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Abstract: Frequency-domain airborne electromagnetics is a proven geophysical exploration 
method. Presently, the interpretation is mainly based on resistivity–depth imaging and one-
dimensional layered inversion; nevertheless, it is diffi cult to obtain satisfactory results for 
two- or three-dimensional complex earth structures using 1D methods. 3D forward modeling 
and inversion can be used but are hampered by computational limitations because of the large 
number of data. Thus, we developed a 2.5D frequency-domain airborne electromagnetic 
forward modeling and inversion algorithm. To eliminate the source singularities in the 
numerical simulations, we split the fields into primary and secondary fields. The primary 
fi elds are calculated using homogeneous or layered models with analytical solutions, and the 
secondary (scattered) fields are solved by the finite-element method. The linear system of 
equations is solved by using the large-scale sparse matrix parallel direct solver, which greatly 
improves the computational effi ciency. The inversion algorithm was based on damping least-
squares and singular value decomposition and combined the pseudo forward modeling and 
reciprocity principle to compute the Jacobian matrix. Synthetic and fi eld data were used to 
test the effectiveness of the proposed method.
Keywords: Frequency-domain airborne electromagnetic, fi nite element method, 2.5D geo-
electric model, damped least-squares method

Introduction

Airborne electromagnetic methods are based on the 
electrical and magnetic properties of rocks and take 
advantage of the electromagnetic induction principle. 
Typically, fi xed-wing aircrafts or helicopters are used as 
instrument carriers. Airborne electromagnetic methods 
are effi cient, economical, and easily adaptable, especially 
in large-scale mineral exploration (Li, 2008). 

Various methods are used in electromagnetic (EM) 
modeling, e.g., integral-volume method, fi nite-difference 
method, and finite-element method. The latter can 
easily model irregular and complex geometries. The 
literature is full of examples of airborne electromagnetic 
simulations. Liu and Benker (1992) evaluated the effect 
of topography on helicopter EM surveys using the 
boundary element method. Newman and Alumbaugh 
(1995) simulated the 3D helicopter EM response using 
the finite-difference method. Tan (2010) developed a 
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2.5D frequency-domain airborne EM numerical software 
based on the fi nite-element method. Li (2011) presented 
a 2D parallel algorithm for frequency-domain airborne 
EM using the finite-element method, which improved 
the computation efficiency. Zhou (2011) and Wang 
(2013) evaluated the 2D responses of airborne transient 
electromagnetic using the finite-element method. Yin 
(2012) simulated the airborne transient electromagnetic 
responses using a 2D model that included topography. 
Yin et al. (2015b) used a 2.5D unstructured finite-
element model for transient electromagnetics and 
considered the strong effect of topography on the 
electromagnetic response.

Airborne electromagnetic method interpretation 
is mainly based on 1D inversion, because 2D or 3D 
inversion simulations are diffi cult to build and to make 
them account for the complexity of airborne EM surveys. 
Therefore, the conductivity-depth transform (Huang and 
Fraser, 1996, 2002; Sengipel, 1988) was used to obtain 
the subsurface conductivity distribution in airborne 
electromagnetic data. Owing to the low resolution of 
the conductivity-depth transform, many 1D methods, 
such as the layered earth inversion (Chen and Raiche, 
1998; Farquharson et al., 2003; Huang and Fraser, 2003; 
Zhou et al., 2010; Yin and Hodges, 2007), the laterally 
constrained layered earth inversion (Auken et al., 2005; 
Tartaras and Beamish, 2005; Vallée and Smith, 2009; 
Viezzoli et al., 2009; Cai et al., 2014), and the holistic 
inversion (Brodie and Sambridge, 2006, 2009) are 
used. Despite the widespread use of 1D methods for the 
interpretation of AEM surveys, they often fail to recover 
simple 2D or 3D targets, particularly where complex 
2D or 3D geological conditions are present (Ellis, 1998; 
Raiche et al., 2001; Wilson et al., 2006). 

Several studies have tried to solve the above 
mentioned problem by using 2D and 3D inversion of 
frequency-domain airborne electromagnetics (FAEM) 
surveys. Wilson et al. (2006) presented a 2.5D inversion 
algorithm for the transient electromagnetic method using 
synthetic and fi eld data to demonstrate the effectiveness 
of their algorithm. Cox et al. (2010) used a 3D FAEM 
survey of fi eld data and the conjugate gradient method 
to minimize an objective functional based on an 
integral equation. Liu and Yin (2013) used the nonlinear 
conjugate gradient method and synthetic data to show 
the applicability of their method. Yi and Sasaki (2015) 
improved the inversion quality by the joint inversion 
of FAEM and direct current resistivity data. However, 
the primary problem with 3D inversion is the necessity 
to solve as many large linear equations as the FAEM 
stations because of computer memory constraints (Yin et 

al., 2015a). 2.5D inversion algorithms can well recover 
the 2D geological complexities with better computational 
effi ciency than 3D inversion methods.

In this study, we fi rst discuss a 2.5D forward modeling 
algorithm based on the isoparametric finite-element 
and Galerkin’s method. Based on the forward modeling 
algorithm, we develop a damped least-squares inversion 
method using singular value decomposition (SVD). 
Finally, we test the proposed algorithm using synthetic 
and fi eld data.

2.5D forward modeling of frequency-
domain airborne electromagnetics 

The 2.5D problem derives from the fact that the 
source is 3D and the model is 2D. As shown in Figure 
1, the anomalous body striking in the y-direction is 
extended infinitely, the conductivity σ, permittivity ε, 
and magnetic permittivity μ are constant along strike 
and only vary in the xz plane. The transmitter and 
receiver are approximately 30 m above the earth surface. 
Assuming harmonic temporal dependency with eiωt, the 
electric and magnetic fi elds satisfy Maxwell’s equations 
(Ward and Hohmann, 1988)

                       ˆ ˆ ,sz zE H M  (1a)

                       ˆ ,syH E J  (1b)

where Ms and Js are the magnetic and electric sources, 
respectively, ẑ i  is the impedance, and ŷ i  
is the admittivity.
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Fig.1 2.5D geoelectrical model along the y-direction.

The space between the transmitter and receiver in 
frequency-domain airborne electromagnetics are small; 
moreover, we cannot obtain exact results even when 
using a refined grid because the electric and magnetic 
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fi elds quickly change near the source. To eliminate the 
source singularities in the numerical simulation, we split 
the fields into primary and secondary (Newman and 
Alumbaugh, 1995)

                           ,p sE E E  (2a)

                           ,p sH H H  (2b)

where superscripts p and s denote the primary and 
secondary fi eld, respectively. The magnetic permeability 
μ is considered constant and equal to the magnetic 
permeability in vacuum and, ignoring the displacement 
currents, the secondary Maxwell’s equations can be 
written as

                          0 ,s siE H  (3a)

                          ,s s sH E J  (3b)

where ( )s p pJ E  and σ p is  the background 
conductivity. Applying the Fourier transform to 
equations (3a) and (3b) with respect to y yields

ˆˆ ˆ( , , , ) ( , , , ) , ,yik y
y y

FF x k z F x y z e dy ik F
y

 (4)

where F̂  denotes ˆ ,s
xE ˆ ,s

yE ˆ ,s
zE ˆ ,s

xH ˆ ,s
yH and ˆ s

zH  in the 
wave domain. We obtain the two coupled governing 
differential equations for ˆ s

yE  and ˆ s
yH
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The rest of the electric and magnetic fields can be 
calculated from the space derivatives of ˆ s

yE  and ˆ s
yH
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where a p.
Maxwell’s equations are solved by using the finite-

element and Galerkin’s method (Zienkiewicz, 1977). We 
apply Garlerkin’s method to equations (5a) and (5b) and 
assemble the elemental matrices in a global matrix; thus, 
we obtain the global set of equations, (for details, see 
Appendix A)

                               ˆ ,KF B    (10)

where K is a sparse symmetric system matrix, F̂ is 
the representation of the unknown EM fields, and B 
represents the source term.

The secondary fi elds decay to zero at the boundaries 
far from the anomaly. To ensure the uniqueness of the 
solution, we consider the simple Dirichlet’s boundary 
condition and zero the fi elds at the boundary. To decrease 
the boundary effects in the simulations, the boundaries 
are set far from the area of interest by increasing the 
node spacings with a ratio of 1:2. The system of linear 
equations (10) can be iteratively (e.g., QMR, Newman 
and Alumbaugh, 1995) or directly solved (e.g., MUMPS, 
Streich, 2009). Iterative solvers require less memory 
than direct solvers. They also require less computational 
time when only one right-hand side is computed and 
the matrix factorization of direct solvers is expensive. 
However, the iterative solvers of typical multisource 
frequency-domain airborne electromagnetics are 
expensive. For several right-hand side equations, 
directive solvers are inexpensive because matrix 
factorization can be reused. Therefore, the system of 
linear equations was solved by the large-scale spare 
matrix parallel direct solver (PARDISO).

Once ˆ s
yE  and ˆ s

yH  are computed, other fi eld components 
can be obtained using equations (6) and (9). These 
complementary components are calculated from the 
space derivatives of ˆ s

yE  and ˆ s
yH , which are evaluated 
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from the space derivatives of the interpolation function 
∂Ni

e/∂x and ∂Ni
e/∂z for each element, where Ni

e is the 
elementary shape function (Zienkiewicz, 1977). The 
EM fi elds in the ky-domain are transformed to the space 
domain by the inverse Fourier transform (Leppin 1992; 
Unsworth et al., 1993)

 0 0

1 ˆ( , , , ) ( , , , ) .yik
y yF x y y z F x k z e dk  (11)

The inverse Fourier transform is evaluated by the sine 
or cosine transform with a fi ltering algorithm. 

Primary fi eld 
In this study, the primary fields are calculated in 

uniform whole space by using analytical expression.  
Due to the high accuracy and computational effi ciency, 
compared with  layered model. 

In the vertical coaxial configuration, the source is a 
horizontal magnetic dipole in the x-direction and the 
primary fi eld is evaluated as follows (Nabighian, 1991):

             0,
x

pE  (12a)
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In the horizontal coplanar configuration, the source 
is a vertical magnetic dipole and the primary field is 
computed as follows (Nabighian, 1991):
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4

p ikr
x

i m yE ikr e
r r

 (13a)
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The pr imary f ie lds  in  the  space domain are 
transformed into the wave domain by the Fourier 
transform. The latter can be evaluated by the sine or 
cosine transform because of the odd or even symmetry 
of the primary fi elds.

Verifi cation of the 2.5D forward modeling 
To verify the precision of the 2.5D forward modeling 

algorithm, we consider the model of Newman and 
Alumbaugh (1995) in Figure 2a. The results are shown 
in Figures 2b and 2c horizontal coplanar (HCP) and 

vertical coaxial (VCX) systems, respectively, and agree 
well with Newman’s results. The maximum relative 
error is only 4%, which suggests that the 2.5D forward 
modeling can be used in the inversion.
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Fig.2 Comparison of the 2.5D model results using the data of 
Newman (1995). (a) 2D model. The VCX and HCP results are 
shown in (b) and (c), respectively. The relative error for VCX 
and HCP is shown in (d) and (e), respectively.

Damped least-squares 2.5D inversion

The damped least-squares inversion algorithm
The damped least-squares method is the classic 

Marquardt’s method and is based on least-squares 
criteria. The method seeks the optimal solution by 
minimizing the residuals of an objective function. In the 
frequency-domain airborne electromagnetic inversion, 
the objective function is

           
2

1

1( ) ( ( ) ) / ,
N

obs
i i i

i
F d

N
p p  (14)

where 1 2[ , , , ]T
Nd d dd  is the measured data vector, 
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1 2[ , , , ]T
Mp p pp  is the unknown model parameters 

vector, T is the transpose, N is the number of measured 
data, and M is the number of model parameters. The 
functional relation between the model parameters and 
EM responses is

                  ( ), 1,2, , .obs
i id F i Np   (15)

In the frequency-domain airborne electromagnetic 
problem, the function Fi (P) is strongly nonlinear. To 
locally linearize the problem, we expand Fi (P) using 
Taylor series around the initial model parameter vector 
p0 for the first iteration and neglect the higher order 
terms. Thus, we obtain

                              d J p,  (16)

where ∆d is the vector of differences between the measured 
data and the response of the initial model, and ∆p is the 
vector to be solved, comprising the difference between 
the updated and initial model parameters p and p0. J is 
an N × M Jacobian or sensitivity matrix with elements

     ( )
, 1,2, , , 1,2, , .i

ij
j

F
a i N j M

p
p  (17)

From this, we obtain the model update step

                      1( ) .T Tp J J J d  (18)

Because of the singularities in the coeffi cient matrix, 
the inversion is unstable. To correct this, we add the 
damped factor λ2 into the coeffi cient matrix

                 2( ) ,T TJ J I p J d  (19)

where I is the identity matrix. Using SVD, we obtain

                          ,TJ U V  (20)

where U and V is the data and parameter eigenvector 
matrix, respectively, and Λ is the singular values matrix. 
Substituting equation (20) into (19), we obtain

                 2 2 1( ) ,Tp V I U d  (21)

Then, the updated model parameter vector at the kth 
iteration is 

                         1 .k kp p p  (22)

In the case of nonlinear problems, several iterations 
are required before an acceptable solution is obtained by 
minimizing the misfi t between data and model responses.

Jacobian matrix
The calculation of the Jacobian matrix is critical 

in the inversion algorithm, and the computational 
efficiency strongly affects the inversion efficiency. 
There are simple and effective methods for this purpose 
(McGillivary et al, 1994; Lugão and Wannamaker,, 
1996). In this study, we use the reciprocity principle 
to calculate the Jacobian matrix and minimize the 
computation time. We differentiate both sides of 
equation (10) with respect to the conductivity of a 
particular block σi and we obtain

                        
ˆ ˆ .

i i

F KK F  (23)

This equation has the same coefficient matrix with 
the 2.5D forward model; moreover, the right-hand side 
can be seen as the source term and the derivatives of 
the electric field with respect to σi can be obtained by 
solving equation (23), which resembles the forward 
modeling and is called pseudo forward modeling. We 
repeat the pseudo forward modeling N times to obtain 
the derivatives of the electric field for N blocks of 
conductivity, which is time-consuming. However, in 
the inversion algorithm, we only need the derivatives 
of the electric field with respect to the conductivity at 
the receiving point. Using the reciprocity (Lugão and 
Wannamaker, 1996), the derivative of the electric field 
at the receiving point is the weighted sum of the electric 
fi elds within the block owing to the unit dipole source at 
the receiver point (for details, see Appendix B).

Inversion scheme 
The 2.5D frequency-domain airborne electromagnetic 

inversion algorithm comprises the following steps 
(shown in Figure 3).

1. Set the iteration number i = 0, the threshold for the 
residual, and the maximum iteration number and input 
the initial model parameters and measured data.

2. Perform the 2.5D forward calculations, solve 
the system of linear equations ˆKF B and obtain the 
secondary magnetic fi elds Hx and Hz.

3. Calculate the residual. If the residual is satisfactory 
or the iteration number is greater than the maximum 
iteration number, exit the program; otherwise, continue.

4. Search for the best damping factor.
5. Use the pseudo forward modeling model to 

calculate the Jacobian matrix and obtain the update step.
6. Update the model parameter pk+1 = pk +∆p.
7. Set i = i + 1 and return to step 2.
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least-squares inversion algorithm, we use two typical 
geoelectrical models.

Model No. 1
Model No. 1 is shown in Figure 4. The model size 

is 1200 m × 250 m and contains two 20 ohm-m low-
resistivity bodies buried in 200 ohm-m half-space. The 
anomaly size is 150 m × 80 m and the distance from the 
top surface to the earth surface is 40 m. The transmitter 
and receiver loops are assumed to be 6.5 m apart and 30 
m above the earth’s surface. The magnetic fi eld response 
was computed using a 42 × 13 cell grid for 50 locations 
at intervals of 20 m. The frequencies for the HCP and 
VCX were 930 Hz, 4650 Hz, and 23250 Hz and 870 Hz, 
4350 Hz, and 21750 Hz, respectively.

The starting model was a homogeneous 200 ohm-m 
half-space. Before the inversion, the 50 locations of the 
HCP and VCX configurations for six frequencies were 
contaminated with 1% Gaussian noise. For the 2.5D 
inversion algorithm, we used a desktop computer with 
a 3.5 GHz Intel (R) Core (TM) i3-4150 processor. The 
data misfit was reduced from 100% to 7.34% after 15 
iterations and 5.2 h. The inversion results are shown in 
Figure 5, which suggests that the recovered resistivity is 
reasonably well represented by the model.

Fig.4 2D model used to generate the synthetic data for the frequency-domain airborne EM survey. 
The model comprises two buried blocks of 20 ohm-m in 200 ohm-m background half-space.

Fig.5 Resistivity model obtained from inverting the frequency-domain airborne EM data for the model 
in Figure 4.

Model No. 2
Model No. 2 comprises two rectangular, 20 ohm-m 

and 2000 ohm-m, bodies in 200 ohm-m background 

half-space, as shown in Figure 5. The inversion results 
were generated using the same parameter as in model 
No. 1. The data misfi t was reduced from 100% to 9.34% 

Fig.3 2.5D frequency-domain airborne electromagnetic 
inversion fl owchart.

Inversion of synthetic data

To test the application and correct the damped 



43

Li et al.

after 11 iterations and approximately 3.8 h.
The inversion results are shown in Figure 7. The low 

resistivity is well recovered as well as the high resistivity 
but the latter is only 300 ohm-m, which is far from the true 
value of 2000 ohm-m. The airborne EM system records 

the secondary magnetic fi elds generated by the anomaly 
and it is not sensitive to the high-resistivity anomaly. 
Oldenburg et al. (2012) considered this result unsurprising 
because it is diffi cult to recover a high-resistivity body by 
using an induced source and magnetic fi eld data.
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Fig.6 2D model used to generate the synthetic data for frequency-domain airborne EM survey. 
The model comprises two, 20 ohm-m and 2000 ohm-m, buried blocks in 200 ohm-m background half-space.
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Fig.7 Resistivity model obtained from inverting the frequency-domain airborne EM data for the model in Figure 6.

Field example

We used field data to test the proposed inversion 
algorithm. The field data were from the Guangdong 
Longmen area and were collected with the IMPULSE 
airborne electromagnetic system and targeted zinc, 
lead, and copper deposits. The rocks are mainly 
Neoproterozoic, Cambrian, Devonian, Carboniferous, 
Permian, Mesozoic Triassic, Jurassic, Cretaceous and 
Cenozoic in age. The intrusive rocks are mainly from 
the Yanshanian period, wherein the third and the fourth 
stages are granite and the fi fth stage is granite porphyry. 
The area is rich in mineral resources. The lead and 
zinc deposits are associated with contact metasomatic 
skarn, hydrothermally altered hornfels, or stratiform 
hydrothermal alteration. The resistivity of the Mesozoic 
granite and sedimentary rocks is hundreds to thousands 
ohm-m and the resistivity of the dense veins is tens to 
hundreds ohm-m (Wang et al., 2007).

The field data inversion profile is 700 m long 
covering 281 locations with an average interval of 
2.3 m. The inversion data use the HCP configuration 
with three frequencies (930 Hz, 4650 Hz, and 23250 

Hz). The inversion region was divided into 35 × 12 
blocks of unknown parameters, excluding the air 
layer. The inversion results are shown in Figure 8. The 
FAEM inversion results well agree with the CSAMT 
data. Between 300 m and 500 m of the recovered 
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Fig.8 Comparison of the (a) AEM and (b) CSAMT inversion 
results (Hu et al., 2013).
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resistivity profile, the low-resistivity anomaly follows 
the mineralization in the Longmen area (Wang et al., 
2007). A borehole was drilled at the location of 370 m 
of this profi le to investigate the central conductive body. 
The borehole depth is about 250 m, and continuous 
pyrite was discovered at the depth 52–235 m, chemical 
component analysis indicated Fe content of 7%–16%, 
(Hu et al., 2013).

Conclusions

We presented a 2.5D frequency-domain airborne 
electromagnetic forward modeling and inversion 
algorithm. To eliminate the point-source singularities 
in the numerical simulation, the fields are split into 
primary and secondary fields. The primary fields are 
computed analytically using layered or homogeneous 
models and the secondary fi elds are solved by using the 
isoparametric finite-element and Galerkin’s method. 
The system of linear equations was solved by using 
the parallel direct solver PARDISO, which solved the 
multi-right-hand side problem effi ciently. We developed 
a damped least square inversion algorithm based 
on SVD and computed the Jacobian matrix using a 
pseudoforward model and the reciprocity principle. We 
used synthetic and fi eld data to test the effectiveness of 
the proposed algorithm.
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Appendix A: fi nite element formula

Fig. A-1 An eight-node isoparametric element. De is 
the domain of the element and ∂De represents the 
boundaries of the element, and l and n are tangential 
and normal vectors, respectively.

Figure A-1 shows an eight-node isoparametric 
element. In each element, the physical parameters σ, μ, 
and ε are constant. The global coordinates and each EM 
fi eld component F are
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where, xi, zi, and îF  is the x-coordinate, z-coordinate, and 
EM field for one element and Ni

e is the shape function 
(Zienkiewicz, 1977)
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We apply the Galerkin method to equations (6a) and 
(6b) and we obtain the equations
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From Green’s theorem (Zienkiewicz, 1997) 
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we obtain the following 
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In any element, we have
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By assigning A-16 to the global matrix, we obtain the 
solution of the system of linear equations ˆKF B.

Appendix B: Jacobian matrix calculation

We used the VCX configuration to calculate the 
Jacobian matrix
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Because the air conductivity σ is zero, equation (9) 
can be written as
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The derivatives of the magnetic fi eld with respect to σj 
are
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elemental matrices (for details see Appendix A). H and 
E correspond to the magnetic and electric field for the 
eight-node element with respect to the conductivity of 
a particular block σj. Fk

8 represents the magnetic and 
electric fi elds in the eight-node element with respect to 
the conductivity of a particular block σj owing to the unit 
source at the receiver point.
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