., and Deriche, M., 2015a, A new approach for salt 
dome detection using a 3d multidirectional edge detector: 
Applied Geophysics, 12(3), 334–342.

Amin, A., and Deriche, M., 2015b, A hybrid approach for 
salt dome detection in 2d and 3d seismic data: IEEE 
International Conference on Image Processing (ICIP), 
2537–2541.

Amin, A., Deriche, M., Hegazy, T., Wang, Z., and AlRegib, 
G., 2015, A novel approach for salt dome detection 
using a dictionary-based classifier: 85th SEG Annual 
International Meeting, Expanded Abstracts, 1816–1820.

Amin, A., and Deriche, M., 2016, Salt dome detection using 
a codebook-based learning model: IEEE Geoscience and 
Remote Sensing Letters, PP(99), 1–5.

Aqrawi, A. A., Boe, T. H., and Barros, S., 2011, Detecting 
salt domes using a dip guided 3d sobel seismic attribute: 
81th SEG Annual International Meeting, Expanded 
Abstracts 2011, 1014−1018.

Battiti, R., 1994, Using mutual information for selecting 
features in supervised neural net learning: IEEE 
Transactions on Neural Networks, 5(4), 537–550.

Berthelot, A., Solberg, A. H. S., and Gelius, L. J., 2013, 

Fig.8 Classifi cation accuracy of the salt-dome 
boundaries for Inlines411 to 421.

Table 4 Average execution time (Inlines411 to 421)
Salt-dome detection method Average execution time

Proposed method with ranking 
(MIFS/mRMR) 25.3 s

Proposed method with ranking 
(JMI) 25.5 s

Texture attributes-based
(Berthelot et al., 2013) 41.2 s

Table 5 Average classifi cation accuracy (Inlines411 to 421)

Salt-dome detection method Average classifi cation 
accuracy

Proposed method with ranking 
(MIFS/mRMR) 91.41%

Proposed method with ranking
(JMI) 91.03%

Texture attributes-based
(Berthelot et al., 2013) 87.12%

3D Sobel-based
(Aqrawi et al., 2011) 85.22%

Multidirectional edge detector
(Amin and Deriche, 2015a) 89.64%

Conclusions

In this study, I introduced a new feature-ranking 



458

Robust salt dome detection

Texture attributes for detection of salt: Journal of Applied 
Geophysics, 88, 52–69.

Berthelot, A., Solberg, A. H. S., Morisbak, E., and Gelius, L. 
J., 2012, 3d segmentation of salt using texture attributes: 
82th SEG Annual International Meeting, Expanded 
Abstracts, 1–5.

Brown, G., Pocock, A., Zhao, M. J., and Luján, M., 
2012, Conditional likelihood maximisation: a unifying 
framework for information theoretic feature selection: J. 
Mach. Learn. Res., 13, 27−66.

Chopra, S., and Marfurt, K. J., 2005, Seismic attributes—A 
historical perspective: Geophysics, 70(5), 3SO−28SO.

Forrest, M., 2000, “Bright” investments paid off: AAPG 
Explorer., 18−21.

Gao, D., 2003, Volume texture extraction for 3D seismic 
visualization and interpretation: Geophysics, 68, 1294–
1302.

Haralick, R. M., Shanmugam, K. S., and Dinstein, I., 
1973, Textural features for image classification: IEEE 
Transactions on Systems, Man, and Cybernetics, 3, 610–
621.

Haukås, J., Ravndal, O. R., Fotland, B. H., Bounaim, A., 
and Sonneland, L., 2013, Automated salt body extraction 
from seismic data using the level set method: First Break, 
31, 35–42.

Lisle, R. J., 1994, Detection of zones of abnormal strains 
in structures using Gaussian curvature analysis: AAPG 
bulletin, 78(12), 1811−1819.

Lomask, J., Biondi, B., and Shragge, J., 2004, Image 
segmentation for tracking salt boundaries: 74th SEG 
Annual International Meeting, Expanded Abstracts, 2443
−2446.

Lomask, J., Clapp, R. G., and Biondi, B., 2006, Parallel 
implementation of image segmentation for tracking 
3d salt boundaries: 68th EAGE Annual International 
Meeting, Expanded Abstracts, 1–5.

Meyer, P. E., Schretter, C., and Bontempi, G., 2008, 
Information-theoretic feature selection in microarray 
data using variable complementarity: IEEE Journal of 
Selected Topics in Signal Processing, 2(3), 261–274.

Peng, H., Long, F., and Ding, C., 2005, Feature selection 
based on mutual  information:  Cri ter ia  of  max 
dependency, max-relevance, and min-redundancy: 

IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 27(8), 1226–1238.

Randen, T., and Sønneland, L., 2005, Atlas of 3D seismic 
attributes: Mathematical Methods and Modelling in 
Hydrocarbon Exploration and Production, Springer 
Verlag, 23−46

Shafi q, M., Wang, Z., Amin, A., Hegazy, T., Deriche, M., 
and AlRegib, G., 2015, Detection of salt-dome boundary 
surfaces in migrated seismic volumes using gradient 
of textures: 85th SEG Annual International Meeting, 
Expanded Abstracts, 1811–1815.

Yang, H., and Moody, J., 1999, Data visualization and 
feature selection: New algorithms for non-Gaussian data: 
Advances in Neural Information Processing Systems, 12, 
687−693.

Zhang, Y., and Halpert, A. D., 2012, Enhanced interpreter-
aided salt boundary extraction using shape deformation: 
82th SEG Annual International Meeting, Expanded 
Abstracts, 1–5.

Zhou, J., Zhang, Y. Q., Chen, Z. G., and Li, J. H., 2007, 
Detecting boundary of salt dome in seismic data with 
edge-detection technique: 77th SEG Annual International 
Meeting, Expanded Abstracts, 1392−1396.

Dr. Mohamed Deriche received his MSc and PhD 
from the University of Minnesota in 
1994. He then joined the Queensland 
University of Technology, Australia. In 
2001, he joined the EE Department at 
King Fahd University of Petroleum & 
Minerals, where he is leading the signal 
processing group. He has published over 

200 papers in multimedia signal and image processing. 
He has delivered numerous invited talks. He has chaired 
several conferences including TENCON, GLOBALSIP-
MPSP, IEEE GCC, and IPTA. He has supervised more 
than 30 MSc and PhD students. He has received the IEEE 
third Millennium Medal, the Shauman award from best 
researcher, and excellence in research and excellence 
in teaching awards at KFUPM as well as several other 
awards.


