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Abstract: Traditional two-dimensional (2D) complex resistivity forward modeling is 
based on Poisson’s equation but spectral induced polarization (SIP) data are the coprod-
ucts of the induced polarization (IP) and the electromagnetic induction (EMI) effects. 
This is especially true under high frequencies, where the EMI effect can exceed the IP 
effect. 2D inversion that only considers the IP effect reduces the reliability of the inver-
sion data. In this paper, we derive differential equations using Maxwell’s equations. With 
the introduction of the Cole–Cole model, we use the fi nite-element method to conduct 
2D SIP forward modeling that considers the EMI and IP effects simultaneously. The 
data-space Occam method, in which different constraints to the model smoothness and 
parametric boundaries are introduced, is then used to simultaneously obtain the four 
parameters of the Cole–Cole model using multi-array electric fi eld data. This approach 
not only improves the stability of the inversion but also signifi cantly reduces the solution 
ambiguity. To improve the computational effi ciency, message passing interface program-
ming was used to accelerate the 2D SIP forward modeling and inversion. Synthetic da-
tasets were tested using both serial and parallel algorithms, and the tests suggest that the 
proposed parallel algorithm is robust and effi cient.
Keywords: Spectral induced polarization, 2D inversion, data-space method, Cole–Cole 
model, MPI parallel computation

Introduction

The spectral induced polarization (SIP) method, 
also called the complex resistivity method, is an 

induced polarization (IP) method that is based on the 
frequency spectrum or the time spectrum, difference 
in rock resistivity, and is used to investigate geological 
anomalies by measuring the apparent complex resistivity 
spectrum or the time-varying resistivity spectrum. 
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Based on the spectral parameters and the evaluation 
of electrical abnormalities in rocks, geological 
problems can be solved (Yang, 2011). Compared with 
other geophysical methods, the SIP method uses the 
rock electrochemistry to obtain multiple subsurface 
parameters simultaneously. Through the comparison 
and interpretation of these parameters, large amounts 
of geoelectrical data are produced. Presently, the SIP 
method is used in mining exploration (Shin et al., 2015), 
hydrogeology (Revil et al., 2012; Attwa and Günther, 
2013), environmental monitoring (Kemna et al., 2000), 
and monitoring the organic pollution in rocks and soils 
(Schwartz and Furman, 2012).

Loke et al. (2006) used the Poisson equation to carry 
out forward modeling without considering the EMI 
effect. They used a nonhomogeneous initial model, 
which is obtained from an approximate inversion, to 
successfully invert a 2D SIP synthetic dataset. Presently, 
the forward modeling and inversion of the SIP method, 
which is based on Maxwell’s equations, are actively 
researched in applied geophysics. Xu (2007) performed 
2D SIP forward modeling using the finite-element 
method and used the damped least squares method to 
perform the inversion . Zhao (2009) used the damped 
least squares method to perform 2D SIP inversion in the 
presence of topography. Fan et al. (2012) added Occam’
s algorithm as a model constraint to the least squares 
objective function in 2.5D SIP inversion.

The finite-element method (FEM) is well suited for 
handling complex boundaries and geometries (Avdeev, 
2005), and satisfies the requirements for accuracy and 
speed in 2D SIP forward modeling. In the inversion, the 
damped least squares method only considers data fi tting 
and does not constrain the model. In this study, we apply 
the data-space Occam (DASOCC) inversion method 
(Siripunvaraporn et al., 2000) to 2D SIP inversion. The 
approach is a variant of the Occam inversion method 
(Constable et al., 1987) and uses the principle of fi tting 
observations by the smoothest model. The Lagrange 
multiplier λ is obtained using this inversion method, 
requiring only a small number of iterations to converge. 
In this study, we invert the four parameters of the Cole
–Cole model simultaneously. The model parameters 
(M) outnumber the observed data points (N), leading 
to serious undetermined problems. Thus, we adopt 
the strategy of using different constraints to enhance 
model smoothness and to limit parametric boundaries to 
signifi cantly reduce ambiguity and improve the stability 
of the inversion. After using a serial algorithm, we 
introduce the message passing interface (MPI) (Pacheco, 
2011) to conduct forward modeling and inversion based 

on the SIP method. The results and efficiency are then 
tested against the simulated data.

Forward modeling

The classical approach to CR forward modeling uses 
the complex resistivity defi ned by the Cole–Cole model 
(Pelton et al., 1978) to replace the ground resistivity. 
Experimental studies (Pelton et al., 1978) have shown 
that the complex resistivity spectrum of the uniform 
dielectric can be represented by the Cole–Cole model

     0
11 1 ,

1 ci m
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  (1)

where ρ(iω) is the complex resistivity; ρ0 is the DC 
resistivity and ranges from 10-4 Ω·m to 106 Ω·m; c is 
the relaxation constant and is between 0.1 and 0.6, and 
denotes the particle-distribution pattern; τ is the time 
constant with range from 10-3 s to 5 × 10-3 s and denotes 
the average size distribution of the IP targets; m is the 
chargeability, it is between 0.1 to 0.98, and denotes the 
IP effect (Fan, 2013; Routh et al., 1998). The resistivity 
referred to below is the complex resistivity of equation (1).

2D FEM modeling
The 2D earth model considered in this study is shown 

in Figure 1. The strike is the y-direction. The resistivity 
is constant in the y-direction and only varies in the xz-
plane. 
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Fig.1 Two-dimensional geoelectrical model.

Assuming the time dependence is eiwt and neglecting 
the effect of the displacement current, we can use 
Maxwell’s equations to obtain the secondary electric fi eld

                 0 ,s siE H  (2)
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             ,ps s
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where E is the electric field and H is the magnetic 
field, and superscripts p and s denote the primary and 
secondary field, respectively, 1i , =2 f  is the 
angular frequency, μ0 is the magnetic permeability in free 
space, σ is the complex conductivity, and the anomalous 
complex conductivity is σa = σ – σ0.

Using the Fourier transform, equations (2) and (3) can 
be transformed with respect to the strike direction, and 
the data can be analyzed in the wavenumber domain (x, 
ky, z). The application of the FEM (Zienkiewicz, 1977) 
to the above equations produces the following equations 
(Mitsuhata, 2000)
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where “^” denotes the quantity in the wavenumber 
domain, Ne is the number of subdivided rectangular 
finite elements, Ni

e is the interpolation function of the 
ith node in the eth element, 2 2 2

e yk k k  and 2 ˆˆk zy,
the  impedivi ty  ẑ i ,  the  admit t iv i ty  ŷ ,
the wavenumber along strike is ky, ˆ p

xE , ˆ p
yE , and ˆ p

zE
correspond to the primary electric field components in 
the x-, y-, and z-directions in the wavenumber domain, 
and ˆ s

yE  and ˆ s
yH  correspond to the secondary electric and 

magnetic field parameters along strike (y-axis) in the 
wavenumber domain.

To solve equations (4) and (5), we need to obtain the 
primary electric field of the underground grid nodes 
in the wavenumber domain. Based on electromagnetic 
theory (Nabighian, 1988), we derive the equation for 
the electric fi eld component generated by the horizontal 
electrical dipole in the x-direction as follows: 
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where
 

2 2
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1 0( ),x yu k k i

and σair is the conductivity of air.
In equation for the secondary electric fi eld along the 

x-axis, ˆ s
xE  in the wavenumber domain (Li and Key, 

2007) is 
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ˆ s
xE  is added to ˆ p

xE  to obtain the total electric field 
ˆ

xE . Then, Ex can be obtained by the inverse Fourier 
transformation of ˆ

xE  and the forward modeling is 
complete.

Validation of the 2D program
To validate the 2D SIP forward modeling algorithm, 

we designed a 2D model, as shown in Figure 2. The 
horizontal electric dipole source is at the origin (x = y 
= z = 0) and its dipole moment is 1 A·m. There are 25 
receivers from x = 0 m to x =1000 m. The horizontal 
electric field is calculated at frequencies of 32 Hz and 
128 Hz.
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Fig.2 The 2D model.

We use the 2.5D CSEM program of Key and Ovall 
(2011) and our finite element program to calculate the 
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forward response and obtain the horizontal electric fi eld 
Ex, respectively. The 2D model has eleven air layers and 
is divided into 113 × 64 discrete blocks in the xz-plane. 
The background resistivity is 100 Ω·m. The results for 

the total electric field calculated with both programs 
are shown in Figure 3. The results are almost identical, 
which indicates that the 2D program is correct.

Fig.3 The Ex response comparison between the 2D fi nite element modeling results and the results generated from 2.5DCSEM.
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Inversion

Data-space method
The data-space Occam method was successfully 

applied to 2D and 3D magnetotelluric (MT) inversion 
(Siripunvaraporn and Egbert, 2000; Siripunvaraporn et 
al., 2005). The method transforms the calculation and 
storage of model space (M × M) to the calculation and 
storage of the model data space (N × N). Generally, 
the fact that the number of data points (N) is less 
than the number of models reduces the dimensions 
of the system equations and requirements. The data-
space Occam method follows Occam’s principle and 
finds the smoothest model to fit the observed data. 
Mathematically, this can be transformed to find the 
minimum of the unconstrained function U (m, λ)

1
0 0

1 1 2

,

       ,

U

X

T
m

T
d

m

m m C m m

d F m C d F m  (8)

where m = [m1, m2, …, m4M] is the vector of the model, 
m0 is the prior model, Cm is the model covariance matrix, 
Cd is the data covariance matrix, d = [d1, d2, …, dN] is the 
vector of the observed data, F(m) is the model response, 
λ is the Lagrange multiplier, X*

2 is the desired level of 
misfi t, and subscript T denotes the matrix transposition.

It is not straightforward to find the stationary points 
of U because it is a function of m and λ. In Occam’s 
method, the minimum of λ is sought automatically and 
for a given λ, equation (8) is transformed to the objective 
function Wλ(m)
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Inversion is a nonlinear problem and we need to 
transform this nonlinearity by linearizing F(m) as a 
Taylor series expansion
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where 
kmk F mJ  is the N × 4M sensitivity matrix 
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calculated at mk. We substitute equation (10) into (9) and 
we obtain

1

1
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The problem then becomes finding the minimum 
of equation (11), which is a quadratic function of m. 
Differentiating equation (11) with respect to the model 
parameter m and setting it to zero, we obtain iteratively 
approximate solutions in the model domain

       1 1 1
01 ,[ ]k k k k

m T
m dC J Cm m  (12)

where 0[ ]k k k kd F m J m m , and 1
k k k
m T

dJ C J  
is a 4M × 4M positive semidefinite symmetric matrix. 
The inversion results are obtained by iteratively solving 
equation (12).

After transforming equation (12), we obtain the 
iterative approximate solutions in the data-space domain

 
          1

01 ,[ ]k k k km d
T nC J Cm m  (13)

where n
k k k

T
mJ C J  is a 4N × 4N positive semidefi nite 

symmetric matrix.
In the SIP data-space Occam’s inversion method, the 

Lagrange multiplier is a vector of different values for 
the different parameters of the Cole–Cole model. Routh 
et al. (1998) used the relative difference in the model 
roughness vectors, chargeability, relaxation constant, and 
time constant to derive the relative weight of the three 
parameters. Loke et al. (2006) adopted the chargeability 
sensitivity matrix norm, the relaxation constant 
sensitivity matrix norm, and the time constant sensitivity 
matrix norm as weights for the DC resistivity sensitivity 
matrix norm. In this study, we use a slightly different 
method in which the weights of the DC resistivity 
sensitivity matrix 2-norm are the chargeability sensitivity 
matrix 2-norm, the relaxation constant sensitivity matrix 
2-norm, and the time constant sensitivity matrix 2-norm 
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where λρ0, λm, λc, and λτ are the Lagrange multipliers 
for the DC resistivity, the chargeability, the relaxation 
constant, and the time constant, respectively, and Jkρ0, 
Jkm, Jkc, and Jkτ are the sensitivity matrices for the DC 
resistivity, the chargeability, the relaxation constant, and 
the time constant.

Using equations (12) and (13), we solve the equation 
with 4M × 4M dimensions in the model space, whereas 
in the data space we solve the equation in the N × N 
dimensions. In general, the number of observed data 
points N is less than that of the models 4M. Thus the 
data-space inversion requires less calculations, time, and 
memory than the model-space inversion. Moreover, we 
calculate the inverse of the model covariance matrix Cm

–1 
in model space. Generally, it is not practical to calculate 
the inverse of the full 4M × 4M model covariance 
matrix. However, there is no calculation of Cm

–1 in the 
data-space Occam algorithm. In this study, we adopt the 
method of Egbert et al. (1994) to rapidly calculate Cm.

Sensitivity calculation
Adjoint equation method

The adjoint equation method is an effective method 
to calculate the sensitivity matrix in 2D electromagnetic 
inversion. McGillivray et al. (1994) introduced the 
adjoint equation method to the frequency-domain EM 
problem with good results. Owing to the fact that we 
use the horizontal electric field Ex, as the observed 
data in the inversion, the sensitivity matrix equation 
for electromagnetism can be obtained using the adjoint 
equation proposed by McGillivray et al. (1994)

j

( ) ,s s jD D
j

dv dvH EM J E E x  (17)

where sM  and sJ  are the magnetic and electric sources, 
respectively, E+ is the auxiliary electric field, E is the 
electric field, k x  is the chosen basis function, D is 
the fi nite space domain, and v is the volume element.

The partial derivative of the electric or magnetic fi eld 
with respect to conductivity is derived by choosing 
different adjoint sources. For example, to obtain jE  
at location x0, we select the electric source in the 
x-direction, where 0 ˆ( )s xJ x x , and the magnetic 
source 0sM . Then, equation (17) becomes
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        0 ,x
jD

j

E
d

x
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where ∂Ex (x0)/∂σj is the partial derivative of the electric 
fi eld Ex with respect to σj at the observation location x0.

To calculate ∂Ex (x0)/∂σj, the electric fi eld E, comprised 
the grid points generated by the original source in the 
forward modeling, should be determined. The electric 
field E+, comprised the grid points generated by the 
adjoint source in the forward modeling, should then be 
calculated. After E and E+ are determined, ∂Ex (x0)/∂σj 
can be calculated using equation (18).

Sensitivity matrix derivation and calculation 
We fi rst calculate x jE  in the wavenumber domain 

and subsequently use the inverse Fourier transformation 
to obtain x jE  in the space domain. The electric fi eld 
component of the underground grid points is calculated 
in the wavenumber domain. The equation for the 
sensitivity matrix is derived in the wavenumber domain.

In the two-dimensional problem, conductivity is 
constant along strike (y). Equation (18) then transforms to

            .
j

x
A

j
dsdyE E

E
 (19)

The electric field E in the frequency domain can be 
obtained using the inverse Fourier transformation of Ê
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Similarly, the adjoint electric fi eld can be represented as
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Substituting equations (20) and (21) into equation (19)
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Using the Dirac delta function
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Equation (19) transforms
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Utilizing the sifting property of the Dirac delta 
function:
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Then, equation (25) becomes

           1 ( , ) .
2

x
y y y

j

k k dkE
A  (27)

For a horizontal electric dipole, ˆ
xE , ˆ

yE , and ˆ
zE  are 

the electric fi eld components in the wavenumber domain 
generated by the original source, and ˆ

xE , ˆ
yE , and ˆ

zE  are 
the electric fi eld components in the wavenumber domain 
generated by the adjoint source. From equation (6), it 
can be seen that ˆ

xE , ˆ
xE , ˆ

zE , and ˆ
zE  are even functions 

of ky, whereas ˆ
yE  and ˆ

yE  are odd functions of ky. Then, 
according to the parity of the electric fi eld components, 
we obtain the sensitivity matrix equation

0

1 ˆ ˆ ˆ ˆ ˆ ˆ( ) .
j

x
x x y y z z yA

j

dsdkE
E E E E E E  (28)

Constraining the model parameters
The inversion of the four parameters of the Cole–Cole 

model increases the nonuniqueness of the inversion; 
thus, the problem is constraining the model parameters. 
The introduction of model parameter constraints reduces 
the nonuniqueness and avoids estimating nonphysical 
parameters in the inversion. We use a simple constraint 
(Kim et al., 1999; Commer and Newman, 2008) to 
constrain the Cole–Cole model parameters. We defi ne a 
new vector x, as the vector of the inversion solution that 
is related to the model parameter m as follows:

exp
; ,

1 exp
j j j

j j
j

a b x
m x

x
 (29)

log log ; ,j j j j j j j jx m a b m a m b  (30)
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j j
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where aj and bj is the minimum and maximum of 
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the jth model parameter respectively, mj is the jth 
model parameter, xj is the jth model parameter after 
transformation, and exp is the natural exponential 
function. 

The partial derivative of the electric fi eld component 
Ex with respect to the constraint parameter vector x can 
be obtained using the sensitivity matrix

       
2

1 ,j jx

j j jj

x

j

m
x m x
E E  (32)

where ρj is the complex resistivity of the jth element, and 
σj is the complex conductivity of the jth element.

We use synthetic multi-array electric fi eld data in the 
inversion and we examine the difference between multi- 
and single-array electric data as a function of the number 
of observations and dimension size off the sensitivity 
matrix. 

MPI parallel programming

2D SIP inversion is time consuming, as it includes 
the calculation of the primary electric fi eld generated by 
the adjoint source in the wavenumber domain, forward 
modeling, and the sensitivity matrix calculation. It 
is therefore sensible to apply parallel algorithms to 
calculate these parameters. More, after analyzing the 
serial algorithm, it was found that the primary electric 
field, and the sensitivity matrix and forward modeling 
represent different transmitting sources and are 
independent of each other.

In MPI parallel programming, there is the equal 
pattern and the principal-subordinate pattern design. 
We adopt the principal-subordinate pattern, which 
consists of the main process and the subroutine 
process. The main process maintains the global data 
structure, the distribution of the parameter information, 
the assignment of tasks, sending the parameters, 
assembling the calculated results from other processes, 
and outputting the final result. The subroutine process 
accepts the parameters from the main process, executes 
the calculation of the assigned tasks from the main 
process, and sends the results to the main process. The 
parallel computation framework is shown in Figure 
4. Its basic principles are the initialization of the 
parallel environment, and the reading of the parameter 
information from the main process and their distribution 
to the other processes. According to the assigned tasks, 
the main and subroutine processes calculate the model 

responses independently and simultaneously. When all 
the calculations are complete, the subroutine processes 
send the calculated results to the main process, and 
the main process assembles and outputs the received 
results. In the end, the main process fi nalizes the parallel 
environment. 

The 2D parallel inversion algorithm

To test the accuracy and effectiveness of the 2D 
parallel forward modeling and inversion algorithm, we 
designed a simulation model, using a synthetic dataset. 
The calculations were performed on a high-performance 
computer with Linux operation system, Intel (R) Xeon 
(R) CPU E5-2620 v2 @ 2.1 GHz, and 128 GB of 
memory.

Synthetic dataset
In the inversion, we use multi-array electric fi eld data 

to recover the four parameters of the Cole–Cole model. 
The setup is dipole–dipole. The transmitting source 
has finite length and is located in the x-direction. The 
length of the transmitting source is 1 m, and the current 
is 1 A. The length of the dipole receiver is 50 m. The 
five frequencies of choice are 0.1 Hz, 1.0 Hz, 8.0 Hz, 
32.0 Hz, and 128.0 Hz. We used 21 transmitters 100 m 
apart and 40 receivers 50 m apart from X = –1000 m 
to X = 1000, with the exception of the location of the 
transmitting source. The confi guration of the SIP survey 
is shown in Figure 5.

Figure 6 shows a 200 m long and 100 m thick 
anomaly. The top of the geological anomaly is 100 m 
beneath the surface. The center of the anomaly is at the 
origin (x = y = z = 0). The Cole–Cole model parameters 
of the anomalous body are DC resistivity ρ0 = 100 Ω·m, 
chargeability m = 0.5, relaxation constant c = 0.5, and 
time constant τ = 30 s. The resistivity of the surrounding 
rock is 100 Ω·m. To simulate the field data, we added 
1% noise to the forward modeling data. The initial 
inversion model is the uniform polarization half-space, 
with DC resistivity ρ0 = 100 Ω·m, chargeability m = 0.01, 
relaxation constant c = 0.2, and time constant τ = 10 s. 
The inversion region is divided into 40 × 53 discrete 
elements. The misfi t threshold in the inversion is 1.0.

We carry out the inversion and calculate the root mean 
square (RMS) as a function of the number of iterations 
(Figure 7). The initial RMS value is 31.2 and after three 
iterations the RMS decreases. When fi tting the observed 
data, it is important to search for the smoothest model. 
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Fig.4 Flow chart of parallel inversion in data space.
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The inversion results for the four parameters of the 
Cole–Cole model are shown in Figures 8, 9, 10, and 
11, respectively. The DC resistivity, chargeability, and 

relaxation constant are well represented, and the location 
and geometry of the anomaly are clearly observed and 
are very close to the true values. However, the time 
constant, as shown in Figure 11, is poorly correlated with 
the true values. This is because the time constant is less 
sensitive than the other parameters (Loke et al., 2006). 
Owing to the multi-array electric fi eld data participating 
in the inversion, the electric field data fitting curve of 
the two different transmitter sources corresponding to 
different receivers is shown in Figure 12. Circles “o” 
represent the observed data, stars “*” denote the model 
response generated from the sixth inversion iteration, 
Tx denotes the location of the transmitter source, and Fig.7 The RMS misfi t for the inversion.
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Fig.8 Inversion result of DC resistivity.

Fig.9 Inversion result of chargeability.
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Rx denotes the location of the receiver. We can see that 
the results are almost identical and the relative errors are 

Parallel algorithm effi ciency
The parallel inversion is based on the MPI library 

and the DASOCC is used to invert the Cole–Cole 
model parameters; thus, the inversion is computer 
memory intensive. For example, it requires about 4 
GB for five frequencies, 21 transmitter sources, and 
40 receivers for each transmitter, and a model of 121 
× 64 discrete blocks. Therefore, the program can be 
executed on a small workstation. To test the efficiency 
of the 2D parallel algorithm, we first invert the model 

and record the overall time. Different processes are then 
adopted to calculate the model and evaluate the effect 
of parallel algorithm on the speedup ratio and parallel 
efficiency. The speedup ratio equals the runtime of the 
serial algorithm divided by the runtime of the parallel 
algorithm. The parallel efficiency equals the speedup 
ratio divided by the number of processors that participate 
in the parallel algorithm. The runtimes of the serial and 
parallel inversion algorithms for the 2D model are given 
in Table 1.
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Table 1 Statistical runtime of serial and parallel inversions for a 2D model

Running mode Number of 
processes

Number of sources 
in each process

2D grid 
size

Runtimes 
(h)

Speed-up 
ratio

Parallel 
effi ciency

Serial algorithm 1 21 121×64 121.29 none none

Parallel algorithm

2 11,10 121×64 71.34 1.70 85%
3 7,7,7 121×64 49.93 2.43 81%
4 6,5,5,5 121×64 45.28 2.68 67%
7 3,3,3,3,3,3,3 121×64 30.05 4.04 57.7%

polarization measurements for environmental purposes 
and predicting the hydraulic conductivity in sandy 
aquifers: Hydrology and Earth System Sciences 
Discussions, 10(4), 5315–5354.

Avdeev, D. B., 2005, Three-dimensional electromagnetic 
modelling and inversion from theory to application: 
Surveys in Geophysics, 26(6), 767–799.

Commer, M., and Newman, G. A., 2008, New advances 
in three-dimensional controlled-source electromagnetic 
inversion: Geophysical Journal International, 172(2), 513
–535.

Constable, C. S., Parker, R. L., and Constable, C. G., 1987, 
Occam’s inversion: A practical algorithm for generating 
a smooth models from electromagnetic sounding data: 
Geophysics, 52(3), 289–300.

Egbert, G. D., Bennett, A. F., and Foreman, M. G.G., 
1994, TOPEX/POSEIDON tides estimated using a 
global inverse model: Journal of Geophysical Research, 
99(c12), 24821–24852.

Fan, C. S., Li, T. L., and Yan, J. Y., 2012, Research and 
application experiment on 2.5D SIP inversion: Chinese 
Journal of Geophysics (in Chinese), 55(12), 4044–4050.

Fan, C. S., 2013, Research on complex resistivity forward 
and inversion with finite element method and its 
application: PhD Thesis, Jilin University.

Kemna, A., Binley, A., Ramirez, A., and Daily, W., 2000, 
Complex resistivity tomography for environmental 
applications: Chemical Engineering Journal, 77(1), 11–
18.

Key, K., and Ovall, J., 2011, A parallel goal-oriented 
adaptive fi nite element method for 2.5-D electromagnetic 
modelling: Geophysical Journal International, 186(1), 
137–154.

Kim, H. J., Song, Y., and Lee, K. H., 1999, Inequality 
constraint in least-squares inversion of geophysical data: 
Earth Planets Space, 51, 255–259.

Li, Y. G., and Key, K., 2007, 2D marine controlled-source 
electromagnetic modeling: Part 1 – An adaptive finite-
element algorithm: Geophysics, 72(2), WA51–WA62.

Loke, M. H., Chambers J. E., and Ogilvy., R. D., 2006, 
Inversion of 2D spectral induced polarization imaging 
data: Geophysical Prospecting, 54(3), 287–301.

As it can be seen from Table 1, the speedup ratio 
gradually increases with increasing processes. The use of 
MPI increases the computation effi ciency and decreases 
the time required to carry out the inversion. However, as 
the number of processes increases, the parallel effi ciency 
gradually decreases. This is because the communication 
between processes is time consuming and, as the number 
of processes increases, the communication time between 
processes increases. In general, the parallel program 
significantly improves the computation efficiency of 
serial algorithms and greatly reduces the time it takes to 
carry out the inversion.

Conclusions 

We used FEM to perform 2D SIP forward modeling 
and then the data-space Occam method to perform 2D 
SIP inversion. A multi-array electric field dataset Ex 
is used to invert the four parameters (DC resistivity, 
chargeability, relaxation constant, and time constant) 
of the Cole–Cole model simultaneously. The use of 
parametric boundary constraints during inversion reduces 
the nonuniqueness of the inversion, and the weight of the 
Lagrange multiplier of each parameter generated from 
the ratio between each parameter's sensitivity matrix 
makes the inversion more stable. We use a synthetic 
dataset to test the validity and stability of the inversion 
algorithm. To improve the calculation effi ciency of the 
inversion algorithm, we use the MPI library to perform 
the inversion, using different transmitting sources after 
thoroughly analyzing the serial algorithm. The parallel 
algorithm and the synthetic dataset were assessed using 
different numbers of processes. The comparison of the 
results of the parallel and serial algorithms suggests that 
the parallel algorithm is realistic, stable, and effi cient.
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