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Abstract: Variation of reservoir physical properties can cause changes in its elastic 
parameters. However, this is not a simple linear relation. Furthermore, the lack of 
observations, data overlap, noise interference, and idealized models increases the 
uncertainties of the inversion result. Thus, we propose an inversion method that is different 
from traditional statistical rock physics modeling. First, we use deterministic and stochastic 
rock physics models considering the uncertainties of elastic parameters obtained by prestack 
seismic inversion and introduce weighting coefficients to establish a weighted statistical 
relation between reservoir and elastic parameters. Second, based on the weighted statistical 
relation, we use Markov chain Monte Carlo simulations to generate the random joint 
distribution space of reservoir and elastic parameters that serves as a sample solution space of 
an objective function. Finally, we propose a fast solution criterion to maximize the posterior 
probability density and obtain reservoir parameters. The method has high efficiency and 
application potential.
Keywords: Reservoir parameters, inversion, weighted statistics, Bayesian framework, 
stochastic simulation

Introduction

Reservoir parameters such as gas saturation and po-
rosity are important to reservoir evaluation and well 
site selection. Seismic amplitude contains abundant 
reservoir information. The use of seismic amplitude to 
obtain reservoir parameters is a hot topic in the fi eld 
of reservoir prediction. Currently, the most common 
method for obtaining reservoir property parameters is 
to use seismic amplitude to obtain elastic parameters 
using various prestack seismic inversion methods; 

notably, the prestack seismic inversion technology has 
matured (Russell et al., 2011). The obtained elastic 
parameters are inverted to reservoir parameters via 
some transformation methods (Kabir et al., 2000).

To transform the elastic parameters to reservoir 
parameters, several methods such as multivariate 
statistics (Doyen, 1998; Fournier, 1989) and deterministic 
rock physics modeling (Blangy, 1992; Marion and Jizba, 
1997) are used. Multivariate statistical techniques are 
used to obtain the relation between the elastic parameters 
and physical properties of reservoirs. However, the 
obtained relation is purely mathematical with unclear 
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physical meaning; moreover, the accuracy of the relation 
depends on the number of samples. Deterministic rock 
physics modeling is based on the Gassmann equation 
for fl uid replacement combined with various equivalent 
medium models to establish the deterministic transform 
relation between the elastic and reservoir parameters. In 
fact, in complex reservoir environments, deterministic 
rock physics models are often very ideal and with large 
errors. Reservoir parameter inversion methods based 
on statistical rock physics, having both the advantages 
of multivariate statistics and deterministic rock physics 
modeling, have attracted increasing interest. In these 
methods, random errors are added to a deterministic rock 
physics model to simulate the deviation between the 
model and actual data and establish the statistical relation 
between the elastic and reservoir parameters. Then, 
reservoir parameters are derived by the inversion of an 
objective function based on Bayesian statistics. Finally, 
Markov chain Monte Carlo (MCMC) techniques are 
used to calculate the maximum a posteriori probability 
density in the fi nal inversion results. In these methods, 
the uncertainty and randomness of rock physics relations 
are effectively combined, and uncertainties in reservoir 
parameters are considered. Thus, the inversion precision 
is high (Bachrach, 2006; Spike et al., 2008; Grana and 
Rossa, 2010; Yin et al., 2014). However, such methods 
are time consuming, especially for 3D data. Moreover, 
elastic parameters obtained by prestack seismic inversion 
contain errors of variable magnitude. Generally, the 
accuracy of common elastic parameters such as P- and 
S-impedance and density decreases from P-impedance to 
density. If elastic parameters with different uncertainties 
are treated equally in inversion, this will likely affect 
inversion results. In this study, we propose a method to 
invert reservoir parameters based on traditional statistics 
methods. We consider uncertainties in elastic parameters 
and use weighting coefficients to treat them. We also 
propose an objective inversion function and a solving 
strategy. The proposed method is tested using model and 
actual data with good results.

Deriving the objective inversion 
function

We use m to denote elastic parameters such as 
P-impedance, S-impedance, density, and Poisson’s ratio. 
The elastic parameters are closely related to the prestack 
seismic amplitude obtained by various prestack seismic 
inversion methods. We also use R to represent inverted 

reservoir parameters such as gas saturation, porosity, and 
clay content. The reservoir parameters are divided into N 
classes, such as R = [R1, R2, …, RN]. For example, if gas 
saturation is 0–1, then the saturation can be divided into 
11 classes at intervals of 0.1, e.g., R = [0, 0.1, 0.2, …, 1].

Bayesian statistics provides the framework for 
probabilistic inversion, in which the inversion parameters 
have a specific probability distribution and can be 
predicted by probability characteristics and statistics 
of known samples (Tarantola, 2005). Consequently, 
objective reservoir parameters R can be obtained by 
looking for the maximum a posteriori probability density 
for a set of elastic parameters m (Bachrach, 2006)
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where P(Ri) is the a priori probability density function 
(PDF) of the ith class, and the conditional PDF 
P(m|Ri) is known as the likelihood function; P(m) is a 
normalization parameter that can be omitted.

Solving the objective inversion function

In equation (1), the a priori PDF P(R i) can be 
approximated by a Gaussian mixture model (GMM) 
based on the statistical characteristics of well log data 
(Hastie et al., 2002; Grana and Rossa, 2010)
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where N(·) denotes the PDF of the Gaussian distribution. 
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R  all are relative to Ri Gauss distribution. 
The biggest advantage of the GMM is that as long as 
parameters are selected appropriately, it can model any 
distribution pattern.

The difficulty in solving the objective inversion 
function is the determination of the likelihood function 
P(m |Ri) that affects the inversion accuracy and 
effi ciency. We use fd (R) to denote the deterministic rock 
physics model and ε to denote the deviation between 
the model and actual data. Then, the relation between 
the elastic and reservoir parameters is expressed as 
(Bachrach, 2006)

                         ( ) .dfm R  (3)
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Equation (3) is the expression of the statistical rock 
physics model. From this expression, it can be found 
that the statistical rock physics model not only reflects 
the relation between the elastic and reservoir parameters 
but also highlights noise randomness; it is a rock 
physics model with both deterministic and stochastic 
characteristics. 

Conventional methods combine statistical rock 
physics modeling and MCMC stochastic simulation to 
obtain the random joint distribution of samples of elastic 
and reservoir parameters 1,2,...{( , )}k k k Nsm R  as training 
samples and then derive the likelihood function (Hastie 
et al., 2002) 
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where n(R i) represents the number of samples of 
reservoir parameter Ri and n(mj) represents the number 
of samples of elastic parameter mj. The training samples 
obtained by statistical rock physics modeling and MCMC 
stochastic simulation contain all the log curve data and 
can generate samples that are not present in the log 
curves. Thus, they can effectively solve the problem of 
the dependence of traditional multivariate statistics on 
the number of training samples. However, in general, 
multiple elastic parameters are used to reduce the number 
of solutions in the reservoir parameters inversion. For N 
elastic parameters, equation (4) is transformed to
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To obtain reasonable results with equation (5), samples 
with elastic parameters 1 2[ , ,... ]Nm T

j j jm m m  should be 
present multiple times in the training data. This requires 
a large size of training samples and, consequently, data 
processing is time consuming. 

In this study, based on naive Bayes classification, 
we assume that the elastic parameters are conditionally 
independent (Friedman et al., 1997) and then

        1 2
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In equation (6), the conditional PDF of the multiple 
elastic parameters can be computed by multiplying a 
single elastic parameter. Each elastic parameter needs to 
be present independently in the training samples fewer 

times to satisfy the statistical requirements. For example, 
assuming that the range of each reservoir parameter 
is divided into ten classes and there are three elastic 
parameters each with j different values, the total number 
of samples N is smaller than the number of samples 
before the independence assumption, as shown in 
Figuer 1. Thus, the statistical effi ciency of the likelihood 
function is improved.
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Fig.1 Total number of samples N vs j. 
The blue and red curves represent the results before and 

after the independence assumption.

In actuality, the assumption that the elastic parameters 
are conditionally independent is not likely satisfied 
because of the correlations among the elastic parameters. 
However, the naive Bayesian classification shows that 
even the independence assumption is not satisfied, and 
the classifi cation performance is equivalent to classical 
classification algorithms, such as the decision-tree and 
k-nearest neighbor algorithms, and close to the case of 
no independence assumption (Friedman et al., 1997; Fan 
and Liu, 2008). Furthermore, according to the statistical 
characteristics of P(mk|R i), we use the GMM to 
approximate the distribution characteristics of P(mk|Ri) 
(Figure 2) and obtain the analytical expression
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, and |k

im R  
is the number of components in the GMM, the weighting 
coeffi cients, and the mean and variance related to mk and 
Ri. Thus, we obtain the likelihood function. 

When mk
j is obtained by prestack seismic inversion, we 

do not need to repeat the statistical processing and, thus, 
the effi ciency sharply increases. For example, as shown 
in Figure 2, the histogram represents the statistical 
characteristic of P-impedance Ip, while the corresponding 
porosity Por is known as 0.2, we obtain the analytical 
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Then, equation (1) is rewritten as
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It is well known that the elastic parameters obtained 
by prestack seismic inversion contain errors and the 
error magnitude is different for each elastic parameter. 
Thus, the weights for the different elastic parameters 
in the objective function have to be different. We use 
W to denote the weighting coefficients of the elastic 
parameters. We obtain the weighting coefficient by 
calculating the correlation coeffi cients between borehole 
and actual log data
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where xpi and xwi are the values of the ith sample in the 
borehole and actual well data (i = 1, 2, 3…, N), and px  
and wx  are the means of the borehole and actual well 
data.

We perform a log transformation to equation (8) and 
use W to modify the elastic parameters information
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where Wk represents the weighting coefficient of the 
kth elastic parameter. The fi nal inversion results are the 
reservoir parameters and equation (10) is the maximum 
a posteriori probability density.

Reservoir parameters inversion

The entire inversion process proposed in this study 
focuses on solving the objective inversion function and 
is divided into fi ve steps.

1) Determine the a priori distribution density function. 
Use equation (2) to fit the distribution of the reservoir 
parameters from the logging curves in the target layer.

2) Determine the rock physics model according to 
experimental or empirical relations. Set the relation 
between reservoir and elastic parameters fd (R). Then, 
the random error ε is determined by analyzing the 
distribution characteristics of the error between the 
model and actual curves. Lastly, substitute fd (R) and ε 
into equation (3) to obtain the statistical rock physics 
model. 

3) Determine the likelihood function. Based on the 
statistical rock physics model of step 2, use MCMC 
stochastic simulation to generate the joint sampling 
space of reservoir and elastic parameters. After applying 
equation (6) to analyze the distribution of the likelihood 
function, use the equation (7) to obtain the analytical 
expression of the likelihood function.

4)  Determine the weight ing coeff ic ients .  In 
conventional prestack seismic inversion, many elastic 
parameters can be obtained. First, elastic parameters 
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Fig.2 Determination of the likelihood function.

Fig.3 Reservoir parameters inversion fl owchart. 
Statistical rock-physics model

Priori probability density

The likelihood function

Reservoir
Parameters

MCMC

Objective
inversion function

Pre-stack seismic data

Elastic parametersLogging curves

Weight coefficient

Pre-stack seismic inversion

expression of the likelihood function P(Ip|Por = 0.2) by 
using a GMM that consists of three Gaussian distribution 
functions (red, green, and yellow curves in Figure 2) to 
fi t Ip.
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of high sensitivity are selected as input data in the 
reservoir parameters inversion. Second, extract the 
prestack seismic inversion results for the target zone 
near the borehole as pseudo well curves. Finally, the 
sampling points of the pseudo well and actual curves are 
substituted into equation (9) to calculate the weighting 
coeffi cients of the elastic parameters.

5) Solve the objective inversion function. Input the a 
priori PDF and the likelihood function obtained by steps 
1–4 into equation (10). Then, input the elastic parameters 
data and obtain the maximum posterior probability 
density solution of the objective inversion function. The 
inversion fl owchart is shown in Figure 5.

Model analysis

We use the shale content Vsh, porosity Por, and gas 
saturation Sg curves proposed by Grana et al. (2010) 
as model curves (Figure 4). We use the reservoir 
parameter curves and the Hertz–Mindlin particle 
contact theory (Mavko et al., 2003) to synthesize the 
P-impedance Ip, the S-impedance Is, and density ρ 
curves, and respectively add 3%, 6%, and 9% Gaussian 
noise to simulate the elastic parameters with variable 
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Fig.4 Reservoir parameter curves: (a) shale content, (b) gas 
saturation, and (c) porosity.
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precision obtained by prestack seismic inversion, as 
shown in Figure 5. We then use the elastic parameter 
curves as input data, m = [Ip  Is  ρ]T. The shale content, 
porosity, and gas saturation serve as the target inversion 
parameters, R = [Vsh  Sg  Por]. Then, we test the validity 
of the proposed method.

Fig.5 Elastic parameter curves. 
The black curves represent the model curves without noise and the red ones represent the model curves with noise: 

(a) P-impedance, (b) S-impedance, and (c) density.

Figure 6 shows the a priori distribution obtained by 
the Gauss mixture PDF and the actual distribution. We 
can see that the distribution of the reservoir parameters 

has two peaks, and the peak regions are consistent with 
the actual reservoir parameters of gas-bearing sand and 
water-bearing sand. Hence, the a priori PDF obtained 
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Fig.6 Priori distribution characteristics of reservoir parameter: Left panels are the three-dimensional 
distribution of prior probability density; right panels are the  log samples projection on 2D distribution of the 
prior probability density. (a) Porosity and clay content. (b) Porosity and gas saturation. (c) Shale content and 
gas saturation.
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by the GMM distribution accurately reflects the a 
priori distribution of the log samples. Furthermore, we 
generate samples that are not present in the well data 
by combining the Gaussian mixture distribution with 
MCMC (Figure 6).

We select the low, medium, and high values of the 
reservoir parameter samples and obtain the corresponding 

conditional probability density distribution. In addition, 
we obtain the likelihood function using equation (7). We 
can see that the distribution of the likelihood function is 
similar to the Gaussian mixture distribution. Therefore, 
the analytical expression for the likelihood function can 
be obtained by using equation (9), which reduces the 
repetition of sample statistics. 
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From the distribution of P(m|R), we obtain the 
reservoir data associated with the elastic parameters. As 
shown in Figure 7, for porosity of 0.05, 0.15, and 0.25, 
the corresponding probability distributions of the elastic 
parameters overlap and the degree of overlapping varies. 
The larger the overlapping regions are, the lesser the 

reservoir information is as well as the sensitivity of the 
elastic parameters. 

Similarly, different elastic parameters have different 
sensitivities to gas saturation, as shown in Figure 8. 
For gas saturation of 0.1, 0.4, and 0.7, the overlapping 
regions in Figure 8 are larger than those in Figure 7, 
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Fig.7 Probability density distribution of elastic 
parameters for different porosity values: (a) density, 
(b) P-impedance, and (c) S-impedance.

Fig.8 Probability density distribution of elastic 
parameters at different gas saturation values: (a) 
density, (b) P-impedance, and (c) S-impedance.

Fig.9 Probability density distribution of elastic 
parameters at different shale content values: (a) 
density, (b) P-impedance, and (c) S-impedance.
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whereas the S-impedance distribution curves almost 
coincide. The latter means that the S-impedance carries 
lesser gas saturation information. 

For shale content of 0.2, 0.4, and 0.6, we can see 
that, in addition to density, the overlapping regions of 
P- and S-impedance are large. By analyzing Figures 6−
8, we see that the total sensitivity of the P-impedance, 
S-impedance, and density to porosity, gas saturation, 
and shale content in sand (Vsh < 0.6) decreases. In 
practice, we can choose elastic parameters with smaller 
overlapping regions as input parameters.

The same weighting coeffi cients W = [1 1 1] are used 
for the P-impedance, S-impedance, and density and the 
inversion results are shown in Figure 10. The elastic 
parameters are treated similarly in the inversion procedure 
but the inversion results differ from the actual model and 
the correlation coefficients are respectively 0.37, 0.79, 
and 0.88. Based on equation (9), we use the model curves 
with noise and the actual model curves to calculate the 
weighting coeffi cients. The weighting coeffi cients for the 
P-impedance, S-impedance, and density are 0.97, 0.89, 



530

Reservoir parameter inversion

and 0.7, respectively, and the inversion results are shown 
in Figure 11. The inversion results are in good agreement 
with the model, and the correlation coeffi cients are 0.69, 
0.89, and 0.93, respectively. The weighted statistical 
relation between the elastic parameters and reservoir 

parameters is more reasonable when the input data are 
multiple reservoir parameters of variable precision. The 
inversion precision for porosity, gas saturation, and shale 
content decreases. This is consistent with the analytical 
results in Figures 7−9.
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Fig.10 Inversion results when the weight coefficients of 
P-impedance, S-impedance and density are the same. 
The blue and red curves respectively represent the inversion results with 
and without noise: (a) shale content, (b) gas saturation, and (c) porosity.

Real data application

We applied the proposed method to a gas-bearing sand 
reservoir. The distribution of sand layers in this area is 
clear but the main exploration problem is the similarity 
between the reservoirs with low gas saturation and low 
porosity and the reservoirs with high gas saturation and 
high porosity in the seismic section, both show as bright 
spots. This leads to high drilling risks. Therefore, high-
precision inversion results for gas saturation and porosity 
can reduce the exploration risk in this area. 

There are two gas-producing well in this area, well 
A and well B. We use well A as the a priori information 
in the inversion process and well B as the verification 
well. The gas saturation and porosity inversion results 
are shown in Figure 12. The inversion results are in good 
agreement with the actual logging data and the reservoirs 
with different gas saturation and porosity are clearly 
distinguished in the inversion section. Figures 13a and 
13b show the gas saturation and porosity inversion for 
well B. 

To further demonstrate the effectiveness of the 
method, we extract the borehole traces near well B and 
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Fig.12 Cross-sections of inversion results and logging data 
for well A: (a) gas saturation and (b) porosity.

compare them with the actual logging curves, as shown 
in Figure 14. The inversion results are in good agreement 
with the actual logging data. 
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Fig.13 Cross-sections of inversion results and logging data 
for well B: (a) gas saturation and (b) porosity.
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Fig.14 Comparison of inversion results and logging data in 
boreholes near well B: (a) gas saturation and (b) porosity. 
The blue and red curves respectively represent the actual logging 
data and inversion results.
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Fig.15 Horizontal slices of the inversion results: (a) gas saturation and (b) porosity.

Figure 15 shows the gas saturation and porosity along 
a section of the layers in this area. Wells A and B are all 
located in gas-rich and high-porosity areas. Logging and 
drilling data are consistent in both wells.

Conclusions

The prestack seismic inversion precision of different 
elastic parameters is variable. If the precision variability 
is neglected, this will adversely affect the inversion 

results. We use weighting coefficients to minimize 
the effect of the precision variability and improve the 
inversion results. 

The total number of sampling points substantially 
decreases if we assume independent elastic parameters. 
Consequently, the analytical expression of the likelihood 
function is obtained by fitting the distribution of 
the likelihood function with a Gaussian mixture of 
distribution PDFs. Thus, the unnecessary repetition of 
statistics is minimized or avoided, and the effi ciency of 
the objective function is improved.

The weighted statistics minimize the effect of 
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precision variability of the elastic parameters but 
that does not necessarily make the method suitable 
for the areas with low-precision elastic parameters. 
The proposed high-precision inversion method and 
appropriate rock physics models ensure the adaptability 
of the method. 
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