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Abstract: The use of low-frequency seismic data improves the seismic resolution, and the 
imaging and inversion quality. Furthermore, low-frequency data are applied in hydrocarbon 
exploration; thus, we need to better use low-frequency data. In seismic wavelets, the loss 
of low-frequency data decreases the main lobe amplitude and increases the first side lobe 
amplitude and results in the periodic shocking attenuation of the secondary side lobe. The 
loss of low frequencies likely produces pseudo-events and the false appearance of higher 
resolution. We use models to examine the removal of low-frequency data in seismic data 
processing. The results suggest that the removal of low frequencies create distortions, 
especially for steep structures and thin layers. We also perform low-frequency expansion using 
compressed sensing and sparse constraints and develop the corresponding module. Finally, we 
apply the proposed method to real common image point gathers with good results.
Keywords: seismic wavelet, forward modeling, low-frequency expansion, compressed 
sensing, sparse constraint

Introduction

To improve the resolution in seismic exploration 
data, much attention was paid to high-frequency data; 
nevertheless, geophysicists gradually understood the 
importance of low-frequency signals (ten Kroode et al., 
2013). In addition to improving inversion accuracy, there 
are many advantages in using low-frequency data (Baeten 
et al., 2013). First, low-frequency data can reduce the 
amplitude of side lobes in wavelets and improve the 
seismic vertical resolution (Kallweit and Wood, 1982). 
Second, in seismic wave propagation, low-frequency 
data have stronger penetration and anti-absorption than 
high-frequency data; therefore, the image quality of 

complex structures is improved (Ziolkowski et al., 2003; 
Woodburn et al., 2011). Third, in oil and gas exploration, 
we can use low-frequency seismic shadows to locate 
hydrocarbons (Castagna et al., 2003; Chen et al., 2012). 
Fourth, when using low-frequency data, the number of 
local minima in least squares misfit functions used in 
full-waveform inversion is smaller; thus, convergence to 
global minima improves (Sirgue and Pratt, 2004; Kelly 
et al., 2009). 

To acquire low-frequency data, we need to consider 
the seismic source and acquisition technology. Presently, 
there are signifi cant developments in low-frequency data 
acquisition. The lowest acquired frequency is about 3 
Hz (Tao et al., 2011) and the lowest receiver frequency 
is 2 Hz (Sun et al., 2012; Li et al., 2013). However, the 
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cost of low-frequency data acquisition is significant. 
In China, conventional seismic acquisition methods in 
seismic exploration use 5 Hz for the source and 10 Hz for 
the receiver; that is, seismic data with frequency lower 
than 10 Hz are strongly affected by noise. Moreover, 
the suppression of surface waves also affects the low-
frequency components. Thus, researchers at home and 
abroad have looked at improving the low-frequency 
data processing methods (e.g., Guan and Tang, 1990; 
Whitcombe and Hodgson, 2007; Woodburn et al., 2011). 
Nevertheless, the currently available low-frequency 
processing methods have many limitations, e.g., strong 
interference in the low-velocity zone influences the 
effect of low-frequency expansion; the low-frequency 
stabilization based on spatial filtering only operates 
on low-frequency slices; the significance of frequency 
compensation is not clear; low-frequency expansion based 
on the deconvolution operator only processes the wavelet 
and not considering the wavelet change of the formation. 
In this study, we apply compressed sensing theory to 
real seismic data. Compressed sensing was proposed by 
Candès et al. (2006a, 2006b) and Donoho (2006). They 
pointed out that the original signal can be reconstructed by 
using the optimal sparse reconstruction algorithm based 
on the signal sparse prior information, and the signal of 
the adaptive linear projection for sampling far below the 
Nyquist frequency. In signal reconstruction, we generally 
obtain the solution using sparse constraints (Yuan et al., 
2015; Han et al., 2012). Presently, compressed sensing 
has been used in seismic data recovery (Herrmann et al., 
2006; Bai et al., 2014), plane wave decomposition (Wang 
and Wang, 2014), and other cases.

Although much work has been done regarding 
low-frequency seismic data, and their importance 
in oil and gas exploration has been recognized, the 
necessary quantitative analysis is lacking. We analyze 
the characteristics of seismic wavelets, synthetic 
seismograms, and models of geological structures with 
and without the use of low-frequency data. At the same 
time, the low-frequency data was expanded based on the 
theory of compressed sensing. Low-frequency energy is 
obviously enhanced after applying the method and the 
structure information is richer.

Low-frequency seismic data analysis

According to the seismic convolution model, the 
amplitude of seismic data depends on the convolution 
of the wavelet and refl ection coeffi cient. Therefore, we 

discuss the loss of low-frequency seismic data in the 
source wavelet, seismic data, and geological models and 
analyze the results.

Single seismogram
First, we analyze the loss of low-frequency data in a 

wavelet because the wavelet spectrum strongly affects 
the seismic record. We use a 30 Hz Ricker wavelet, 2 
ms sampling interval, and 101 sampling points. We use 
low-cut fi lters of 4 Hz, 8 Hz, and 12 Hz in the frequency 
domain. The waveform comparison is shown in Figure 1.

Fig.1 Wavelet with different low-cut frequency fi lters.

Figure 1 shows that the loss of low-frequency data 
decreases the main lobe amplitude, increases the first 
side lobe amplitude, and increases the secondary 
side lobe amplitude of the periodic oscillation. With 
increasing removal of low-frequency components, 
the oscillation period of the wavelet decreases and the 
amplitude increases.

The wavelet waveform affects the waveform of the 
seismic data. Thus, we design a reflection coefficient 
model with 150 sampling points and sampling interval 
of 2 ms. Then, we use refl ection coeffi cients of 0.5, 0.4, 
and 0.4 that correspond to 80 ms, 200 ms, and 250 ms 
to convolute the reflection coefficient model using a 
standard Ricker wavelet and neglecting frequency data 
below 4 Hz, 8 Hz, and 12 Hz. Finally, we observe the 
differences in the synthetic seismogram, as shown in 
Figure 2. 

We can see the secondary lobe in the seismic wavelet 
produces pseudo-events and amplitude distortion. For 
example, the side lobe amplitude changes at the red 
arrows. The lack of low-frequency data can lead to 
waveform changes in the time domain and this will affect 
the fi ne-scale description of reservoirs and hydrocarbon 
detection.

Geological models 
The spectrum of the reflection coefficient affects 
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the spectrum of the seismic data; thus, we design a 
series of different geological models and analyze the 
characteristics of losing low-frequency components in 

a thin-layer, an anticlinal pinch-out, and a structurally 
complex geological model.
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Fig.2 Synthetic seismograms. 
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Fig.3 Thin-layer model with and without low-frequency data.

1. Thin-layer model 
We design a thin-layer model (Figure 3) and then fi lter 

out the low-frequency data using the same parameters as 
above. 

As shown in Figure 3, the removal of low-frequency 
data causes the distortion of small events in the thin layer 

and the appearance of pseudo-events in the data without 
frequencies less than 8 Hz. This will certainly affect the 
layer detection; furthermore, the above observations 
are consistent with the characteristics of the synthetic 
seismogram without low-frequency data.
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2. Anticlinal pinch-out model 
We design an anticlinal pinch-out model (Figure 

4) and filter out the low-frequency data using the 
same parameters as above. Then, we analyze the F–X 

spectrum of the original data (Figure 4), and we show 
the time-domain data containing 0–4 Hz, 0–8 Hz, and 0–
12 Hz low-frequency components (Figure 5).
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                   (a) Original data                                                   (b) F–X spectrum of the section 
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Fig.4 Anticlinal pinch-out model without low-frequency data and corresponding F–X spectrum.

Figures 4 and 5 show that the lack of low-frequency 
data mainly affects the structural information. In 
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Fig.5 Anticlinal pinch-out model only with low-frequency information. 

addition, the F–X spectrum is an effective method to 
observe low-frequency components and lateral variation. 



216

Low-frequency data analysis and expansion

Finally, the main frequency of the 
wavelet affects the low frequency of 
the model. When the main frequency 
is low, the effect of low-frequency 
loss increases.

3. Structurally complex model 
In order to discuss the role of the 

low-frequency data in inversion, we 
use the model in Figure 6a, which 
includes an anticlinal trap, a fault, and 
thin layers. We use a 30 Hz Ricker 
wavelet to do forward modeling and 
filter out the data with frequencies 
below 12 Hz. Using the velocity and 
density data of the model, we design 
seven simulation wells, and each well 
has an acoustic and density curve. 
Then, we apply wave impedance 
inversion using the full frequency 
bandwidth and remove the low-
frequency data (below 12 Hz). The 
results are shown in Figures 6b and 
6c, respectively. The comparison 
suggests that the loss of low-frequency 
data affects the inversion accuracy.

Figure 6 shows that the exclusion 
of low-frequency data produces 
resu l t s  tha t  cannot  accura te ly 
reflect the variations in the various 
lithological and structural components 
of the model.

Low-frequency 
expansion based on 
compressed sensing

Compressed sensing
Let us assume that the length of the 

signal f is N and it can be expressed 
as (Donoho, 2006; Candès et al., 
2006a, 2006b)

          
1

,
N

i i
i

f x x           (1)
       

where , N N
i C are matrices, 

and  x  =  [x 1,  x 2,  …,  x N] T i s  the 
transform coefficients vector. If the 
number of nonzero elements is K 

and K << N, then f is sparse in Ψ. We 
use compressed sensing to design 
the observation matrix Φ that is 
not correlated with the sparse basic 
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Fig.6 Inversion of the complex geological model.

matrix Ψ, and then compress and 
sample the signal

         .fy x           (2)
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Based on the sparsity of vector x, we can recover x by 
using a sparse promoting algorithm 

        
0

min . . .s t fx y x  (3)

Equation (3) is a nondeterministic polynomial that 
cannot be used to solve the sparse coefficient directly. 
However, it turns out that one can actually recover x by 
solving the convex algorithm

        
1

min . . ,s t fx y x  (4)

where ||·||0 is the l0-norm and ||·||1 is the l1-norm. 

Seismic data reconstruction for low-frequency 
data expansion

Based on the seismic convolution model, seismic traces 
in the time domain can be expressed as the convolution 
of the source wavelet and the underground reflection 
coeffi cient (Li and Zhang, 2004)

                             .y w x   (5)

We transform equation (5) to the frequency domain by 
using the Fourier transform

                       ,Y WX WFx  (6)

where y is the seismic trace, w is the source wavelet, x 
is the reflection coefficient, F is the Fourier transform 
operator, and Y, W, and X represent the frequency-
domain expressions of y, w, and x.

In seismic exploration, the underground reflection 
coefficient is treated as random sequence with full 
frequency bandwidth. However, because of the filter 
effect of the wavelet, the high and low frequencies are 
lost. Compressed sensing proposes that we can recover 
the original sparse signal by using a sparse promoting 
algorithm even if the original signal is affected by 
noise or signal components are missing (Candès, 
2006b). The reflection coefficient is sparse in the time 
domain. This satisfies the assumptions of compressed 
sensing theory for sparse signals. Therefore, we can 
recover the reflection coefficient using compressed 
sensing from the seismic data that have lost the low-
frequency components. We establish the minimum l1-
norm reconstruction model by using the sparse transform 
and solve the underdetermined problem by using a fast 
iterative shrinkage-thresholding algorithm to minimize

                 2

2 1

1min ,
2x

Y FWx x   (7)

where ||·||2
2 is the l2-norm, F is the sparse matrix, W is 

observation matrix, and λ is the Lagrangian operator. 
First, we constrain the minimization for continuous 
convergence in the frequency spectrum of the seismic 
data by the l2-norm. Second, we use a sparse promoting 
method to obtain x by the l1-norm. The formula can 
be solved by the fast iterative shrinkage-thresholding 
algorithm (Beck, 2009). 

We recover the seismic reflection coefficient x̂ 
using compressed sensing theory and bandwidth-
limited seismic data. We reconstruct the low-frequency 
seismic data using the low-frequency information of the 
refl ection coeffi cient as follows:

             1 ˆˆ [ ( ) ( )],ML MHy F X Y  (8)

where ML and MH are the operators for extracting the 
low and high frequencies after matching the amplitude 
spectrum of the reflection coefficient and the seismic 
data, F-1 is inverse Fourier transform operator, ŷ  are the 
seismic data after low-frequency expansion.

Model data analysis

First, we set up the parameters of the reflection 
coefficient model. The sampling points are 201, the 
sampling rate is 2 ms, and the reflection coefficient is 
0.8, −0.6, and 0.4 at 100, 200, and 300, respectively. 
Synthetic data (green line in Figure 7a) are generated by 
convolving a 30 Hz Ricker wavelet. The main frequency 
and sampling points of the wavelet are consistent with 
the above discussion. Then, the method is used to extend 
the frequency spectrum, and the results are denoted 
with the red line in Figure 7a. Finally, we analyze the 
frequency spectrum of the original and processed trace, 
and show the results in Figure 7b.

Figure 7b shows the frequency spectrum of the 
original and processed trace, which is obtained by 
extending the low-frequency information with the 
proposed method. Clearly, the low frequency is 
expanded and the frequency band is broadened. Figure 
7a shows that the space position of the seismic synthetic 
trace does not change, the energy of the main lobe 
increases, the energy of the side lobe decreases, and the 
resolution improves. In conclusion, the proposed method 
expands the low-frequency components successfully.
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Field data application and analysis

We apply the method on a common image point 
(CIP) gather and expand the low-frequency data. The 
comparison of the frequency spectrum of the original 
fi eld and processed data is shown in Figure 8.

Figure 8 shows that the low-frequency energy of the 
processed data increases and the effective frequency 
band broadens. Owing to the limited expansion energy 
of the low-frequency data, the changes are not obvious in 
the CIP gather. Thus, we show the results after fi ltering (0
–10 Hz) in Figure 9.

Figure 9 shows that after the low-frequency expansion, 
the events extend to the near offset and the energy is 
obviously enhanced, which suggests that the CIP gather 
quality has improved and the low-frequency expansion 

                                                   (a) Waveform before and after extension                                        (b) Frequency spectrum before and after the extension 
Fig.7 Original and processed traces.
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      (a) Original data                                                                       (b) Processed data
Fig.9 Comparison of the 0–10 Hz section using the proposed method.

is successful. Then, we stack the CIP gather to obtain 
a poststack section and show the stacked section after 
fi ltering (0–10 Hz) in Figure 10.
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Figure 10 shows that the energy is enhanced, and the 
fault and the breakpoints are more clear. Moreover, the 

basic geological features are better reflected after low-
frequency expansion. 

(a) Section before expansion

lacks low frequency component. Four, wave impedance 
inversion confirms that data processing without low-
frequency information cannot reflect stratigraphic 
and lithological variations. Therefore, in seismic data 
acquisition and processing, we should protect the low-
frequency information and proceed with low-frequency 
expansion to improve the quality of seismic data. 
Finally, the proposed low-frequency expansion method, 
which is based on compressed sensing, uses the low-
frequency components of the reflection coefficient to 
rebuild the low-frequency information in the seismic 
data. The proposed method clearly improves the q uality 
of seismic data for the inversion and interpretation.
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