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Abstract: Conventional f–x empirical mode decomposition (EMD) is an effective random 
noise attenuation method for use with seismic profi les mainly containing horizontal events. 
However, when a seismic event is not horizontal, the use of f–x EMD is harmful to most useful 
signals. Based on the framework of f–x EMD, this study proposes an improved denoising 
approach that retrieves lost useful signals by detecting effective signal points in a noise section 
using local similarity and then designing a weighting operator for retrieving signals. Compared 
with conventional f–x EMD, f–x predictive fi ltering, and f–x empirical mode decomposition 
predictive fi ltering, the new approach can preserve more useful signals and obtain a relatively 
cleaner denoised image. Synthetic and fi eld data examples are shown as test performances of 
the proposed approach, thereby verifying the effectiveness of this method.
Keywords: Random noise attenuation, f–x empirical mode decomposition, local similarity, 
dipping event

Introduction

Random noise attenuation plays an important 
role in modern seismic data processing (Chen et al., 
2015; Qu et al., 2015; Yang et al., 2015), and this has 
particularly been the case since the popularization of 
the simultaneous-source acquisition technique (Chen et 
al., 2014a, 2014b; Chen, 2014). Although f–x empirical 
mode decomposition (EMD) is effective for NMO-
corrected and post-stack horizontal events (Bekara 
and van der Baan, 2009), it cannot effectively remove 
random noise when the subsurface structure becomes 

complex. This inability is related to a serious dipping-
signal-loss problem from the removal of most dipping 
events within seismic data.

To ameliorate this problem, Chen et al. (2012) and 
Dong et al. (2013) used wavelet and curvelet transforms, 
respectively, to select and retrieve useful signals from a 
noise section. In addition, Chen and Ma (2014) proposed 
the prediction of a useful signal in a noise section 
after f–x EMD via f–x empirical mode decomposition 
predictive filtering (EMDPF). The problem of these 
approaches significantly decreases the signal-to-noise 
(SNR) of the finally denoised section because these 
approaches  will also retrieve a certain amount of noise 
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when extracting effective signals. Chen et al. (2014c) 
presented an overview of all EMD-based approaches 
used in random noise attenuation.

In this study, we aim to retrieve useful signals 
according to local similarity that are evident between 
a noise section after f–x EMD and a denoised section 
after f–x predictive fi ltering. In this respect, a weighting 
operator is designed to select a signal point that has a 
high local similarity in a noise section. The benefi t of this 
approach is that we can retrieve a small number of useful 
signals without signifi cantly altering the SNR from an f–
x EMD denoised section. In addition, synthetic data and 
two fi eld datasets demonstrate that this approach yields 
enhanced denoising performance.

Theory and methodology

f–x EMD
f–x EMD was proposed by Bekara and van der 

Baan (2009) to attenuate random noise. EMD is 
useful in the time–frequency analysis of nonlinear and 
nonstationary signals, where any complicated signal 
can be decomposed to a finite set of intrinsic mode 
functions (IMFs) using EMD. IMFs are constructed to 
satisfy two conditions: (1) The number of extrema and 
zero crossings must be equal to each other, or differ by 
one at the most; and (2) at any point the mean value 
of the envelope defined by the local maxima and the 
envelope defi ned by the local minima must be zero. The 
advantage of IMFs is able to capture the nonstationary 
and nonlinear information from the signals, and the 
IMFs are approximately orthogonal to each other. 
  Bekara and van der Baan (2009) applied EMD to each 
frequency slice within the f–x domain and removed the 
fi rst IMF, which mainly represented higher wavenumber 
components, e.g., random noise. Their methodology can 
be summarized as
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where ˆ( , )m ts  and d(m, t) denote the estimated signal and 
acquired noisy signal;  and -1 denote the forward 
and inverse Fourier transform along the time axis, 
respectively; Cn denotes the nth EMD decomposed 
component; and w denotes frequency.

The detailed algorithm steps used for f–x EMD (Bekara 
and van der Baan, 2009) are shown as follows:

(1) To hasten the decomposition process, empirically 
select a time window (500 × 500) and transform the data 
to the f–x domain.

(2) For every frequency:
(a) Separate the real and imaginary parts within the 

spatial sequence,
(b) Compute the first IMF for the real signal and 

subtract the fi rst IMF to obtain the fi ltered real signal,
(c) Repeat (a) and (b) for the imaginary part,
(d) Combine to create the fi ltered complex signal.
(3) Transform data back to the t–x domain.
(4) Repeat (3) and (4) for the following time window.

Signal retrieval using local similarity
Loca l  s imi la r i ty  was  o r ig ina l ly  def ined  by 

Fomel (2007a) and is one of the most useful local 
seismic attributes; it measures local seismic signal 
characteristics in the neighborhood at various points. 
Local similarity has been successfully applied in 
different areas of seismic data processing, such as multi-
component image registration (Fomel, 2007a), time-
lapse registration (Fomel and Jin, 2009; Zhang et al., 
2013), and time–frequency analysis (Liu et al., 2011).
To measure the local similarity between two signals, 
Fomel defi ned the local similarity of vector a and b as

                            1 2 ,Tc c c

where c1 and c2 are obtained from two least squares 
minimization problem,
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where Ci is a diagonal operator composed from elements 
of ci: Ci = diag (ci), i = 1, 2. The least-squares problems 
(3) and (4) can be solved with the help of shaping 
regularization (Fomel, 2007b) using a local smoothness 
constraint,
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where A is a diagonal operator composed from the 
elements of a: A = diag (a), B is a diagonal operator 
composed from the elements of b: B = diag (b), S is a 
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smoothing operator, and λ is a parameter controlling the 
physical dimensionality that enables fast convergence 
when inversion is implemented iteratively. 

The principle of using local similarity to retrieve a 
signal is based on the assumption that the noise section 
after f–x EMD, and the denoised section after f–x 
predictive filtering, should have low local similarity. A 
weighting operator can be designed to retrieve the useful 
signal from the EMD-based noise section as, 
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where v1 and v2 define two thresholds, and Vn,s (t, x) 
denotes the local similarity of the noise section to 
the denoised section. Generally, when the similarity 
is relatively high (for example greater than 0.4) the 
components in the noisy section will all be useful 
signals. However, if the similarity is rather low, the 
components in the noisy section will consist completely 
of noise. When the similarity is in between these 
extremes, the components will consist of a combination 
of useful signals and noise. In this study, we use a linear 
weighted method to obtain useful signals. In the three 
examples below, we choose v1 and v2 as 0.2 and 0.4, 
respectively.

Combining the f–x EMD and signal retrieving 
approach using local similarity, we propose the following 

improved random noise attenuation algorithm following 
the basic framework of f–x EMD by:

1 .  Denois ing  us ing  f–x  EMD and obta in ing 
corresponding denoised and noise sections. 

2. Denoising using f–x predictive filtering and 
obtaining a corresponding denoised section. 

3. Computing the local similarity between the noise 
section after f–x EMD and the denoised section after 
conducting f–x predictive fi ltering. 

4. Applying a weighting operator, as defined in 
equation 7, to the f–x EMD-based noise section to obtain 
a section of the retrieved signal. 

5. Summing the denoised section after f–x EMD and 
the retrieved signal to form the output.

It is important to stress that during the process of 
calculating the local similarity between two signals, 
the f–x predictive filtering acts as a filter that roughly 
estimates the useful signal. However, the ability to 
achieve this is not restricted to use of the f–x predictive 
filtering, and can be obtained using other commonly 
used denoising fi lters. 

Synthetic and fi eld data examples

Synthetic data example
Figure 1 is a synthetic single-shot seismic dataset 

composed of two horizontal events and one dipping 
event (Figure 1a shows data without noise and Figure 
1b shows added background white noise). To make a 

Fig.1 (a) Clean synthetic dataset; (b) Noisy synthetic dataset.
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comparison between the denoising effects of the various 
approaches, we apply f–x EMD, f–x deconvolution, and 
the approach proposed in this paper to the noisy dataset. 
We can therefore conclude from Figure 2a and 2d that 
the f–x EMD is quite effective in denoising the section 
composed of horizontal events. However, it also causes 
a considerable loss of energy during the dipping events 
and thus cannot be applied to complicated profi les. The 
denoising result using the f–x deconvolution is shown 
in Figure 2b, and Figure 2e shows the corresponding 
noise section. We can see from the noise section that 

while the background white noise is greatly attenuated, 
the useful signal is also evidently attenuated, and this is 
not desirable because of the decreased resolution. The 
denoising result of our proposed approach is shown 
in Figure 2c and its corresponding noise section is 
shown in Figure 2f. It is evident from these fi gures that 
this approach can effectively protect the energy of the 
dipping events, and compared with f–x deconvolution the 
three events are well displayed in the denoised section, 
the noise section is well distributed, and minimal useful 
energy is lost. 

Fig.2 Denoising performance comparison.
(a) Denoised using f–x EMD; (b) denoised using f–x deconvolution; (c) denoised using the proposed approach; (d) noise section corresponding to (a); 

(e) noise section corresponding to (b); (f) noise section corresponding to (d).
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Field data examples
In order to compare the proposed approach with the 

traditional f–x EMD approach, we further apply these 
two approaches to land fi eld data. Figure 3a shows the 

noisy post-stack land field data after normal-moveout 
correction (Chen et al., 2014b). The traditional f–x 
EMD and the proposed improved EMD are then used 
to attenuate random noise to this profile, respectively. 
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Figure 4a shows the denoised section using f–x EMD, 
and the corresponding noise section is shown in Figure 
4b. The denoised results using the proposed approach 
are shown in Figure 4c, and Figure 4d shows the 
corresponding noise section. As the seismic profile is 
mainly composed of horizontal events, a comparison 
of these two denoised sections shows that the denoised 
section using the proposed approach is as clean as that 

of f–x EMD. However, f–x EMD harms many of the 
dipping events, as shown by a comparison of signal 
preservation shown in the frame boxes in Figure 4. 

To further verify the performance, we use a seismic 
profi le from the South China Sea that consists of more 
complicated underground strata (Chen and Ma, 2014), 
where the noisy post-stack data are shown in Figure 
3b. To enable this we select four different approaches 
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Fig.3 (a) Land fi eld data example; (b) South China Sea fi eld data example.

Fig.4  Comparison of denoising performance.
(a) Denoising using f–x EMD; (b) noise section corresponding to (a); (c) denoising using proposed approach; (d) noise section corresponding to (c).
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to attenuate random noise. Figure 5a presents the 
denoised section using f–x EMD and its corresponding 
noise section is shown in Figure 5b. Although this 
approach can attenuate most of the background noise, 
the noise section also contains a lot of useful signals 
because the strata are composed of many dipping 
events. The denoised result of f–x predictive filtering 
and its corresponding noise section are shown in Figure 
5c and 5d, respectively. However, in order to protect 
the dipping events this approach has a tradeoff in that 
more useful energy is preserved while the denoised 
performance is not well satisfied. Figure 5e shows 

the denoised result using f–x EMDPF, and Figure 5f 
shows the corresponding noise section; part of the 
dipping events signal is retrieved when applying the 
predictive filter to the first intrinsic mode function. 
However, there is no evident energy loss in the noise 
section (as shown in Figure 5b), but as the predictive 
filter also returns part of the background noise while 
retrieving the useful signal the denoised performance 
is also not ideal. The last approach used is that of the 
proposed improved EMD, and the denoised result and 
corresponding noise section are shown in Figures 5g and 
5h, respectively. It is evident that the denoised section 
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is much cleaner using the proposed approach than 
when using f–x predictive fi ltering or f–x EMDPF; it is 
a much more effective approach for retrieving useful 
signals using local similarity than using the predictive 
fi lter and the denoised section has a much higher SNR. 
Figure 6 shows the retrieved section using a weighted 
local similarity operator. The principle of our denoising 
method is based on signal retrieving from the noise 
section and it therefore inevitably returns part of the 
noise. However, it is not possible to ascertain whether or 
not too much noise has been retrieved from the results of 
the fi nal overall denoising effect.
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Fig.5 Comparison of denoising performance.
(a) Denoising using f–x EMD; (b) noise section corresponding to (a); (c) denoising using f–x predictive fi ltering; (d) noise section corresponding to (c); 

(e) denoising using f–x EMDPF; (f) noise section corresponding to (e); (g) denoising using the proposed approach; (h) noise section corresponding to (g).
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Fig.6 Retrieved section from South China Sea profi le 
using weighted local similarity operator.

Conclusions

We propose an improved approach for random noise 

attenuation using f–x EMD. The basic idea of the new 
approach is to retrieve useful signals in the noise section 
for use with conventional f–x EMD, according to local 
similarities between the f–x EMD-based noise section 
and the f–x predictive based denoised section. Synthetic 
data and field data examples show that f–x EMD is 
able to preserve the horizontal events and leave a small 
number of useful dipping signals in the noise section, 
which can be identified from similarities. Results 
therefore show the proposed approach is able to obtain 
an enhanced denoising performance.
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