
137

Manuscript received by the Editor August 2, 2014; revised manuscript received February 18, 2015.
*This work is supported by National major special equipment development (No. 2011YQ120045) and The National Natural 
Science Fund (No. 41074050 and 41304023).
1. First Crust Monitoring and Application Center, China Earthquake Administration, Tianjin 300180, China.
2. State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, CAS, Wuhan, 430077, China.
♦Corresponding Author: Liu Jin-Zhao (Email: whiggliujinzhao@126.com)
© 2015 The Editorial Department of APPLIED GEOPHYSICS. All rights reserved.

3D density inversion of gravity gradient data 
using the extrapolated Tikhonov regularization*

APPLIED GEOPHYSICS, Vol.12, No.2 (June 2015), P. 137-146, 6 Figures.
 DOI:10.1007/s11770-015-0491-2

Liu Jin-Zhao1,2♦, Liu Lin-Tao2, Liang Xing-Hui2, and Ye Zhou-Run2

Abstract: We use the extrapolated Tikhonov regularization to deal with the ill-posed problem 
of 3D density inversion of gravity gradient data. The use of regularization parameters in the 
proposed method reduces the deviations between calculated and observed data. We also use 
the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate 
undesired effects owing to the fast attenuation of the position function. Model data suggest 
that the extrapolated Tikhonov regularization in conjunction with the depth weighting 
function can effectively recover the 3D distribution of density anomalies. We conduct density 
inversion of gravity gradient data from the Australia Kauring test site and compare the 
inversion results with the published research results. The proposed inversion method can be 
used to obtain the 3D density distribution of underground anomalies.
Keywords: extrapolated Tikhonov regularization, depth weighting, gravity gradient tensor, 
eigenvector

Introduction

Gravity gradiometry in hydrocarbon and mineral 
exploration is behind many processing and interpretation 
methods of potential fi eld data (Pawlowski, 1998; Lee, 
2001; Dransfield, 2007), especially, 3D inversion of 
magnetic and gravitational data. For example, Ke et al. 
(2009) used damped least squares in 3D gravity density 
inversion. Feng et al. (2014) used forward modeling 
and inversion to study density interfaces and gravity 
anomalies, respectively. Liu (2013) and Wang et al. 
(2014) extrapolated the Tikhonov regularization to the 
density-constrained 3D inversion of gravity data. Bear 

et al. (1995) used an improved Levenburg–Marquart 
algorithm in order to invert Bouguer gravity data to 
obtain the 3D density distribution. Li and Oldenburg et 
al. (1996, 1998) applied the depth weighting function to 
surface magnetic or gravity data inversion and recovered 
the 3D distribution of the density contrast. Rama et al. 
(1999) proposed an inversion scheme to trace 3D density 
interfaces using gravity grids. Zhdanov et al. (2002) 
conducted 3D density inversion of gravity data based on 
the focusing inversion method and obtained good results. 
Compared with conventional inversion of gravity data, 
however, inversion of high spatial resolution gravity 
gradient tensor data can better establish the boundaries 
of underground anomalies and recover the 3D density 
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distribution. This has been widely used in delineating 
hydrocarbon deposits and geological structures; gravity 
gradient tensor data can be used in 3D inversion to map 
the subtleties of geological anomalies. For example, 
Wang et al. (2013) applied 3D density inversion to 
gravity gradient data and constrained the inversion 
process by using the projected gradient algorithm. Guo 
et al. (2011) and Chen et al. (2013) applied 3D density 
inversion to tensor gravity gradient data based on the 
quasi back-propagation (BP) neural network algorithm 
and the preconditioned conjugate gradient algorithm. 
Li (2001) introduced an inversion algorithm for 
multicomponent gravity gradiometry data to recover the 
3D density contrast in salt dome imaging. Zhdanov et 
al. (2004) developed a method based on the regularized 
focusing inversion to interpret components of the tensor 
gravity gradient and showed via numerical modeling 
and inversion that the focusing inversion can obtain 
sharper images of geological targets when compared 
with conventional maximum smoothness inversion. 
Vasilevsky et al. (2005) proposed the regularized 
inversion of full tensor gravity gradient data for the 
dynamic monitoring of hydrocarbon reservoirs. In 
addition, Guo et al. (2009) proposed the 3D correlation 
imaging of gravity anomaly and gravity gradiometry 
data. Routh et al. (2001) presented two methods for 
inverting the base of the salt interface using surface 
gravity and tensor gravity data.

Variable underground density distributions can 
produce similar gravity fields. In surveying, the 
inversion of potential fi eld data is often ill posed when 
prior information of the regional geology is insuffi cient. 
Ill-posed matrix inversion produces weak perturbations 
in observations that seriously affect the inversion results. 
Tikhonov regularization is often used to obtain stable 
approximate solutions. Nevertheless, attention should be 
paid on selecting and using the regularization parameters 
because they can introduce errors to the approximate 
solutions (Tikhonov and Arsenin, 1977). Hämarik et 
al. (2007, 2008) proposed the extrapolated Tikhonov 
regularization to minimize the deviations between 
observed and calculated data, and obtained the best 
results by linearly combining the inversion solutions.

In 3D density inversion of potential field data, the 
attenuation of the position function increases with depth. 
To address this issue, many researchers have proposed 
different depth weighting functions for gravity and 
magnetic data inversion. Most of the depth weighting 
functions, however, are used to stabilize the boundary 
constraints functional in model objective function. 
In this study, we present a modified depth weighting 

function that requires less prior information and is easier 
to apply to the misfit functional (see also Commer, 
2011). The modifi ed depth weighting function is derived 
from the gravity gradient eigenvector rather than prior 
information (Beiki and Pedersen, 2010; Wedge, 2013). 
Inversion of model data suggests that the method can 
eliminate inaccuracies in the density distribution caused 
by excessive near-surface weighting and improves the 
inversion distribution. Finally, we apply 3D density 
inversion to gravity gradient data from the Australia 
Kauring airborne gravimetry test site and compare 
the results with published research results. Thus, we 
verify that the extrapolated Tikhonov regularization in 
conjunction with the gravity gradient eigenvector depth 
weighting function can be used in 3D density inversion. 

Methodology

Inversion theory

For any underground geological body with known 
density distribution, the gravity gradient tensor in the 
local Cartesian coordinate system can be expressed as

2 2 2

2
1 1 2 1 3

11 12 132 2 2

21 22 232
2 1 2 2 3

31 32 332 2 2
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3 1 3 2 3
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x x x x x
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 (1)

where Γ is the gravity gradient tensor, U  is the 
gravitational potential, x1, x2, and x3 represent three 
mutually orthogonal axes in the direction of the Cartesian 
coordinate system, and Γij (i, j = 1, 2, 3) represent the 
individual components of the gravity gradient tensor.

Outside the source, the gravitational potential U 
satisfies the Laplace equation Γ11 + Γ22 + Γ33 = 0 and, 
owing to the symmetry Γij = Γji (i, j = 1, 2, 3), there 
are only five independent components in the nine 
components of the gravity gradient full tensor.

In 3D density inversion, we divide the underground 
space into closely arranged cubic cells, referred to as 
prisms in this study, with constant density contrast. 
We select only inversion solutions that agree with the 
observed data. First, we calculate the gravity gradient 
tensor of each observation at the Earth’s surface 
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according to the equation
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where Γ ni,j is the gravity gradient at observation point 
n for N observations, ρm is the density contrast of the 
mth cell, referred to as prism in this study, and there are 
M cells, and anm is the position function of the gravity 
gradient tensor of the mth cell at observation point n. 

For multicomponent gravity gradient data, the total 
number of observations is S = N × p, where p is the 
number of gravity gradient components. The matrix of 
the multicomponent gravity gradient is

                         
11

d A m ,
S M MS

 (3)

where A is the position function matrix and m = [ρ1, ρ2, ρM]T 
is the parameter matrix to be inverted.

Because the position function matrix A is often ill 
conditioned, equation (3) is consequently ill posed. 
This implies that the computed solution is potentially 
very sensitive to perturbations in the left-hand side of 
equation (3). However, stable solutions can be obtained 
with the Tikhonov regularization algorithm, which is the 
most common and well-known regularization method. 
Stable approximate solutions can be obtained with the 
Tikhonov regularization algorithm by minimizing the 
misfi t norm and the norm of the boundary constraints 
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where argmin denotes the minimization of the objective 
function. The regularization parameter α controls the 
weight allocation between the minimization misfit and 
boundary constraints norms. Matrix L is typically either 
the identity matrix or an S × M discrete approximation 
differential operator. m* is the prior estimation of the 
inversion density vector. mα

T is the regularization solution 
that corresponds to the regularization parameter α.

Al though the int roduct ion of  regular izat ion 
parameters in the Tikhonov regularization can yield 
stable approximate solutions, it also introduces errors. 
Assuming that the potential field data contain noise 
and the noise level satisfies ||Am-d||2 ≤ δ, where δ is 
the error criterion defi ned by the interpreter. To reduce 
the inversion errors caused by the introduction of the 
regularization parameters, Hämarik (2007) proposed 
a new algorithm for obtaining the desired solutions by 
linearly combining the approximate inversion solutions 

that correspond to the different regularization parameters 
using the Lagrange interpolation method, which is 
known as the extrapolated Tikhonov regularization.

We defi ne mαi as the regularization solution sequence 
according to the different regularization parameters αi 
(αi – 1 = αi /q), where i = 1, 2,…, k and q is a proportional 
constant used to produce the regularization parameters, 
to control the convergence speed. Thus, the approximate 
solutions derived with the extrapolated Tikhonov 
regularization are expressed as 
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Note that the choice of α i and k directly affects 
the ill-conditioned linear inversion or the degree of 
approximation between inversion and theoretical 
solutions. We select parameters αi and k based on the 
monotone error rule. For other parameter selection rules, 
such as the discrepancy principle, balancing principle, 
and rules R1 and R2, the reader can refer to Palm (2010).

Modifi ed depth weighting function
In 3D density inversion of gravity or gravity gradient 

data, the position function attenuation increases with 
depth, which affects the distribution of the inverted 
density at the surface and causes deviations from the real 
underground anomaly density distribution. Many have 
studied the depth weighting function and most studies 
have focused on the decaying resolution with depth ((Li 
and Oldenbrug, 1998; Zhdanov, 200s). These methods 
basically operate on the boundary constraints functional 
(Li and Oldenbrug, 1998; Zhdanov, 2002). Using gravity 
gradient data and the depth weighting function of 
Commer (2011), we propose a modifi ed depth weighting 
function based on the gravity gradient eigenvector that 
directly acts on the misfi t function 

      
max

max

exp ( )
( ) ,

1 exp ( )

voxel

voxel

z mc C
Df z

z mc C
D

 (6)

where μ is an empirical parameter, which Commer (2011) 
suggested it is equal to 0.001, κ is the scaling factor that 
controls f (z) ≈ μ when z = 0, and D is the depth of the 
inversion density space and is generally 2–3 times the 
depth of the mass center of the anomaly. In this study, 
we use μ = 0.01, κ = 10, D = 500, and take max

voxelmc C  to 
represent the depth of the mass center of the anomaly. 
In equation (6), it is crucial to determine max

voxelmc C  .
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Commer (2011) set max
voxelmc C  = zc = (z1 + z2)/2, where 

z1 and z2 are the upper and lower cube boundaries, 
respectively. However, z1 and z2 are often unknown; 
therefore, we have to calculate max

voxelmc C .
According to Beiki and Pedersen (2010), if λ1 is the 

principle eigenvector of the gravity gradient tensor of an 
observation point, the corresponding eigenvector p1 is 
parallel to the line direction defi ned by observation point 
x and the mass center xmc of the anomaly

         1 1 1 2 2 3 3p , , / ,mc mc mcx x x x x x R  (7)

where R = √(x1 mc − x1)2 + (x2 mc − x2)2 + (x3 mc − x3)2 is 
the distance between observation x and mass center xmc 
of the anomaly. The underground inversion space can be 
divided into closely arranged body elements. We consider 
that the line defined by the eigenvector corresponding 
to the principle eigenvalue of the gravity gradient tensor 
at each observation point must penetrate through each 
element in the elements array. Then, the value of the 
penetrated element is estimated and this process is 
repeated until all observation points are involved in 
the calculation. The location of the element with the 
largest value denotes the mass center of the subsurface 
anomaly; thus, the depth of the subsurface anomaly is 
also obtained. The value of all observations that penetrate 
through each element within the inversion space is

              
1

, 1,2,..., ,
N

voxel k k
k n n

n
C w c k M   (8)

M and N are the number of prisms and number of 
observations, respectively. Ck

voxel is the cumulative value 
of prism k, cn

k is the single value of prism k projected onto 
the observation point n, and wn

k is the weighting function.
By comparing the cumulative value of the different 

discrete prisms, the depth of the cubic cell with the 
largest amplitude is the depth of the mass center of the 

anomaly mc(Ck
voxel). Then, the grid value of the depth 

weighting function f (z) is directly applied to the position 
function matrix A in equation (5) and by using the 
extrapolated Tikhonov regularization we can obtain the 
inversion solution (Liu, 2013).

Inversion parameter constraints 
Commer (2001) constrained the inversion parameters 

to obtain geologically meaningful inversion solutions. We 
also apply constraints to the inversion parameters of 3D 
gravity gradient density data with the following equation

           exp( m)x ,  m .
1 exp( m)

a b p
p

 (9)

where a and b are the lower and upper bounds, and 
parameter p controls the transfer efficiency of m near 
0 in the transformed space. Liu (2013) suggested that 
parameter p should be between 1.2 and 1.4 to obtain 
meaningful inversion solutions. m and x are density 
vectors before and after the application of the constraints.

Theoretical examples

To test the proposed 3D inversion method, we 
considered two rectangular prisms at 100 m depth, with 
same dimensions of 200 m × 200 m × 200 m and density 
of 1000 kg/m3. The locations of the prisms are shown in 
Figures 1a−1c. The background density is 0 kg/m3. The 
gravity gradient of the models at the Earth’s surface can 
be calculated with the following equations
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                       '
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We divide the underground space into closely 
arranged prisms; the dimensions of cubes with constant 
unit density is 50 m ×50 m × 50 m. Therefore, the total 
number of prisms in the underground space is 4000, 
as shown in Figure 1. Using the six components of the 
gravity gradient tensor Γ11, Γ12, Γ13, Γ22, Γ23, and Γ33, the 
Tikhonov regularization, and the extrapolated Tikhonov 
regularization, we calculate the inversion density vectors 
of the underground space and list the fi tting error norm 
in Table 1.

                      '
3

'
2 2

23 3 0
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  (15)

                       '
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3 3
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x x
R

r
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where i, j =1, 2, 3, G is the gravitational constant, ρ is 
the density contrast of the surrounding rocks, and r and 
s are the space and plane distances between observations 
and integral points.

Table 1 Fitting error norm derived with the two regularization methods and different error levels
Error level 10−1 10−2 10−3 10−4

T 0.0783 0.0037 6.1308×10-4 8.6418×10-5

q = 2
ET 0.0312 0.0033 4.9696×10-4 2.8982×10-5

T 0.0783 0.0083 8.6589×10-4 8.6418×10-5

q = 20.75

ET 0.0524 0.0057 3.9800×10-4 2.9037×10-5

T 0.0783 0.0063 8.6589×10-4 8.6418×10-5

q = 20.5

ET 0.0528 0.0021 3.5996×10-4 3.7534×10-5

T 0.0960 0.0083 8.6589×10-4 8.6418×10-5

q = 20.25

ET 0.0415 0.0034 4.5022×10-4 4.8601×10-5

                                              Note: T denotes the Tikhonov regularization algorithm and ET denotes the extrapolated Tikhonov 
                                              regularization algorithm.

The fitting error norm ||Am-d||2 calculated by using 
the Tikhonov regularization and extrapolated Tikhonov 
regularization algorithms at different error levels 
(δ = 10−1, δ = 10−2, δ = 10−3, and δ = 10−4) and different 
proportional constants of the regularization parameters 
(q = 2, q = 20.75, q = 20.5, and q = 20.25) are given in 
Table 1. We can see that the precision of the inversion 
with the extrapolated Tikhonov regularization algorithm 
is better; thus, we only discuss the 3D density inversion 
derived with the extrapolated Tikhonov regularization 
algorithm in the example below.

We select a sequence of regularization parameters 
αi, i = 1, 2,…, N for solving the ill-posed problem of 
3D density inversion using the extrapolated Tikhonov 

regularization algorithm. We set the initial N equal to 
500 and use the following proportional coefficients 2, 
20.75, 20.5, and 20.25 to control the convergence speed of 
the sequence of regularization parameters. δ is the error 
criterion defi ned by the interpreter.

According to equation (5), the linear combination 
of the different regularization solutions corresponds to 
the different regularization parameters αi. k and αk are 
the two regularization parameters in the sequence of 
regularization parameters that satisfy the prior error level 
and are chosen by using different selection rules. We use 
the monotone error rule in selecting the parameters. For 
a given regularization parameter sequence α1 ≥ α2 ≥ …, 
we denote mn = mα1, α2,…, αn, rn = Amn − d, and DME(n) = 
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(rn + rn+1, rn+1)/(2||rn+1||). Then, we assign n that satisfi es 
DME(n) ≤ δ and k to the total number of extrapolating 
items in the extrapolated Tikhonov algorithm and 
the regularization parameter αk. For more parameter 
selection rules, the reader can refer to the literature.

Finally, we obtain the results by using the extrapolated 
Tikhonov regularization algorithm in conjunction with 
the modified depth weighting function based on the 
gravity gradient eigenvector and the inversion constraint 
function (Figure 1). Figures 1a–1c show the vertical 
section, top transverse section, and bottom transverse 
section of the prism model, respectively, where the 
distance between the top surface of the prisms and 

the Earth’s surface is 100 m. Figures 1d–1f show the 
vertical section, the top transverse section, and bottom 
transverse section of the inverse solutions derived with 
the extrapolated Tikhonov regularization algorithm 
before applying the depth weighting and parameter 
constraints. Figures 1g–1i show the vertical section, 
top transverse section, and bottom transverse section 
of the inversion solutions derived with the extrapolated 
Tikhonov regularization algorithm after applying the 
depth weighting and parameter constraints.

From Figure 1, we see that the inversion solutions 
derived with the extrapolated Tikhonov regularization 
algorithm agree with the top part of the model (Figures 

Fig.1 Inversion results with the extrapolated Tikhonov regularization algorithm before and after the application of depth 
weighting and parameter constraints.

(a)−(c) vertical section, top transverse section, and bottom transverse section of the synthetic prism models; the distance between the top 
surface of the prism model and the ground surface is 100 m; (d)−(f) inversion results of the extrapolated Tikhonov regularization algorithm 
before applying depth weighting and parameter constraints; (g)−(i) inversion results of the extrapolated Tikhonov regularization algorithm after 
applying depth weighting and parameter constraints.
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1b and 1e). Prior to depth weighting, the inversion 
solutions did not match with the bottom part of the 
model owing to the fast attenuation of the kernel function 
with increasing depth. Thus, we use the modifi ed depth 
weighting function to address this issue and show the 
results in Figure 2.

The results for the location of the mass center of the 
model density anomaly are shown in Figure 3, in which 
we have calculated the cumulative value of the six 
transverse sections. The depths are −50 m, −100 m, −150 
m, −200 m, −250 m, and −300 m, respectively, and we 
fi nd that the largest cumulative value is in the transverse 
section with depth −200 m (Figure 3d). This means that 
the mass center of the model density anomaly is 200 m 
from the ground surface. Based on the detected depth of 
the mass center, we calculate the inversion solutions after 
applying depth weighting and show the results in Figures 
1g–1i. We fi nd that the depth weighing function partially 
offsets the undesired effects to the density distribution 
caused by the kernel function attenuation. In terms of 
the distribution of the inversion densities at the bottom 
of the anomaly, the solutions after depth weighting are 
better than those prior to depth weighting; however, the 
distribution of the inversion densities somewhat diverges 
at the bottom of the model.
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Fig. 2 Depth weighting function vs depth.

Fig.3 Location of the mass center of the model density anomaly.
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Overall, comparing Figures 1d and 1g and Figures 
1f and 1i, we may conclude that 3D inversion solutions 
derived with the extrapolated Tikhonov regularization 
algorithm in conjunction with the modified depth 
weighting function based on the gravity gradient 
eigenvector are more reliable than solutions derived with 
the Tikhonov regularization algorithm.

Field data

Field data were collected at the Kauring test site 
(116° 56' 20.52"E, 31° 52' 1.56"S), which is located 
approximately 115 kilometers east–northeast of the 
Jandakot Airfield in Perth, Western Australia, and has 
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been used since 2009 for the testing and calibration 
of Airborne Gravimetry (AG) and Airborne Gravity 
Gradiometry (AGG) systems. Fugro Airborne Surveys 
conducted the airborne gradiometry at the Kauring 
test site during July 2011 to February 2012, using the 
FALCON airborne gravity gradiometer (AGG). We 
performed density inversion using the six measured 
gravity gradient components in this area. Terrain 

correction was applied to the gravity gradient data 
of the survey area, which helps the density inversion 
of underground anomalies. The six gravity gradient 
components Tee, Tnn, Tne, Tnd, Ted, and Td are shown in 
Figure 4; subscripts e, n, and d correspond to the north-, 
east-, and down-axis directions of the local geographic 
coordinates.

The gravity gradient range chosen for the density 
inversion is 504 km−506.4 km East and 6469.5 km
−6471.9 km North. The spatial dimensions for the 
density inversion are 2400 m × 2400 m × 1200 m. The 
dimensions of each prism are 120 m × 120 m × 120 m; 
thus, there are 4000 prisms. First, we use the modified 
depth weighting function to locate the mass center of 

the density anomaly. The results are shown in Figure 5. 
Three depth transverse sections at −240 m, −360 m, 
and −480 m are shown and the depth of the mass center 
of the density anomaly is around −360 m based on 
the amplitude of the cumulative value. The inversion 
density vectors of the anomaly are calculated with 
the extrapolated Tikhonov regularization method in 

Fig.5 Location of the mass center of the density anomaly at the Kauring test site.
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Fig.4 Gravity gradient tensor data at the Kauring test site.
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conjunction with the depth weighting function using 
the gravity gradient eigenvector. The results are shown 
in Figure 6. Figures 6b, 6c, and 6d show the −240 m, 
−360 m, and −480 m depth transverse sections. The 
distribution of the inversion density is around −360 m 

in line with the results of the mass center location. The 
derived anomaly densities range is 0−2.4410 kg/m3, and 
the upper limit of the inversion density solutions agrees 
well with the result (2.4 kg/m3) of Martinez and Li 
(2012).

Conclusions

We applied the extrapolated Tikhonov regularization 
and the modified depth weighting function to the 
3D density inversion of gravity gradient data. Using 
model data, we tested the extrapolated Tikhonov 
regularization algorithm by linearly combining the 
approximate solutions corresponding to the different 
regularization parameters of the Tikhonov regularization 
and minimizing the error between predictions and 
observations. The proposed algorithm avoids errors 
owing to the introduction of regularization parameter 
and improves the robustness of the inversion. 

The rapid attenuation of the position function with 
increasing depth may affect the surface distribution 
of the inversion results. Hence, we used a modified 
depth weighting function based on the eigenvector of 
gravity gradient tensor data to eliminate any undesired 
effects. The modifi ed depth weighting function is based 
on the gravity gradient and can be used to accurately 

detect the mass center of the anomaly. The model data 
suggested that the depth weighting function improved 
the resolution in the vertical direction; furthermore, the 
inversion results for the shallow parts were superior to 
the results for the deeper sections.

Finally, we conducted 3D density inversion of gravity 
gradient data from the Kauring test site in Australia and 
compared the 3D inversion with published results to 
verify the effectiveness of the proposed method under 
the conditions of insuffi cient prior information.
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