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Abstract: The effi ciency, precision, and denoising capabilities of reconstruction algorithms 
are critical to seismic data processing. Based on the Fourier-domain projection onto convex 
sets (POCS) algorithm, we propose an inversely proportional threshold model that defi nes the 
optimum threshold, in which the descent rate is larger than in the exponential threshold in the 
large-coeffi cient section and slower than in the exponential threshold in the small-coeffi cient 
section. Thus, the computation efficiency of the POCS seismic reconstruction greatly 
improves without affecting the reconstructed precision of weak refl ections. To improve the 
fl exibility of the inversely proportional threshold, we obtain the optimal threshold by using 
an adjustable dependent variable in the denominator of the inversely proportional threshold 
model. For random noise attenuation by completing the missing traces in seismic data 
reconstruction, we present a weighted reinsertion strategy based on the data-driven model 
that can be obtained by using the percentage of the data-driven threshold in each iteration in 
the threshold section. We apply the proposed POCS reconstruction method to 3D synthetic 
and fi eld data. The results suggest that the inversely proportional threshold model improves 
the computational effi ciency and precision compared with the traditional threshold models; 
furthermore, the proposed reinserting weight strategy increases the SNR of the reconstructed 
data.
Keywords: POCS, Fourier transform, threshold model, reconstruction, denoising

Introduction

Undersampling and missing data are common 
problems in field data acquisition. Irregularly missing 
data strongly affect processing methods such as time-
lapse seismic repeatability processing, surface-related 
multiple elimination (SRME), and prestack migration. 

Therefore, regularization needs to be applied to 
irregularly missing data.

Seismic data regularization can be divided into 
two categories. The first category comprises methods 
based on signal processing principles. The second 
category consists of wave-equation-based methods 
(Ronen, 1987; Malcolmet et al., 2005) that reconstruct 
the seismic volume by using subsurface velocity data. 
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Within the fi rst category, one group of methods relies on 
transforms, such as the Fourier transform (Duijndamet 
et al., 1999; Trad, 2009), the Radon transform (Kabir 
and Verschuur, 1995; Trad et al., 2002), and the curvelet 
transform (Naghizadeh and Sacchi, 2010; Liu et al., 
2011; Kong et al., 2012). Another group of methods 
relies on prediction-error filtering techniques (Spitz, 
1991; Naghizadeh and Sacchi, 2009). These methods use 
the predictability of linear events in the frequency–space 
domain to interpolate aliased data at high frequencies 
with fi lters derived from low frequencies. Finally, a third 
group of methods is based on rank reduction (Trickett et 
al, 2010; Kreimer and Sacchi, 2011). Properly sampled 
multichannel data are embedded into a low-rank Hankel 
matrix. Because noise and missing data increase the rank 
of the Hankel matrix, rank reduction methods are used to 
attenuate noise and recover missing traces.

The reconstruction method known as projection 
onto convex sets (POCS) is based on the Gerchberg
–Saxton iterative algorithm (Gerchberg and Saxton, 
1972; Li and Du, 2003) and is widely used in signal and 
image reconstruction. Papoulis (1975) used the POCS 
reconstruction method to recover a band-limited signal 
from a given subsegment of the signal. Menke (1991) 
applied the POCS method to interpolate topography and 
well log data. Abma and Kabir (2006) used the POCS 
method to interpolate missing seismic observations. 
They pointed out that the threshold is the key parameter 
in POCS reconstruction, and used a linear threshold 
in the iterations. Galloway and Sacchi (2007) and Gao 
et al. (2010) used an exponential threshold to improve 
the convergence of the POCS reconstruction method. 
Wang et al. (2010) used graphics processing units 
(GPU) to accelerate the POCS interpolation. Oropeza 
and Sacchi (2011) presented a rank reduction algorithm 
for the simultaneous reconstruction and random noise 
attenuation of seismic data, and used a linear descending 
weight coeffi cient with increasing number of iterations 
to increase the SNR of the reconstructed data. Gao et 
al. (2013) presented a data-driven threshold to improve 
the convergence of the POCS algorithm. In addition, a 
constant reinserting weight was used to minimize the 
effect of noise in the fi nal reconstruction of the seismic 
volume. Zhang and Chen (2013) used the exponential 
threshold model 0 1xe x  in the curvelet domain, 
which show faster convergence and higher precision 
compared with traditional exponential threshold. Wang 
and Zhang (2014) analyzed the effect of the interval 
between two neighboring threshold on convergence and 
developed a new exponential threshold to further speed 
the convergence of POCS reconstruction algorithm. 

Presently, the size of wide-azimuth and high-density 
data limits the computational efficiency and precision 
of seismic reconstruction algorithms. In the case of the 
POCS seismic reconstruction algorithm, evaluation 
criteria for the optimum threshold have not been 
defined; furthermore, previous threshold models and 
weighted reinsertion strategies do not account for the 
different features of the seismic data, which minimizes 
computational efficiency, calculation precision, and 
reconstruction flexibility. Based on previous work, we 
present the inversely proportional threshold model and 
add a dependent variable to the denominator of the 
inversely proportional threshold model to improve the 
computational efficiency, calculation precision, and 
fl exibility of the reconstruction algorithm. The weighted 
reinsertion strategy and the data-driven model increase 
the signal-to-noise (SNR) of the reconstructed seismic 
data.

Theory and methodology

Projection onto convex sets reconstruction in 
the frequency-space domain

Gao et al. (2010) transformed the POCS reconstruction 
method from the time-domain to the frequency-
domain and then applied thresholds to every frequency 
component in the iteration process to eliminate the 
noncoherent noise, successfully recovering the missing 
traces. In the time-domain method, a forward and inverse 
Fourier transform are performed at each iteration. 
However, we only need to apply the forward Fourier 
transform as a function of time before the fi rst iteration 
and the inverse Fourier transform after the last iteration. 
Thus, the modifi ed method cuts the computational cost 
by about 30% for 3D seismic data. Each iteration in 
the frequency-domain method comprises fi ve steps: (1) 
perform the 2D forward Fourier transform for every 
frequency component D( f, x, y) to obtain f–kx–ky-domain 
data; (2) apply a threshold to the transformed data and 
remove the spectral components that are smaller than the 
threshold; (3) perform an inverse 2D Fourier transform 
to the modified data; (4) reinsert the original f–x–
y-domain traces into the inversely transformed data; and 
(5) repeat steps 1 to 4 until the deviation between the 
reconstructed and original data satisfi es the termination 
condition.

For irregularly missing 3D seismic data D( f, x, y), 
the POCS reconstruction method can be expressed as 
(Oropeza and Sacchi, 2011)
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where k is the kth iteration, f is the frequency, Dk denotes 
the reconstructed f–x–y-domain data at iteration k, I is 
the unit matrix, Fx,y and Fx,y

−1 denote the 2D forward 
and inverse Fourier transform, respectively, for space 
variables x and y, and S(x, y) represents the sampling 
operator, where S(x, y) = 1 for the observed traces and 
S(x, y) = 0 for the missing traces. 

At each iteration, we need to apply a threshold to the 
transformed data. The threshold operator Tk is 
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where kx and ky are the wavenumbers for space variables 
x and y, P represents the N-dimensional threshold set, 
P = {p1, p2, …, pN} satisfies p1 > p2 > … > pN, and N 
denotes the maximum number of iterations. 

The inversely proportional threshold model
Abma and Kadir (2006) pointed out that strong events 

are well interpolated using few iterations, whereas weak 
events require significantly more iterations. Because 
small and large coefficients correspond to weak and 
strong events, the evaluation criteria for the optimum 
threshold, when the threshold model simulates a real 
spectrum energy, are the following. The larger the 
descent rate of the threshold in the large-coefficient 
section is, the faster the convergence is, whereas the 
smaller the descent rate of the threshold in the small-
coeffi cient section is, the higher the calculation precision 
is. 

The existing threshold model is limited in its 
adaptability because of the difference of the distribution 
of the data spectrum. The construction of an optimum 
threshold model for seismic data will improve the 
interpolation efficiency in large datasets and will 
minimize costs. Considering the inversely proportional 
model (y = 1/x, x ≠ 0) with larger descent rate than the 
exponential model in the large-coefficient section, we 
propose an inversely proportional threshold model to 
satisfy the evaluation criteria. The new threshold is 
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ap b k N
k

   (3)
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1
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N
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pmin correspond to the maximum and minimum spectrum 

energy components
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can be obtained from equations (4) and (5). Once the 
maximum number of iterations is set, equation (3) is 
diffi cult to fi t seismic data with variable spectrum energy 
distribution. To improve the flexibility of the proposed 
threshold, we obtain the inversely proportional model 
with arbitrary descent rate by adjusting the dependent 
variable q added to the denominator of equation (3). 
Hence, equation (3) changes to
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Similarly, we obtain 
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where q is an arbitrary real number larger than zero and 
in most cases 1 ≤ q ≤ 3. 

Descending weight coefficient and the data-
driven model

To account for the deficiency of the standard POCS 
interpolation in denoising, Oropeza and Sacchi (2011) 
used a weighted reinsertion strategy for noisy traces. Then, 
the algorithm described by equation (1) transforms to
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where Q is the weight coeffi cient, 0 ≤ Q ≤ 1. For Q = 1, we 
obtain the standard POCS reconstruction using equation 
(1) and inserting the observed data in the reconstructed 
data.

In POCS reconstruction algorithm, the thresholds 
in the early iterations are used to preserve the strong 
events; thus, most of the observed data are reinserted in 
the reconstructed data for the effi cient recovery of strong 
events. The smaller thresholds in the fi nal iterations are 
good for recovering weak events strongly affected by 
noise; thus, decreasing weight coeffi cient Q is good for 
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noise attenuation and the reconstruction of weak events. 
Based on the analysis above and given the variability 
of the spectrum energy, the proposed weighing strategy 
in the data-driven model bases on data itself to fl exibly 
calculate the reinserting weight and is expressed as

      
dri

max min

max min

= , 1,2,..., ,k
k

p Q Q
Q k N

p p
 (8)

where Qk denotes the new threshold at iteration k, pdri
k 

denotes the data-driven threshold (Gao et al., 2013), 
pmax and pmin correspond to the maximum and minimum 
threshold, and Qmax and Qmin are respectively the 
maximum (Qmax = 1) and minimum weight (Qmin = 0). 

The reconstructed evaluation parameter defi nition 
The reconstructed evaluation parameter is an 

important index for the quality of the reconstruction and 
is defi ned as (Hennenfent and Herrmann, 2006)
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where Dori( f, x, y) is the complete seismic dataset, 
D rec( f, x, y) is the reconstructed dataset, and ||.||2 
represents the 2-norm of the matrix.

The reconstructed evaluation parameter above is for 
simulated data, in which Dori( f, x, y) is known. For the 
real data with unknown Dori( f, x, y), using information 
from observed data is more realistic. Thus, we modify 
the evaluation parameter in equation (9) to have equation 
(10) for fi eld real data 
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where Dobs( f, x, y) denotes the observed data, Drec( f, x, y) 
denotes the reconstructed data with inserted observed 
data, and Dcal( f, x, y) denotes the reconstructed data 
without observed data insertion. 

Numerical examples

Synthetic data
Synthetic data without noise (41 × 41 traces) are 

shown in Figure 1a. The record length is 101 ms, the 
time sampling interval is 1 ms, the refl ection coeffi cient 
of the horizontal and tilted linear event is 0.5 and -0.25, 
respectively, and the refl ection coeffi cient of the shallow 
and deep bending event is 0.25 and 0.5, respectively. 
The wavelet unaffected by absorption and attenuation 
is stable during modeling travel time in this example. 
Figure 1b shows incomplete data with 30% randomly 
missing traces. We use Figure 1b to test the convergence 
speed and precision of the different threshold models. 
The maximum number of iterations is 50. We obtain 
the optimal inversely proportional model from the 
reconstructed evaluation parameter curve on the 
frequency slices at the 18th and 82nd samples.  

Figures 2a and 3a show different threshold models 
for the frequency slices at the 18th and 82nd sample, 
respectively. In the legends of the two figures, Line 
denotes the linear model, Exp the exponential threshold, 
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Fig.1 (a) Original data and (b) data with 30% of the traces missing. 
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Exp-0.5 the modified exponential threshold, Driven 
the data-driven model, Inv the inversely proportional 
model, and q = 0.5, 1.4, 2.2, and 3 are the different 
descent. Because the data-driven model describes the 
real spectrum energy distribution, we compare the data-
driven model to the other models. From Figure 2a and 
3a, we see that the linear model gradually decreases with 
increasing number of iterations. The descent rate of the 
exponential model is initially greater than that of the 
data-driven model and smaller in the small-coefficient 
section. Compared with the traditional exponential 
model, the descent rate of the modified exponential 
model increases initially and then decreases in the small-
coefficient section. The descent rate of the inversely 

proportional model increases initially and decreases in 
the small-coeffi cient section with increasing q. 

The threshold models in Figures 2a and 3a are used to 
interpolate the frequency slices. We can see from Figures 
2b and 3b that the final reconstructed precision of the 
linear model is good and the convergence is the slowest. 
The convergence speed of the exponential model is 
faster and the fi nal reconstructed precision is better than 
the data-driven model because the slow descent rate 
in the small-coefficient section is good for recovering 
weak events. Because the descent rate of the modified 
exponential model is initially greater and then smaller, 
the convergence speed and precision of the exponential 
model are both higher than the traditional exponential 
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Fig.2 (a) Different threshold models for the frequency slice at the 18th sample and (b) Emode curves 
of the different models. 
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Fig.3 (a) Different threshold models for the frequency slice at the 82nd sample and (b) Emode curves 
of the different models.
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inversely proportional threshold model for q = 2.2. 
The maximum number of iterations is 50. We take 
the reconstructed data of the final iteration as output. 
The reconstructed data for Q = 0.2 and descending Q 
for the linear and data-driven models are respectively 
shown in Figures 5b, 5c and 5d. The quality of the 
reconstructed data for Q = 0.2 and descending Q for the  
linear model are almost the same, whereas the events in 
the reconstructed data for descending Q and the data-
driven model are more continuous and with more high 
SNR. Note that the signal is slightly attenuated because 
the degree of noise attenuation using the descending 
Q and the data-driven model is based on the fact that 
the lower the SNR is, the higher the degree of noise 
attenuation is, that makes effective signal distorted.. 
To better show the advantage of descending Q and the 
data-driven model, we extract part of the incomplete 
seismic section in the inline direction CDP = 5 which 
also includes traces from 10 to 30 in the Xline direction, 
as shown in Figure 6. Incomplete data with noise are 
shown in Figure 6a. Figure 6b is the complete dataset 
without noise. The reconstructed data for Q = 0.2 and 
descending Q for the linear and data-driven models 
are separately shown in Figures 6c, 6d, and 6e. Figure 
6e shows the noise attenuation for Q and data-driven 
model and is similar to the complete data without noise 
in Figure 6b. According to equation (9), the reconstructed 
evaluation parameter for Q = 0.2 and descending Q with 
linear and data-driven models in Figures 5b, 5c, and 5d 
is 22.08, 21.77, and 23.43, respectively. In addition, the 
reconstructed evaluation parameter for descending Q, and 
the exponential and inversely proportional model is 21.91 
and 21.95, respectively. Clearly, the evaluation parameter 
is higher for descending Q with the data-driven model.
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Fig.4 Emode curves of the entire reconstructed 3D 
seismic dataset. 
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Fig.5 Reconstruction of a synthetic cube with 30% randomly missing traces for SNR = 1.0: (a) incomplete data, (b) reconstructed 
data for Q = 0.2, (c) reconstructed data for descending Q and the linear model, and (d) reconstructed data for descending Q and 

the data-driven model.

model. For q = 2.2, the inversely proportional model 
converges fast with the highest accuracy; thus, it can be 
used to reconstruct seismic data. For q = 3, the inversely 
proportional model has the fastest convergence; however, 
the evaluation parameter of the fi nally reconstructed data 
is low because of the loss of most of the effective Fourier 
coeffi cients. The advantage of the inversely proportional 
model for q = 2.2 is demonstrated by the reconstructed 
evaluation parameter curve for the 3D dataset in Figure 4.

To analyze the denoising performance of descending 
Q for data-driven model in POCS reconstruction 
method, we create the incomplete dataset with noise in 
Figure 5a by adding random noise (SNR = 1.0 defi ned 
as the maximal amplitude of the signal to the maximal 
amplitude of the noise) to the data volume in Figure 
1b. We perform the iterative reconstruction using the 
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Fig.6 Original and reconstructed data for inline CDP = 5: (a) incomplete seismic data with noise, (b) complete 
seismic data without noise, (c) reconstructed data with Q = 0.2, (d) reconstructed data with Q based on the linear 

model, and (e) reconstructed data with Q based on the data-driven model. 
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Fig.7 (a) Different threshold models for the frequency slice at the 50th sample and (b) Ereal curves 
of the different models.

Field data example
To further test the effi ciency of our methods, the real 

data from a field of China are used for reconstruction.  
Figure 10 shows the observed data volume for inline 
slice 5 (side view), Xline slice 5 (front view), and 
time 50 ms (top view) and reconstructed data obtained 
by using different Q. Figure 10a shows part of the 
incomplete poststack 3D fi eld data (missing 30% traces). 
The truncated record length is 301 ms and the sampling 
interval is 1 ms. 

Before interpolating the entire 3D dataset, the 

optimal q is estimated from the reconstructed evaluation 
parameter of the frequency slices on typical strata. 
Because of absorption and attenuation, scattering 
and transmission at the reflection interface, and the 
complex structure create variability in the spectrum 
energy distribution in shallow, medium, and deep 
layers. Hence, we increase the number of frequency 
slices to be processed. If the optimal q of the different 
frequency slices varies, we perform Fourier-domain 
POCS reconstruction at different time windows. In 
this field example, owing to the short truncated record 
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Fig.8 (a) Different threshold models for the frequency slice at the 190th sample and (b) Ereal curves 
of the different models.

Fig.9 Ereal curves of the entire 3D seismic dataset.

E rea
l (d

b)
0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration No.

Th
re

sh
old

(a)
Line
Exp

Driven

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

Iteration No.

(b)

reconstruction for data shown in Figure 10a using 
different reinserting weight strategies and the inversely 
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Fig.10 Reconstruction of the fi eld cube: (a) irregularly missing data, (b) reconstructed data for Q = 0.2, (c) reconstructed data for 
Q and the linear model, and (d) reconstructed data for Q and the data-driven model. 

length and the simple structure, the absorption and 
attenuation are weak and the wavelet is stable. Thus, we 
only calculate the reconstructed evaluation parameter for 
two frequency slices to derive the optimal q. Figures 7a 
and 8b respectively show the  threshold models on the 
frequency slices at the 50th and 190th samples.

The threshold models in Figures 7a and 8a are used 
in the data interpolation of the different frequency 
slices and the maximum number of iterations is 50. The 
reconstructed evaluation parameters in Figures 7b and 
8b show that the inversely proportional model for q = 
3 converges fast and with the highest accuracy, and can 
be used in the reconstruction of entire seismic dataset. 
The advantage of the inversely proportional model for 
q = 3 is shown by the reconstructed SNR curve of the 
entire 3D dataset in Figure 9.

To test the advantage of descending Q for data-
driven mode in real application, we perform the POCS 
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proportional threshold model for q = 3. The maximum 
number of iterations is 50. We take the reconstructed 
data of the final iteration as output. The reconstructed 
data for Q = 0.2 and descending Q using the linear and 
data-driven models are shown in Figures 10b, 10c, 
and 10d, respectively. The reconstructed quality of 
the linearly descending weight is slightly superior to 
that of the constant weight. The noise attenuation in 
the reconstructed data for descending Q and the data-
driven model is clearly visible and the weak events are 
reconstructed. To more clearly show the quality of the 

reconstructed data for different Q, we extract part of 
incomplete seismic section in the inline direction CDP = 
5 that contains traces from 1 to 20 in the Xline direction 
and 1 to 250 ms in the time direction. Irregularly 
missing reconstructed data are shown in Figure 11a. The 
reconstructed data for Q = 0.2 and descending Q and the 
linear and data-driven models are shown in Figure 11b, 
11c, and 11d, respectively. The comparison shows that 
noise is strongly attenuated in the reconstructed data for 
descending Q and the data-driven model.

of traditional denoising POCS reconstruction based 
on Fourier transform and can be generalized to other 
transform domains. The synthetic example and field 
application demonstrated the efficiency of improving 
computational efficiency, calculative precision and the 
SNR of the reconstructed data. The reinserting weight 
strategy has an instinctive shortage that a part of the 
original data and the reconstructed data are added to next 
iteration which makes the signal distorted when increases 
the SNR. Therefore, quality control is important for real 
application.

References

Abma, R., and Kabir, N., 2006, 3D interpolation of irregular 
data with a POCS algorithm: Geophysics, 71(6), E91–E97.

Conclusions

Convergence speed and precision are both needed 
for design of optimum threshold mode in POCS 
seismic reconstruction. To improve the flexibility 
of traditional threshold, we presented the inversely  
proportional threshold model and introduced dependent 
variable q to obtain different threshold curves of 
arbitrary descending rate. To improve the denoising 
performance of POCS reconstruction, we proposed 
a novel descending weight strategy according to 
data-driven mode. Firstly, we regularly sample for 
the distribution of spectrum energy according to the 
maximum iteration number, then in weight section, 
calculate weight value according to the percentage 
of each threshold in threshold section. Our method 
in this paper can be considered as the improvement 

1 5 10 15 20

1

50

100

150

200

250

Xline (CDP)

Tim
e (

ms
)

(a)

1 5 10 15 20
Xline (CDP)

(b)

1 5 10 15 20
Xline (CDP)

(c)

1 5 10 15 20
Xline (CDP)

(d)

Fig.11 Original and reconstructed data for inline CDP = 5: (a) irregularly missing data, (b) reconstructed data for Q = 0.2, 
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