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Abstract: Local fl uid fl ow (LFF) at the mesoscopic scale is the main dissipation mechanism 
of seismic waves in heterogeneous porous media within the seismic frequency band. LFF 
is easily influenced by the structure and boundary conditions of the porous media, which 
leads to different behaviors of the peak frequency of attenuation. The associated transition 
frequency can provide detailed information about the trend of LFF; therefore, research on the 
transition frequency of LFF and its relationship with the peak frequency of the corresponding 
attenuation (i.e., inverse of quality factor) facilitates the detailed understanding of the effect 
of inner structures and boundary conditions in porous media. In this study, we fi rstly obtain 
the transition frequency of fluid flux based on Biot’s theory of poroelasticity and the fast 
Fourier transform algorithm in a sample containing one repeating unit cell (RUC). We then 
analyze changes of these two frequencies in porous media with different porous properties. 
Finally, we extend our analysis to the infl uence of the undrained boundary condition on the 
transition frequency and peak frequency in porous media with multiple RUCs. This setup 
can facilitate the understanding of the effect from the undrained boundary condition. Results 
demonstrate that these two frequencies have the same trend at low water saturation, but 
amplitude variations differ between the frequencies as the amount of saturation increases. 
However, for cases of high water saturation, both the trend and the amplitude variation of 
these two frequencies fi t well with each other.
Keywords: Local fl uid fl ow, peak frequency, transition frequency, saturation, boundary condition

Introduction

When a fast P-wave travels across a heterogeneous 
porous medium containing inhomogeneities, the passing 
seismic wave induces a fl uid pressure gradient between 
regions with different compliances. The resulting 
pressure gradients induce fluid flow; thus, part of the 
energy involved in the wave propagation is lost (Deng 

et al., 2012; Kudarova et al., 2013; Tisato and Quintal, 
2013). This mechanism is referred as local fluid flow 
(LFF), and it is the major cause of attenuation and 
velocity dispersion at seismic frequencies in porous 
media at the mesoscopic scale (Guerriero et al., 2013; 
Quintal, 2012; Quintal et al., 2011; Rubino et al., 2014). 
As a result, accurate modeling of LFF at interfaces can 
facilitate the resolution of seismic data (Wang, 2011).

LFF in porous media has been studied extensively, 
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and such studies can generally be categorized as either 
analytical or numerical solutions in their characterization 
of LFF. For example, White and co-authors (White, 
1975; White et al., 1975) fi rst considered the attenuation 
and velocity dispersion caused by fluid flow in a 
poroelastic medium composed of two periodically 
alternating layers (patchy model). Ba et al. (2011) then 
derived a wave equation for dual-porosity media that 
clearly describes the attenuation and velocity dispersion 
in porous media; this can be considered to be compatible 
with the above-mentioned theory. Subsequently, Ba 
(2013) summarized and reviewed the effect of LFF 
in unsaturated-rock on seismic attributes, and the 
associated analytical solution is suitable for use in a 
simple pore medium model. The latter study is focused 
on the numerical solutions for characterizing the LFF,  
which is creep test (Masson et al., 2006; Quintal et al., 
2011), oscillatory test (Rubino et al., 2009), and the 
use of poro-mechanism numerical modeling (Vogelaar 
and Smeulders, 2007). These methods can be used for 
more complex porous media, and both analytical and 
numerical solutions are mainly generated using an 
extension of Biot’s equation of poroelasticity.

A viscoelastic model is commonly used to describe 
the behavior of anelastic effects. Examples of this are 
the Zener model (Zener and Siegel, 1949; Picotti et al., 
2010; Quintal et al., 2011) and the standard linear solid 
model (Carcione and Picotti, 2006), where viscoelastic 
material properties are usually quantified in terms of 
their relaxation time, or spectrum of relaxation times. In 
this respect, it is essential to understand the transition 
frequency when predicting the way in which seismic 
velocities change in heavy oil reservoirs (Mavko, 2013). 
Usually, physical parameters (i.e., phase velocity and 
fl uid fl ux) in relation to frequency dispersion have low- 
and high-frequency limits, and the transition frequency 
lies in the transitional zone between these two limits (Ba, 
2013), thereby separating them. Thus, this frequency 
corresponds to the maximum absolute value of first 
derivate of the fl uid fl ux versus frequency.

As the diffusion length becomes equal to the scale 
of the heterogeneities, attenuation caused by the LFF 
reaches a peak value. The frequency corresponding to 
this peak attenuation is known as the peak frequency 
(Müller et al., 2010; Rubino et al., 2013), and this 
explicitly provides information about the scale of 
heterogeneity and the properties of rocks. Most authors 
give expressions of peak frequency; for example, 
White and co-authors (White, 1975; White et al., 1975) 
proposed the patchy model and provided peak frequency 
based on this model, and Gelinsky et al. (1998) studied 

the effective bulk modulus based on the 1-dimensional 
poroelastic medium and obtained the corresponding peak 
frequency according to the effective bulk modulus. 

LFF is easily influenced by other factors, and thus 
the frequency-dependency of attenuation may behave 
differently in accordance with these. Rubino et al. 
(2009) believed that differences in the distribution 
of fluid within a patchy reservoir leads to a different 
peak value and peak frequency of attenuation using 
the same average saturation. This is because a different 
distribution of the patchy reservoir change the behavior 
of the LFF, which may cause errors when obtaining the 
value of attenuation and peak frequency of attenuation, 
and will, in turn, have a negative influence on the 
estimation of saturation. In this respect, Quintal et al. 
(2012) selected only the core area (which occupies 
only 1/25 of the total area of the sample) to obtain the 
value of attenuation; they did so because the undrained 
boundary may affect the behavior of the LFF close 
to the boundary. To achieve this, it is necessary to 
discard the part of the model affected by the undrained 
boundary, and doing so involves an excessive use of 
computation resources. However, the resulting gain in 
the understanding of the distribution of the LFF will 
ultimately facilitate the understanding of the influence 
of the inner structure on the physical parameters (i.e., 
atteuation) and the influence range of the boundary 
thereby saving computation resources.

Aki and Richards (1980) proposed another defi nition 
for the quality factor that is based on the concept of 
energy loss and which can obtain the trend of the inverse 
quality factor versus frequency at a local scale, as well 
as the peak frequency at peak attenuation. Solazzi et 
al. (2014) used this approach to estimate the seismic 
attenuation distribution due to LFF, and it is considered 
that this method could inspire the construction of 
attenuation models for complex arrangements of 
heterogeneities. In addition, Deng et al. (2012) adopted 
solid velocity, pore pressure, and other parameters to 
describe changes in LFF, although such parameters 
can only describe the behavior of LFF at a series of 
frequencies and cannot reflect the trend of LFF under 
different porous parameters as well as boundary 
conditions. As a result, there are no parameters that 
can be used to accurately demonstrate LFF distribution 
and changes of fluid flux, and knowledge of these is 
critical for understanding the infl uence of the boundary 
condition on seismic attenuation and velocity dispersion. 

In this study, we attempt to obtain the transition 
frequency of LFF, the values of which are derived from 
fluid flux using the finite difference method (Masson 
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et al., 2006) based on Biot’s poroelastic equations. We 
seek to analyze the relation between transition frequency 
of the LFF and the associated peak frequency under 
situations of varying saturation in a single repeating 
unit cell (RUC). We also explore the influence of the 
undrained boundary condition and analyze the change 
trend and amplitude of the transition frequency of LFF 
in multiple RUCs with different saturations and porosity 
ratios. Finally, we explain and discuss the relationship 
between two types of frequencies in a layered porous 
media.

Fluid fl ux within the low-frequency band

The seismic frequency band corresponds to a range of 
1–100 Hz; as the low-frequency band at a mesoscopic 
scale ranges from 1 to 10 kHz, the low-frequency band 
is thus within the range of the seismic frequency band. 
Fluid flux can be referred to as the volume of a fluid 
at a unit time within a unit area that is induced by the 
pressure gradient, and it shows a good linear relationship 
with pore pressure in the low-frequency band (Mavko et 
al., 2009). Fluid fl ux can be expressed as follows:

               ,Fluid flux t = abs p  (1)

where p is pore pressure, p  is the fluid pressure 
gradient, κ is permeability, and η is viscosity (Müller 
and Rothert, 2006). However, it is not easy to realize 
equation (1) due to a series of computation errors that 
occur in relation to the truncated error of p .

Biot’s quasi-static equations of consolidation, where 
inertial forces are excluded, can be obtained in the low-
frequency band from Biot’s equation of poroelasticity 
(Quintal et al., 2011). We can get the relative fluid 
velocity based on Biot’s quasi-static equations in t as 
follows:

                             fzV = - .p  (2)

To simplify the computation here, we adopt relative 
fl uid velocity to represent fl uid fl ux at the low-frequency 
band, and therefore avoid using the computation implicit 
in equation (1). The unit of fl uid fl ux in the paper omits 
time (s), and the corresponding unit is represented as 
displacement (m/s) (Liu et al., 2009). As fluid flux is 
presented using a time span, to explore the transition 

frequency of the fluid flux we therefore need to obtain 
the absolute value of the fl uid fl ux (3) in the frequency 
domain using fast Fourier transform, as

 
               ( ( ))fzFluid flux = ab Vs FFT .  (3)

Numerical simulation and analytical 
result using single RUC

Setup of model parameters and single RUC
In this section, all saturation cases shown in Figure 

1 are introduced as follows. The medium consists of 
two different layers with different sets of solid frame 
properties, S1 and S2; S1 is saturated with water, while 
S2 is a gas. Six samples are arranged with increasing 
water saturation, which ranges from 31% (case 1) to 
86% (case 6) in the layer of solid frame, S2. Variations 
in water saturation in this layered porous media are 
obtained by varying the thickness of S1. In addition, we 
chose to use an undrained boundary condition, as this 
is consistent with the symmetry of such media. This 
therefore implies that no fl uid fl ow occurs at extremities 
of the RUCs with multiple courses of LFFs (Milani et 
al., 2014). 
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Fig.1 Sketch of six rock samples with different levels of 
saturation; the scale 0–100 represents the spatial element, 
where Δz is 8e-3 m.

In a single RUC model, the following parameters are 
chosen for numerical simulation: temporal interval Δt = 
5e − 7 s, spatial step Δz = 8e − 3 m. The total time is 1s, 
which means the minimum frequency resolution is 1 Hz 
in the frequency domain. With the algorithms proposed 
by Masson et al. (2006), we carry out numerical 
simulations at each grid point by solving equations of 
motion using a staggered-grid finite-difference method 
at the fourth- and second-order in space and time, 
respectively.

The shear modulus of the dry frame, μ, is estimated as 
in Quintal, 2012: 
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                         1
2 2

1

,d
d

= K
K

 (4)

where subscripts 1 and 2 are used for properties of the 
solid frames S1 and S2, respectively; Kd is the bulk 
modulus of the frame.

Assuming that grain diameter and tortuosity of the 
pore space is equal for both solid frames S1 and S2, 
equation (5) is then used for the approximation of 
permeability:

                  
2 3

1 2
2 1 23

1 2

1

1
.k k    (5)

Table 1 Parameters of porous medium model

Parameters of grain and frame Sandstone I 
(S1)

Sandstone II 
(S2)

Grain
Grain bulk modulus (GPa)
Grain density (kg·m−3)
Frame
Dry rock bulk modulus (GPa)
Dry rock shear modulus (GPa)
Porosity
Permeability(m2)

Ks = 36.0
ρs = 2650

Kd = 9.5
Μ = 9
Φ = 0.2

k = 5.0e − 12

Ks = 36.0
ρs = 2650

Kd = 7.6
Equation (4)
Φ = 0.3

Equation (5)

Table 2 Physical properties of fi llings

Physical parameters Water Gas

 Grain density (kg·m−3)
 Bulk modulus (GPa)
 Viscosity (Pa·s)

ρw = 1040
Kw = 2.25
ηw = 0.003

ρg = 78
Kg = 0.012
ηg = 0.00015

It is of note that the wetting fl uid, which in this context 
is water, preferentially saturates regions with small pores 
due to the capillary effect (Goertz and Knight, 1998).

Distribution characteristics of fl uid fl ux
To facilitate our understanding of the distribution of 

LFF, we analyze a single RUC with only one LFF course. 
We propose the concept of the LFF transition frequency 
based on use of the creep test. Transition frequency 
can describe the behavior of fluid flux, and it has two 
frequency limits, i.e. the fl uid fl ux has constant values at 
both high and low frequency limits (Figure 2a). Therefore, 
the transition frequency can act as one frequency that 
distinguishes the two limits (Figure 2a), and based on the 
creep test it corresponds to the maximum absolute value of 
the fi rst derivate of the fl uid fl ux versus frequency (Figure 
2a). It is of note that the transition frequency proposed in 
Figure 2a is quite different from that described in Müller 
and Rothert (2006). 

Figure 2a demonstrates the distribution characteristics 
of fl uid fl ux. In general, we can observe two transition 
frequencies: fff1 and fff2 in Figure 2a; the former, fff1, 
corresponds to the fl uid fl ux related to the water in the 
S1 layer, while the latter, fff2, is caused by gas in the S2 
layer. This verifi es the conclusion made by Brajanovski 
et al. (2006) that attenuation can be interpreted as the 
superposition of two coupled diffusion processes in a 
fractured porous medium (one from the background and 
one from fractures embedded in background rock). Both 
fff1 and fff2 may contribute to the peak frequency of 1/Q; 
however, the amplitude corresponding to fff2 is smaller 
than that of fff1 occurring in layer S1. Therefore, in our 
models we adopt fff1 as the effective transition frequency 
of LFF.
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Fig.2 Behavior of fl uid fl ux (absolute value of Vfz) in frequency domain: (a) curves correspond to creep 
test result, and (b) White model. Numbers on legends correspond to those on left side of Figure 1.
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Figure 2b also describes the distribution of the LFF. 
However, the behavior of fl uid fl ux (Figure 2b) is quite 
different to that determined using the creep test (Figure 
2a), because the type of pressure on top of the sample 
(Müller and Rothert, 2006) is σ(t) = pe.exp(-iwt), which 
is different from that in the creep test of σ(t) = pe, (where 
pe is the amplitude of the pressure, i is the imaginary 
unit, and t is time. It is thus evident that different forms of 
pressure lead to differing fl uid fl ux behaviors (Figure 2).

In this study, we adopt the transition frequency 
based on the creep test to describe the behavior of LFF 
(maximum absolute value of the first derivate of the 
fluid flux in Figure 2a); the creep test is applicable for 
use with a complex poroelastic medium (Quintal et al., 
2014), and the adoption of the creep test can facilitate 
determining the distribution of the LFF. In addition, 
an analysis of attenuation on the influence of peak 
frequency on a global scale can be brought about by 
determining changes in LFF, and an understanding of 
seismic attenuation sensitivity to the boundary condition 
can also be determined.

Please note, however, that the amplitude of pe has 
little influence on the transition frequency shown in 
Figure 2a.

Characteristic frequency of LFF
For all cases listed in Figure 3, the transition 

frequency throughout the media is divided into two 
parts. The transition frequency in layer S2 has a greater 
fluctuation than that in layer S1, where the value of 
the frequency remains constant. Although this is a 
surprising observation, it can be explained as follows: 
layer S1 is saturated with water while S2 is saturated 
with gas, which is very compressible; therefore, the gas 
relaxation time is shorter than that of a fluid (Stephen, 
2009). Compression causes flow from S1 into S2 

(Kong et al., 2013). However, diffusion significantly 
decreases beyond the region of water diffusion, while 
fluid diffusion in S2 (dominated by gas) has a shorter 
relaxation time, i.e., the time taken to alter from the high 
frequency to low frequency limit is shorter for gas. Thus, 
the transition frequency (fff) for fl uid fl ux can be seen to 
increase in layer S2 (in Figure 3).

Brajanovski et al. (2006) believed that superposition 
of two coupled LFFs in a porous medium leads to 
attenuation in a single RUC. In this respect, as the 
modulus of water is greater than that of gas (Table 2), 
it is considered that the general fluid flux would be 
dominated by LFF in the layer saturated with water.

In the work of Vogelaar and Smeulders (2007), the 
pore pressure gradient is determined to grow in line with 
extension of the length of the layer saturated with water. 
Therefore, it takes a longer time to reach equilibrium, 
and this corresponds to the smaller value of transition 
frequency required to equilibrate the fluid pressure 
between porous layers. As a result, we can observe that 
as water saturation increases, the transition frequency (fff) 
for the fl uid fl ux decreases.

Porosity also plays a significantly role in oil and 
gas exploration. We therefore attempt to analyze 
the relationship between porosity and the transition 
frequency by varying the porosity of S1. In Figure 3, 
it can be observed that for smaller values of porosity 
in layer S1 (in case b) there is a smaller permeability 
according to equation (5); therefore the pressure gradient 
is lower than that in case a. Reduced porosity allows 
for a small amount of fl uid fl ux from layer S1 to layer 
S2 (Brajanovski et al., 2005), and therefore in a layered 
porous media this process takes less time to equilibrate 
pore pressure. As a result, we observe a sharp increase 
in the transition frequency (fff) of fl uid fl ux  (Figure 3) at 
the point in the porous layer S2 (Figure 1). 
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Fig.3 Characteristic frequencies of fl uid fl ux in six samples shown in Figure 1, 
with different porosity ratios: (a) porosity ratio φ2/φ1 = 1.5; (b) φ2/φ1 = 2.0.
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Analysis of numerical results
The behavior of LFF is very different at various 

points within a complex media. The different behaviors 
of LFF can thus provide an insight into the inner 
structure of the medium. As a considerable amount 
of research has already been conducted on the peak 
frequency of attenuation, we select samples within a 
single RUC to study the relation between the transition 
frequency of LFF and the peak frequency of the 
associated attenuation. In doing so, we utilize the present 
achievement (6) relating to peak frequency to study the 
behavior of the LFF with the ultimate aim of facilitating 
our understanding of the inner structure of the medium. 

Based on a comparison between Figures 4a and 4b, we 
observe that peak frequency, (ftr), decreases in line with 
a decrease in the porosity ratio of φ2/φ1. Therefore, peak 
frequency behavior fi ts well with equation (6):

                           1 1
2

1 1

8 ,E
tr

K
f

d
 (6)

where subscript 1 represents the water-saturated layer, 

d is the thickness of the layer, and KE is the effective 
modulus. Equation (6) describes behavior of the 
characteristic frequency, where the peak frequency 
is proportional to the effective modulus of the wave-
saturated layer, and the effective modulus varies 
inversely with porosity φ (Picotti et al., 2010). Thus, 
peak frequency is inversely related to porosity φ.

Since attenuation in a porous media in seismic 
frequency band is mainly caused by the mesoscopic 
LFF effect, research on the relation between LFF 
behavior on a mesoscopic scale and attenuation can 
facilitate construction of attenuation models for complex 
arrangements of heterogeneities.

Based on fluid flux behavior, it is possible to obtain 
the transition frequency, fwi, for the course of a LFF. To 
better quantify the relationship between the transition 
frequency, (fwi), and the peak frequency, (ftr), seven 
numerical simulations with water saturation ranging 
from 22% to 86% are performed under different porosity 
ratios to explore the relationship between these two 
frequencies. The porosity for the S1 layer is fi xed for all 
these simulations. The results for φ2/φ1 = 1.5 are shown in 
Figure 4a, and those of φ2/φ1 = 2 are shown in Figure 4b.
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Fig.4 Behavior of transition frequency (fwi) for LFF and peak frequency (ftr) for attenuation 
in cases of (a) φ2/φ1 = 1.5, and (b) φ2/φ1 = 2.

A comparison of the blue and red curves in Figure 
4 shows that with an increase in water saturation, 
the peak frequency, (ftr), of 1/Q is proportional to the 
transition frequency, (fwi), for the LFF. This tendency is 
the same for both cases with different porosity ratios. 
This understanding can assist with obtaining information 
about peak frequency at  a local scale,  thereby 
avoiding the cumbersome and possibly error-prone 
parameterization of approximation functions. Therefore, 
even in unfavorable cases, it is possible that information 
relating to peak frequency (ftr) of 1/Q is embedded in the 

transition frequency, (fwi), of the LFF.

Numerical simulation and analytical 
results of RUCs

In the previous section, samples containing only one 
RUC were analyzed. We now analyze the influence of 
an undrained boundary and extend our research into 
transition frequency and peak frequency behaviors for 
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cases of periodical layered porous media.

Parameters established for RUCs
The rock samples studied have multiple alternating 

layers with different sets of solid frame properties, S1 
and S2 (Table 1); the properties of fillings are listed 
in Table 2. The undrained boundary is chosen as the 
boundary condition. The local fluid flow is induced by 
pore pressure at the interface of an RUC with different 
physical properties; therefore, one RUC corresponds to 
one LFF course. We consider three types of rock samples 
containing different amounts of RUCs with different 
saturations, which are shown in Figure 5 as follows; rock 
samples containing 1, 6, and 8 RUCs are represented 
by the black, red, and green lines, respectively, and 
saturations in all of the models range from 40 to 86%. 

Results of transition frequency of LFF and 
peak frequency 

Figure 7a shows the behaviors of the transition 
frequency, (fwi), for samples with differing sizes of RUCs 
containing multiple RUCs and differing saturations. 
A comparison can thus be determined between the 
characteristic frequencies (fwi) of multiple LFFs with 
the same saturation, and it is possible to determine that 
discrepancies between characteristic frequencies (fwi) 
grow in line with a decrease in saturation. It is thus also 
possible to conclude that the single RUC (represented 
by asterisks in Figure 7) is unable to represent periodical 
layered media, particularly in cases with limited water 
saturation.

In contrast, the transition frequency, (fwi), in the 
intermediate part of the samples is a little higher in the 
case containing 6 RUCs than in the case containing 8 
RUCs. This disagreement can be explained by Müller 
and Rothert (2006), who propose the idea that the 
behavior of the original three-layer model with equant-
thickness layers can be effectively modeled by a two-
layer model with distinct layer thicknesses. Therefore, 
at the first stage of the diffusion process, the pressure 
gradient will equilibrate quickly between layers with 
similar properties, and at later times of the pore pressure 
diffusion process more and more of these equivalent 
layers merge and form a new set of larger equivalent 
layers with quite different equivalent porous layers. 
Thus, the original multiple-layer model with equant-
thickness layers can be effectively modeled by a double-
layer medium (Müller and Rothert, 2006).

For the two cases in Figures 7a and b, the transition 
frequency is highest at points close to the undrained 
boundary (1 and 6 on the X-axis in Figure 7a, and 1 
and 8 on the X-axis in Figure 7b), than for other points, 
which are far away from the boundary; the transition 
frequency for the fluid flux is therefore smaller. This 
shows that the undrained boundary condition may give 
results of a signifi cantly higher value than its counterpart 
points, particularly in conditions of low water saturation. 
Therefore, the transition frequency, (ftr), for points in 
the intermediate part of the samples (Figure 5) avoid the 
infl uence of the undrained boundary condition, and are 
thus representative of the transition frequency for the 
corresponding periodical layered porous medium (Figure 
7).

The behavior of the peak frequency of 1/Q is quite 
different for various sizes of RUCs containing multiple 
RUCs under the same water saturation, as shown 
in Figure 8. With an increase in water saturation, 
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Fig.5 Schematic representation of three RUCs: single 
RUC (black line), 6 RUCs (red line), 8 RUCs (green line). 

In this section, the variation in water saturation within 
such a layered porous media (Figure 6) is obtained by 
varying the relative thickness of the layers, S1, while 
fi xing the general thickness of the RUCs.

S1

S2

0

15

30

[Mesh grid]

40%Saturation:

S1

S2

0

18

30

50%

S1

S2

0

21
30

61%

S1

S2

0

24
30

73%

S1

S2

0

27
30

86%
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Fig.7 Characteristic frequencies of LFFs for porous samples with respect to different RUCs 
(shown in X-axis). Points on X-axis range from 1 to 6 (a) and 1 to 8 (b) and correspond to 
different LFFs in 6 and 8 RUCs, respectively.
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Fig.8 Schematic illustration of peak frequency of attenuation 
with regard to saturation in layered porous media.

discrepancies between different sizes of RUCs 
containing multiple RUCs decrease (Figure 8). As a 
result, peak frequency in the medium containing 8 
RUCs can be treated as the most genuine value of the 
peak frequency for saturations ranging from 0.22 to 
0.86. On the other hand, for the low water saturation, 
peak frequency discrepancies of 1/Q for different sizes 
of RUCs can no longer be neglected. This result does 
not fit well with the opinion proposed by Milani et al. 
(2014), who suggested that the peak frequency at which 
maximum attenuation occurs is not signifi cantly affected 
by the size of RUCs.

Fig.9 Behaviors of transition frequency (fwi) and 
peak frequency (ftr) in cases of saturation ranging 
from 0.4 to 0.86 in media containing 8 RUCs.
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Conclusions

In this paper, the methodology proposed by Masson et 
al. (2006) is adopted to explore the relation between the 
transition frequency of LFF and the peak frequency of 
the inverse quality factor in a single RUC and multiple 
RUCs, respectively. The following conclusions are 

However, results show that two kinds of frequencies 
(fwi and ftr) in the layered porous models share the 
similar trend as saturation decreases, but have different 
values of amplitudes (Figure 9). This phenomenon can 
be explained as follows. As the LFF is a superposition 
of two coupled fl uid-diffusion processes, a smaller value 
of water saturation means an increase in the proportion 
of the fluid-diffusion process caused by the gas in S2. 

Therefore, our assumption that fff of the fl uid fl ux in the 
water-saturated layer, S1, can be treated as the fwi of the 
LFF (see section “Distribution characteristics of the fl uid 
fl ux”) is no longer correct. Nonetheless, it is of note that 
this assumption (see section “Distribution characteristics 
of the fluid flux”) is still correct in most ranges of 
saturation, and that the relationship between the ftr of 
1/Q and fwi, which is obtained through the water in S1, is 
correct.
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obtained:
(1) The fluid flux (equation (1)) is substituted by 

the relative velocity of the fluid flux (equation (2)). 
Although this is formally incorrect, it is a fact that 
the inertial part of the fluid flux, which can be almost 
neglected in a seismic frequency band, justifies this 
assumption, and hence allows for a valuable insight into 
the relationship between the transition frequency (fwi) 
and the peak frequency (ftr) of 1/Q. 

(2) Although we already know the transition frequency 
(fff) of the fluid flux (Müller and Rothert, 2006), the 
trend of the transition frequency is not convenient 
for extracting a uniform parameter with which to 
characterize the fl uid fl ux (Figure 2b). We thus propose 
a novel version of the fl uid fl ux based on the creep test, 
which can facilitate description of the inner structure of 
the porous media (Figure 2a).

(3) If information is available in relation to variations 
in physical properties, it is possible that the undrained 
boundary condition can lead to a higher transition 
frequency of the LFF at points adjacent to the undrained 
boundary, and that the transition frequency of the LFF 
in the intermediate part of the models can represent the 
natural transition frequency in the periodical layered 
porous (Figure 7). Meanwhile, when there is an increase 
in the size of RUCs that contain multiple RUCs, the 
peak frequency (peak values of the attenuation) becomes 
close to one fi xed value (Figure 8). Thus, the infl uence 
of the boundary condition on the transition frequency of 
the LFF, and the peak frequency of attenuation is similar; 
that is, as the size of RUCs containing multiple RUCs 
grows, the negative effect caused by the undrained 
boundary diminishes. 

(4) The result presented is partly due to the assumption 
that we set the transition frequency of the water at the 
interface of the layers as the transition frequency for the 
LFF, but it demonstrates that the transition frequency of 
the LFF accords well with the peak frequency at a high 
water saturation level. However, it fails to show relations 
at a low water saturation level (Figure 9), where water 
accounts for a lower proportion in samples, although this 
result is beneficial to research relating to mesoscopic 
pore structure.

For the sake of simplicity, a periodical porous media 
was selected for the models. However, in actuality, 
real porous material is obviously more complex. 
Therefore, future research should be extended, and the 
relation proposed in this paper should be generalized 
to use a fluid-saturated porous medium with a random 
distribution of inhomogeneity. 
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