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Abstract: Seismic texture attributes are closely related to seismic facies and reservoir 
characteristics and are thus widely used in seismic data interpretation. However, information 
is mislaid in the stacking process when traditional texture attributes are extracted from post-
stack data, which is detrimental to complex reservoir description. In this study, pre-stack texture 
attributes are introduced, these attributes can not only capable of precisely depicting the lateral 
continuity of waveforms between different reflection points but also reflect amplitude versus 
offset, anisotropy, and heterogeneity in the medium. Due to its strong ability to represent 
stratigraphics, a pre-stack-data-based seismic facies analysis method is proposed using the self-
organizing map algorithm. This method is tested on wide azimuth seismic data from China, and 
the advantages of pre-stack texture attributes in the description of stratum lateral changes are 
verifi ed, in addition to the method’s ability to reveal anisotropy and heterogeneity characteristics. 
The pre-stack texture classification results effectively distinguish different seismic reflection 
patterns, thereby providing reliable evidence for use in seismic facies analysis.
Keywords: Pre-stack texture attributes, reservoir characteristic, seismic facies analysis, SOM 
clustering, gray level co-occurrence matrix

Introduction

In seismic exploration, seismic facies are defined 
as stratigraphic units that have certain reflection 
characteristics. Therefore, the analysis of seismic 
facies is necessary for sedimentary facies interpretation 
and inference. Early seismic facies classification was 
conducted manually; however, as this method involves 
subjectivity, it is not suitable for large-scale seismic 
data analysis. Computer techniques are therefore used to 

extract information pertaining to valid geologic features 
and uncover seismic refl ection patterns through pattern 
recognition techniques. Seismic facies analysis can then 
be achieved by combining such information with that 
obtained from wells and related material; this is the most 
popular seismic facies classification technique used 
globally as it is rapid, quantitative, and objective (Han et 
al., 2011; Saraswat and Sen, 2012; Chopra and Marfurt, 
2014).

The use of seismic facies classification techniques 
has been steadily increasing in hydrocarbon prediction 
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processes over the past 20 years, and a large number 
of analysis methods is available for application in 
automatic interpretation. For example, West et al. (2002) 
employed seismic texture attributes and neural networks 
to generate seismic facies using an interactive approach. 
de Matos et al. (2006) detected the modulus maxima 
line amplitudes of trace singularities using the wavelet 
transform technique in unsupervised seismic facies 
analysis. This technique has the advantage of being less 
sensitive to horizon interpretation noise. Roy (2013) 
reported the use of a combination of different attributes 
for a self-organizing map (SOM) and generative 
topographic mapping in seismic facies analysis. In 
addition, Gao (2011) proposed the texture model 
regression method for seismic waveform characteristics 
in seismic facies analysis. Furthermore, Du et al. 
(2015) de-noised seismic data using the empirical 
mode decomposition method, where the reconstructed 
waveform serves as the input for the SOM algorithm to 
perform seismic facies analysis.

With increasing difficulties faced in exploration, the 
diffi culty in using the conventional post-stack-data-based 
seismic facies analysis technique increases in complex 
lithologic stratigraphic reservoir exploration. Thus, it 
is necessary to analyse the reservoir by using prestack 
seismic data which carries abundant stratigraphic and 
depositional information. An amplitude versus offset 
(AVO) feature contained in pre-stack data can be used to 
identify fl uid, lithology, and anisotropic characteristics, 
which can effectively reduce the uncertainty of reservoir 
prediction, and thus improve the discrimination ability 
of reservoir physical properties and hydrocarbon content 
and assist in the analysis of reservoir characteristics. 
However, the final stacking wavelet could be distorted 
because of different offsets. Thus when the anisotropy or 
AVO features exist in a reservoir, subtle lateral variation 
characteristics are missed, and analysis of the fine-
grained seismic refl ection structure is not possible. 

Some researchers have used pre-stack seismic data in 
seismic facies analysis. For example, West at al. (2002) 
determined that AVO characteristics could be used as an 
auxiliary feature in seismic facies analysis and that they 
assisted in complex reservoir identifi cation. Kourki and 
Riahi (2014) proposed a SOM algorithm to cluster pre-
stack data for seismic facies analysis in relation to the 
existence of the AVO feature. In addition, Song et al. 
(2015) performed seismic facies analysis based on wide 
azimuth gathers and CMP traces, and Marfurt (2014) 
predicted that the method used in pre-stack data analysis 
would be the future research trend. It is thus considered 
that pre-stack-data-based seismic facies analysis will 

become an important research hotspot.
Due to the development of seismic acquisition 

techniques in a wide azimuth, wide band, high density, 
and full wave field, and in relation to progress made 
in seismic data processing technology, the quality of 
pre-stack seismic data has greatly improved. After 
processing, a variety of pre-stack gathers with high 
signal to noise ratio can be formed, such as CMP 
gathers, angle gathers, wide azimuth gathers, and such 
high quality data sets provide excellent materials for pre-
stack seismic facies analysis.

To analyze seismic facies using pre-stack seismic data, 
it is necessary to extract properties that are representative 
of geological characteristics. Seismic texture attributes 
describe the refl ection characteristics of strata and utilize 
the space change feature of amplitude. The gray level 
co-occurrence matrix (GLCM) is the most common 
method used to extract texture attributes (Yenugu et 
al., 2010; Gao, 2011; Eichkitz et al., 2015), and Chopra 
and Alexeev (2006) confirmed that the GLCM can be 
used to describe the continuity of post-stack sections 
and different reflection patterns. Gao (2003) extended 
the GLCM to three dimensions post-stack data for 
extracting texture in a greater number of directions, 
and this assisted in visualizing and detecting major 
structural and stratigraphic features. In addition, because 
of the superiority of texture, de Matos et al. (2011) used 
various textural properties to analyze seismic facies and 
describe channels. 

In this paper, we propose the use of the GLCM to 
extract texture attributes from pre-stack seismic data. 
In this respect, pre-stack textures have two advantages. 
First, both pre- and post-stack textures can be used to 
analyze waveform changes between different points. 
However, when a medium is inhomogeneous or has AVO 
characteristics, the stacking process distorts the final 
stacking wavelet and misses certain information because 
of the amplitude variance of traces from a common 
reflection bin. Pre-stack textures that represent lateral 
changes in the same azimuth or offset can fi nely describe 
the trace amplitude changes among different reflection 
points. Second, pre-stack textures can describe features 
of variation in traces from a common reflection bin. 
For CMP gathers, pre-stack textures represent the AVO 
characteristics of a reservoir. For wide azimuth gathers, 
pre-stack texture can be used to research anisotropic 
characteristics and heterogeneity of a medium.

Pre-stack texture attributes are a combination of 
the pre-stack wave shape, amplitude, continuity, and 
reservoir characteristics, and they describe the refl ection 
characteristics of pre-stack seismic data. We can find 
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different pre-stack reflection patterns by classifying 
pre-stack texture attributes that are closely related to 
a seismic facies. A pre-stack reflection pattern based 
on a seismic facies can reduce the multi-solution of 
explanation, which is beneficial to complex reservoir 
analysis, and can ultimately assist in the analysis of 
a sedimentary environment. Therefore, in this paper 
we propose a seismic facies analysis method based on 
seismic data using a combination of multi-directional 
pre-stack texture attributes and a SOM clustering 
algorithm. In this respect, we fi rst describe the method 
used to extract the pre-stack texture attributes and then 
illustrate the signifi cance of the pre-stack texture using 
synthetic trace gathers. We then present the procedure 
involved in seismic facies analysis using pre-stack 
texture. In the fi nal section, an analysis of real seismic 
data is presented.

Method used to extract pre-stack 
texture attributes

The workfl ow for pre-stack texture attribute extraction 
is shown in Figure 1. For each reflection point, we 
first extract the texture element using the neighboring 
reflection waveforms and the current waveform within 
a time window. The GLCM can then be built based 
on the texture element, and the texture attributes are 
then subsequently computed for a refl ection point. The 
texture volume can be fi nally formed after conducting a 
rough analysis of all refl ection points. In the following 

part of this section, we discuss the key parts involved in 
the process of texture attribute extraction.

Extracting texture elements

Pre-stack seismic data

Computing texture attributes

Texture attributes volume

Next point?
Yes

No

Building GLCM

Choosing a reflection point

Fig.1  Workfl ow involved in computing texture 
attributes volume.
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                              (a) Texture elements for post-stack data                                                 (b) Texture element for pre-stack data 
Fig.2 Seismic texture elements.

Texture elements
The traditional seismic texture attribute is evaluated 

in post-stack data by analyzing an array of neighboring 
reflection amplitudes known as the texture element 
(Figure 2a), which is a mini-cube with a volume of 
Nx, Ny, Nz in the inline, crossline, and time directions, 
respectively. Thus, the pre-stack texture element is a 
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four dimensional data cube (Figure 2b). M denotes the 
number of traces from one refl ection point; for example, 
M = 10 for super gathers with 10 offsets and M = 6 for 
wide azimuth gathers with six azimuths. In this paper, 
we propose a novel approach for extracting the texture 
element based on pre-stack seismic data.

The workfl ow involved in texture element extraction 
is shown in Figure 3. Dip is utilized to extract the texture 
element for selecting adjacent refl ection points to reduce 
the infl uence of the stratigraphic structure (Chopra and 
Marfurt, 2007). We use the coordinates (X, Y, and Z) 
to represent the spatial position of the current refl ection 
point, and use (Xi, Yi, Zi) to represent the position of the 
adjacent refl ection points. In addition, the same window 
size is used for all reflection points to truncate traces, 
thus resulting in the pre-stack texture element.

improve the resolution of the texture attribute but are 
sensitive to noise, the appropriate parameters need to be 
chosen according to the actual needs and the signal-to-
noise ratio of the seismic data.

GLCM
The GLCM is a statistical method used to examine 

texture that considers the spatial relationship of pixels 
(Figure 4 shows the process of building the GLCM using 
two dimensions data). The GLCM calculates how often 
pairs of pixel with specific values and in a specified 
spatial relationship occur in the origin data. In the 
GLCM along the x direction, element (1, 1) contains the 
value 3 because there are three instances in the 2D input 
data where two horizontally adjacent pixels have the 
values 1 and 1. However, there are no different values 
along the x direction, which causes the elements of the 
GLCM to lie on a diagonal. In addition, the distribution 
of elements along the y direction is deviated to the 
diagonal.

Reflection point (X, Y, Z)

Nx, Ny

Nz

Neighborhood reflection 
point (Xi, Yi, Zi)

Windowing the pre-stack traces

Next reflection point?

Pre-stack texture element

Yes

No

Dip

Fig.3  Workfl ow involved in extracting pre-stack 
texture element.

Table 1 Parameters for texture elements
Parameters Meaning

Nx = Ny >> Nz Emphasis on lateral variation
Nx = Nz >> Ny Inline section analysis
Ny = Nz >> Nx Crossline section analysis
Nx = Ny << Nz Characterizing waveform shape

By selecting different parameters, Nx, Ny, and Nz, we 
can obtain pre-stack texture elements of differing sizes, 
thereby emphasizing the neighborhood waveform change 
characteristics in different dimensions and implying 
different significances, as shown in Table 1. Typically, 
Nx and Ny range from 3 to 9, and Nz is related to the 
sampling points in a period of the waveform (Gao, 2003; 
Gao, 2007). However, as relatively small parameters 
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Fig.4  GLCMs for 2D data.

We propose that the GLCM can be used to describe 
the amplitude change relations in the pre-stack texture 
element that are represented in features of the pre-
stack seismic data, and that these can be used to infer 
the reflection pattern. It is necessary to normalize the 
seismic data to Ng levels using the maximum absolute 
value in the texture element. The normalized element 
value D(x,y,z,m) is calculated by the following (de 
Matos et al., 2011)

, , ,
, , , 0.5* Ng 1 * 1 1 ,x y z m
x y z m

max

K
D Round

K
 (1)

, , ,, , ,

x y z

max ,

0 N ,0 N ,0 N ,0 M,

max x y z mx y z m
K K

x y z m  (2)

where K(x, y, z, m) is the amplitude at sample location (x, y, z, 
m) in the pre-stack texture elements, and Round () is the 
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function for computing the integral value.
The direction w of GLCM statistics can be represented 

by the vector (Wx, Wy, Wz, Wm) because of the four 
dimensions of the pre-stack texture elements. We defi nite 
the GLCM elements E(i, j) as follows ,

yx zNN N M

, , , , , ,
1 1 1 1

, , .x y z m x y z m w
x y z m

E i j D i D j  (3)

There are four typical statistical directions (1,0,0,0), 
(0,1,0,0), (0,0,1,0), and (0,0,0,1), that describe the 
variation characteristics along the inline, crossline, and 
time, and in the traces from the common refl ection bin. 
To obtain texture attributes that are more robust, we 
defi ne a set, W, for the statistical direction in formula (3) 
by setting Ww . E(i, j) is the number of pairs (i, j) in 
all directions. For example, the value of W can be set as 
{(0,1,0,0), (1,0,0,0), (1,1,0,0), (1,-1,0, 0)} to extract the 
variation between the different refl ection points.

Texture attributes
By converting the statistic value, E(i, j), of the GLCM 

into a probability value, Pij, the texture attributes can be 
computed using the following formula (Gao, 2011),

             
Ng Ng

1 1

, * 1 / , .ij
i j

P E i j E i j  (4)

The commonly used attributes are

          
Ng Ng

2 ,ij
i j

Contrast P i j  (5)

             
Ng Ng

 ,ij
i j

Dissimilarity P i j   (6)

and

             
Ng Ng

2 .
1

ij

i j

P
Homogeneity

i j
 (7)

Texture attributes describe the waveform amplitude 
variation in texture elements.  When amplitude 
variations in the texture elements are large, the elements 
drifting from the diagonal of the GLCM have higher 
values. Thus, contrast and dissimilarity are large and 
homogeneity is small. However, although these three 
attributes describe the change of waveforms their 
relationship is not linear, and thus a variety of texture 
properties are usually required to describe the refl ection 
characteristics of a reservoir.

The meaning of pre-stack texture

We use the GLCM method to extract the texture 
attributes from pre-stack seismic data. Locations with 
large lateral contrast at different refl ection points indicate 
a chaotic reflection structure, whereas small contrast 
shows continuity in the stratigraphy of the location. 
When the contrast is larger in the time direction it 
indicates that the wave impedance of the corresponding 
location is bigger, and that it forms a strong amplitude 
refl ection confi guration. The lateral contrast of amplitude 
in the pre-stack traces from common reflection bins 
refl ects the reservoir characteristics (AVO, anisotropy, or 
medium heterogeneity). Specifically, for wide azimuth 
gathers, high contrast shows that the media has a strong 
anisotropy medium or strong heterogeneity. However, 
for CMP gathers, different contrasts describe diverse 
fl uid properties.

To illustrate that pre-stack texture can carefully 
describe amplitude change between different points, we 
generate wide azimuth gathers and post-stack traces for 
two points. Given that offset factors “A” are related to 
offset, and that modulation factors “B” are associated 
with offset and fracture characteristics, the relationship 
between amplitude and the angle θ between the 
measuring direction and the fracture direction is (Mallick 
et al., 1998):

                   R A Bcos2 .   (8)

Figure 5a shows the reflection coefficient at two 
refl ection points, points A and B, with the same intensity 
of fractures but a different orientation of fracture 
development. Figures 5b and 5c are wide azimuth 
gathers and post-stack traces for two points, respectively. 
The gray level of the co-occurrence matrix is used to 
measure waveform change characteristics between the 
two refl ection points, based on pre- and post-stack data, 
respectively. Figure 5d shows the GLCM from pre-stack 
gathers and Figure 5e shows the GLCM from post-stack 
traces. It is evident that contrast is higher in pre-stack 
and that it is lower in post-stack. The results show that 
the different of two reflection points can be reflected 
by the texture of pre-stack data and can therefore fi nely 
depict the lateral variation characteristics of waveforms.

The lateral contrast of amplitude in the pre-stack traces 
from the common refl ection bin has a different meaning 
for the various trace gathers. Lateral variation reflects 
AVO attributes in CMP gathers and angle gathers, and 
the anisotropic characteristics in wide azimuth gathers 
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with high quality. To illustrate the effectiveness of the 
GLCM in extracting AVO characteristics and anisotropy, 
we utilize the Zoeppritz equation to generate angle 

gathers, and equation (8) to generate wide azimuth 
gathers, which is used for texture extraction from the 
refl ection bin.

Figure 6 shows the synthetic traces of two different 
AVO characteristics and associated GLCMs. The change 
degree of the refl ection coeffi cient with an incident angle 
is different, and its value of “A” is bigger than that of 
“B.” The GLCMs of two pre-stack gathers from two 
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models are signifi cantly different. Compared with model 
B, there is a significant degree of deviation from the 
diagonal of GLCM elements for model A, and it thus has 
high contrast, high otherness, and low homogeneity.
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Figure 7 show the synthetic traces of a wide 
azimuth and its GLCM feature. Model A does not have 
anisotropy, while model B has obvious anisotropic 
characteristics and the reflection coefficient is changed 

with the azimuth. Thus, the GLCM elements of model 
A are on the diagonal and those of model B deviate 
from the diagonal. Model B has higher contrast, higher 
dissimilarity, and lower homogeneity.
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Seismic facies analysis using pre-
stack texture attributes

In the process of seismic facies analysis, the quality 
of classification results depends largely on whether 
the selection of seismic attributes can distinguish 
different reflection patterns. Many textural properties 
can be extracted from pre-stack data to describe pre-
stack seismic waveform characteristics, and as they 
give a rich expression of strata features they can be 
used to effectively distinguish between different pre-
stack reflection patterns. In addition, they can assist 
with analysis of reservoir characteristics in different 
refl ection patterns. The SOM algorithm is widely used in 
seismic facies analysis (Roy et al., 2010; de Matos et al., 
2010; Marroquín et al., 2008). Using a combination of 
multi-directional pre-stack texture and SOM clustering 
techniques, we developed the pre-stack-data-based 
seismic facies analysis method, and the workfl ow of this 
method is show in Figure 8.

In this, we first compute the texture attributes in 
different directions based on pre-stack seismic data. The 
attributes extracted along the horizon of interest are then 
input to the SOM clustering process, which generates 
different pre-stack reflection patterns with features 
reflected in the model vectors. Principle component 
analysis is then used to obtain two main projection 

Computing textures in different directions

Extracting textures along selected horizon

Pre-stack seismic data

SOM training and classifying

SOM color mapping

Normalization

Generating the classification result

Interpretation

Fig.8 Workfl ow of pre-stack-data-based seismic facies 
analysis using pre-stack texture attributes.

vectors. The SOM model vectors are then projected 
into the 2D x-y plane using projection vectors and each 
classification gives a HSV color value according the 
following formula (de Matos et al., 2010),
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      1 0.5 ,
0.5

yHue tan
x

  (9)

        2 2 0.5 0.5 .Sat x y   (10)

After color mapping, each classification has a color 
value and similar colors belong to the same seismic 
pre-stack reflection pattern. Finally, we are able to 
analyze the seismic facies using a combination of the 
classification results, model vectors, well information, 
and related seismic material.

Application to fi eld data

We then apply our method to a real seismic data set 
obtained from the Sichuan Basin in China, to extract the 
texture attributes and perform seismic facies analysis. 
The set acquisition was carried out using a wide azimuth 
measure with a sampling rate of 1 m/s and the dominant 
frequency of the target zone of about 37 Hz. After testing 
a variety of parameters we fi nally decided on the values 

of Nx = Ny = 5, Nz = 27 for computing the texture 
attributes in three direction sets, which generate texture 
attributes between different reflection points where 

{(0,1,0,0), (1,0,0,0), (1,1,0,0), (1, 1,0,0)}w ,  t e x t u r e 
attributes along time direction where {(0,0,1,0)}w ,
and texture attributes in the reflection bin where 

{(0,0,0,1)}w .
Figure 9a shows the contrast attributes of pre-stack 

textures between different reflection bins. To illustrate 
the advantages of pre-stack texture attributes, we use the 
same parameters to extract the contrast attributes from 
the post-stack seismic data, as shown in Figure 9b. The 
comparison of two attribute maps demonstrates that 
improvements can be made using the pre-stack data. Pre-
stack texture attributes have more abundant details in 
area “B” and are more continuous in areas “C” and “D” 
than the post-stack texture attributes. Along the AA’ line, 
there are signifi cant differences between the two results, 
thereby indicating the superiority of pre-stack texture. 
Overall, the pre-stack texture attributes have the ability 
to accurately describe geological phenomenon, and the 
lateral distribution characteristics of the fracture system 
are much clearer.
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Fig.9 Contrast attributes of texture between different refl ection bins.

To verify the reasonability of pre-stack texture, we 
extract the post- and pre-stack data section of different 
azimuths along the AA’ line, as shown in Figures 10 
and 11, respectively. The yellow arrow indicates the 
location where waveforms have obvious variations. The 
lateral change in Figure 10 is consistent with Figure 9a. 
However, the post-stack texture has greater discontinuity 
with a loss of detail due to the effect of waveform stack.

Figure 12a shows the contrast attributes in the 
refl ection bin, which describe the reservoir characteristics 
in the area. From Figure 12a, it is evident that point 

“A” has a higher value than point “B.” Thus, pre-stack 
traces of point “A” have a relatively great variation with 
the azimuth. We can speculate that strong anisotropy 
or strong medium heterogeneity exists at point “A.” 
In contrast, the value at point “B” is lower, thereby 
indicating a uniform medium. The pre-stack traces of 
the two points are shown in Figures 12b and 12c. It is 
evident that there are larger amplitude differences with 
different azimuth at point “A,” which is consistent with 
the inference from pre-stack texture attributes.
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Seismic analysis can thus be achieved by combining 
texture properties and the SOM algorithm, as shown 
in Figure 13a. Figure 13b shows the SOM color code, 

which indicates that there are four major reflection 
patterns in the area. The models are shown in Figure 
13c, and these are analyzed and summarized as follows:

1. Class 1 has low contrast and high homogeneity 
along the time direction, which indicates a low refl ection 
coeffi cient. The contrast in the refl ection bin is moderate. 
Thus, Class 1 has a low amplitude and moderate 
continuous refl ection structure. In addition, the medium 
of Class 1 could be heterogeneous or rich in fractures 
due to the relatively higher contrast in the refl ection bin.

2. Class 2 has a relatively higher contrast along the 
time direction and lower contrast in the reflection bin. 
Thus, Class 2 has a moderate amplitude and continuous 
reflection structure. The medium of Class 2 could be 
uniform due to the low contrast in the refl ection bin.

3. Class 3 has a higher contrast along the time 

Fig.10 Seismic data section of different azimuth along AA’ line.
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Fig.11 Post-stack seismic data section along AA’ line.
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direction and a lower value among the reflection bins. 
Thus, Class 3 has a high amplitude and continuous 
reflection structure. The medium of Class 3 could thus 
be uniform, which is similar to Class 2.

4. Class 4 is similar to Class 1 in terms of the 
reflection coefficient, but it has a higher contrast 
between different refl ection bins. Thus, Class 4 has a low 

amplitude and a discontinuous refl ection structure. The 
medium of Class 4 could be heterogeneous or contain 
fractures of a lower degree than Class 1.

A further and more accurate interpretation of the 
sedimentary environment and reservoir characteristics 
can be made using well information and related 
material.
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Fig.12 Texture attributes in refl ection bin.
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Fig.13 Texture classifi cation results and model vector.

Conclusions

This paper proposes a method for extracting pre-
stack seismic texture attributes based on pre-stack 
seismic data, which can then be used for seismic facies 
analysis when combined using a clustering algorithm. 
Compared with traditional texture attributes, pre-stack 
texture attributes have the ability to describe more subtle 

lateral changes and can be used for reservoir characters 
analysis. The pre-stack-texture-based seismic facies 
analysis technique synthetically utilizes the amplitude 
variation features between different reflection points 
in pre-stack trace gathers obtained from a common 
reflection bin and in the time direction. It can also 
reveal different pre-stack refl ection patterns and assist in 
locating complex or fractured reservoirs; it therefore has 
considerable research value.
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