
47

Manuscript received by the Editor February 24, 2014; revised manuscript received February 13, 2015.
*This work is supported fi nancially by the National Natural Science Foundation (No. 41174117) and the Major National 
Science and Technology Projects (No. 2011ZX05031–001).
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, China.
3. Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China.
© 2015 The Editorial Department of APPLIED GEOPHYSICS. All rights reserved.

Random noise attenuation by f–x spatial 
projection-based complex empirical mode 

decomposition predictive fi ltering*

APPLIED GEOPHYSICS, Vol.12, No.1 (March 2015), P. 47-54, 11 Figures.
DOI: 10.1007/s11770-015-0467-3

Ma Yan-Yan1,2, Li Guo-Fa1,2, Wang Yao-Jun1,2, Zhou Hui1,2, and Zhang Bao-Jiang3

Abstract: The frequency–space (f–x) empirical mode decomposition (EMD) denoising 
method has two limitations when applied to nonstationary seismic data. First, subtracting 
the first intrinsic mode function (IMF) results in signal damage and limited denoising. 
Second, decomposing the real and imaginary parts of complex data may lead to inconsistent 
decomposition numbers. Thus, we propose a new method named f–x spatial projection-based 
complex empirical mode decomposition (CEMD) prediction fi ltering. The proposed approach 
directly decomposes complex seismic data into a series of complex IMFs (CIMFs) using 
the spatial projection-based CEMD algorithm and then applies f–x predictive fi ltering to the 
stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were 
used to demonstrate the performance of the new method in random noise attenuation and 
seismic signal preservation.
Keywords: Complex empirical mode decomposition, complex intrinsic mode functions, f–x 
predictive fi ltering, random noise attenuation

Introduction

Predictive filtering in the frequency–space (f–x) 
domain (Canales, 1984; Gulunay, 1986; Abma and 
Claerbout, 1995), herein referred to as the FXdecon 
method, is a popular random noise attenuation method 
in real seismic data processing. This method assumes 
that signals are predictable in the f–x domain, whereas 
random noise is not. Random noise can be attenuated by 
combining  the prediction filter operator with original 

seismic data in the f–x domain. There are two limitations  
in the FXdecon method. First, FXdecon predicts noise 
as source noise rather than additive noise. Soubaras 
(1994) used f–x projection filtering to remedy the 
inconsistency between source noise and additive noise. 
Sacchi and Kuehl (2001) used the autoregressive moving 
average model in place of the autoregressive model as 
the prediction fi lter to avoid this inconsistency. Trickett 
(2003) used the Cadzow filter to realize a filtering 
algorithm that can adapt to sloping and conflicting 
events (Yuan and Wang, 2011). Second, FXdecon 
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cannot deal with nonstationary seismic data. Time–
frequency analysis tools such as the wavelet transform 
(Ioup and Ioup, 1998) and curvelet transform (Wang et 
al., 2010) are used to solve the nonstationary problem 
in seismic data. However, these transforms need preset 
basic functions that lack clear physical signifi cance and 
may lead to poor performance in practical applications. 
Battista et al. (2007) introduced the Hilbert–Huang 
transform (HHT) to seismic data processing. HHT uses 
the empirical mode decomposition (EMD) to decompose 
a nonstationary signal into a series of intrinsic mode 
functions (IMFs) without presetting any basic functions. 
Bekara and van der Baan (2009) used EMD instead 
of the prediction filter operator in the f–x domain to 
attenuate noise and proposed the FXEMD denoising 
method. This scheme decomposes the real and imaginary 
parts of the frequency slice using the EMD algorithm, 
subtracts the first IMF, and then stacks the residual 
parts to obtain the final denoised slice. However, there 
are two limitations in the FXEMD method. First, 
signals and noise coexist on all IMFs; thus, simply 
subtracting the first IMF will result in signal damage 
and limited denoising ability. Second, the respective 
decomposition of real and imaginary parts may destroy 
the unity structure of the complex signal and even lead 
to inconsistent decomposition numbers between real and 
imaginary parts. 

We propose a novel method named f–x spatial 
projection-based complex empirical mode decomposition 
(CEMD) prediction filtering or FXCEMDdecon. First, 
we directly decompose nonstationary complex seismic 
data in the f–x domain into complex intrinsic mode 
functions (CIMFs) using the spatial projection-based 
CEMD algorithm, and then apply the FXdecon filter to 
the stationary CIMFs to attenuate noise. Synthetic and 
real seismic data are used to test the performance of the 
method in random noise attenuation and signal restoration.

Theory

Spatial projection-based complex empirical 
mode decomposition 

EMD is widely used in time–frequency analysis. 
EMD stabilizes a nonstationary signal by decomposing 
it into IMFs. The stationary IMFs satisfy two conditions 
(Huang et al., 1998): 1) the number of extremes and zero 
crossings in the dataset must be either equal or differ 
by one at most, and 2) the mean value of the envelope 

defined by the local maxima and the local minima 
is zero at all points. Each IMF has a relatively local 
constant frequency. Most seismic signals are nonlinear 
and nonstationary, and the aim of applying EMD is to 
decompose the nonstationary signals into stationary 
components of different frequency ranges.

Traditional EMD cannot deal with complex signals 
directly; thus, it divides a complex signal into real and 
imaginary parts and decomposes them independently. 
This decomposition not only destroys the unity of 
the complex signals but also leads to inconsistent 
decomposition numbers.

In this paper, the CEMD algorithm based on spatial 
projection (Rilling et al., 2007) is used to directly 
decompose complex signals. This method considers 
a complex signal as fast oscillations superimposed by 
slower oscillations. Projection vectors are obtained by 
projecting the complex signal on different directions. 
The slow oscillations can be extracted by using the 
mean of the envelope of the extremes of all projection 
vectors, and then the fast oscillation can be obtained 
by subtracting the slow oscillations from the original 
signal. This method achieves the direct decomposition 
of a complex signal and avoids the inconsistency 
between real and imaginary decomposition. Moreover, 
the resultant CIMFs can refl ect the different oscillations 
embedded in the original complex signal. Figure 1 shows 
the CEMD, and the detailed steps of the algorithm are 
the following (Rilling et al., 2007).

1) Project the complex signal x(t) on a given direction 
φk(1 ≤ k ≤ N) to obtain the projection vector

 
                      Re( ( )),k

k

ip t e x t   (1)

where i denotes the imaginary unit and N denotes the 
number of projection directions.

2) Extract the values and locations of maxima of pφk
(t) 

in the specifi c direction φk and then interpolate them to 
obtain the envelope eφk

(t).
3) Repeat steps 1 to 2 for all projection directions 

and calculate the mean value m(t) of all envelopes by 
equation (2) 

                         1 .
k

k
m t e t

N
  (2)

4) Subtract the mean value m(t) from the original 
signal x(t) and determine if the residual satisfies the 
aforementioned two conditions of IMF. If it does, the 
residual can be treated as an IMF. If not, the residual will 
be treated as the original signal, and steps 1 to 3 should 
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be repeated until the two conditions are satisfi ed. At this 
point, the fi rst CIMF is obtained.

5) Subtract the first CIMF from the original signal 
x(t) and treat the residual as a new signal. Repeat 

the decomposition process until it becomes either a 
monotonic function or a constant. Finally, a series of 
CIMFs will be obtained.

5

0

-5
5

0
-5 0

2
4

X

Y

Time (s)

5

0

-5
5

0
-5 0

2
4

X

Y

Time (s)

5

0

-5
5

0
-5 0

2
4

X

Y

Time (s)

5

0

-5
5

0
-5 0

2
4

X

Y

Time (s)

(a) The original complex-valued 
signal   

(b) Envelopes of the projection 
vectors at different directions

  (c) Fast oscillation (d) Residual slow oscillation

Fig.1 Demonstration of CEMD on a synthetic signal. 

F–x spatial projection-based complex empirical 
mode decomposition predictive fi ltering 

The FXEMD denoising method, proposed by 
Bekara and van der Baan (2009), has many successful 
applications; however, simply subtracting the fi rst IMF 
will result in signal damage and limited denoising ability 
because signals coexist with random noise in all IMFs. 
In addition, decomposing the real and imaginary parts 
may lead to inconsistent decomposition numbers of real 
and imaginary parts, which consequently makes the 
reconstitution of complex signals more diffi cult. 

To solve these problems, a novel random noise 
attenuation method named FXCEMDdecon is proposed. 
First, the nonstationary seismic data are decomposed into 
stationary CIMFs by using the spatial projection-based 
CEMD algorithm, and then, random noise attenuation on 
all CIMFs is carried out by using the FXdecon method. 
The process comprises the following steps.

1) Assume that the 2D seismic data in the frequency–
space (f–x) domain can be expressed as ˆ( , )s f x .

2) Decompose a given frequency slice ˆ( , )us f x  along 
the spatial direction by using the spatial projection-based 
CEMD algorithm to obtain the CIMFs ˆ ( , )cimfs um f x , which 
satisfy the two conditions mentioned above.

3) Derive the prediction operator al with the following 
equation

       
1

ˆ ˆ( , ) ( , ),
p

cimfs u l cimfs u
l

m f n a m f n l  (3)

where n denotes the number of seismic traces and p 
denotes the prediction step. The filtered frequency 
slice ˆ̂( , )us f x  can be obtained by stacking all the fi ltered 

CIMFs.
4) Repeat steps 2 and 3 for all frequency slices to 

obtain the fi ltered data ˆ̂( , )s f x .
5) Transform the fi ltered data ˆ̂( , )s f x  to the t–x domain 

to obtain the fi nal denoising results.

Synthetic examples

Figure 2 shows a synthetic complex signal consisting 
of three frequency components. The blue solid curve 
corresponds to the real part and the red dashed curve to 
the imaginary part. The synthetic signal is decomposed 
by using the conventional EMD and spatial projection-
based CEMD method, and the results are shown in 
Figure 3 using the same symbols. Figures 3a–3b show 
the three CIMFs and Figure 3d shows the residuals using 
the conventional EMD method. Figures 3e–3g show the 
three CIMFs and Figure 3h shows the residuals using 
the CEMD method. The three CIMFs obtained with the 
conventional EMD method significantly deviate from 
the three frequency components of the original signal. 
Especially, for the imaginary part, it only appears in the 
fi rst CIMF but disappears in the second and third CIMF. 
The inconsistency between the real and imaginary IMF 
numbers may potentially damage the unity of complex 
signals in noise attenuation using the EMD method. In 
contrast to the conventional EMD method, the three 
CIMFs obtained by using the spatial projection-based 
CEMD method are consistent with the three frequency 
components of the original signal in magnitude and 
frequency. 
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Fig.3 EMD on the synthetic signal: (a)–(c) CIMFs and (d) residual using the conventional EMD decomposition method; and 
(e)–(g) CIMFs and (h) residual using the spatial projection-based decomposition method.
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Fig.2 Synthetic complex signal (a) and its three frequency components (b)–(d). Solid curve denotes 
the real part and the dotted curve denotes the imaginary part.
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Next, synthetic seismic data are used to test the 
algorithm. The noise-free synthetic data are shown in 
Figure 4a, whereas Figure 4b shows the 25% noise-
added section. The synthetic data contain 20 traces and 

the offset is from 0 m to 100 m with a 5 m interval. The 
total time record of the trace is 1 s and the time interval 
is 4 ms. To test the signal preservation ability of the 
algorithm, two types of events are used, including a 
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horizontal event with maximum amplitude of one and 
two confl icted events with maximum amplitude of two, 
which correspond to a weak and complex signal. Then,    
the FXCEMDdecon, FXEMD, and FXdecon methods 
are used to remove the noise, and the results are shown 
in Figures 5, 6, and 7, respectively. For convenience, 
we also calculate the frequency–wavenumber (F
–K) spectra of the noise attenuation results for 
FXCEMDdecon, FXEMD, and FXdecon, which are 
shown in Figures 8c–8e, respectively. From Figure 5 
and the F–K spectrum (Figure 8c), we can see that the 
proposed FXCEMDdecon method has good denoising 
performance. The majority of the reflection and weak 
signals are preserved in the denoising section, whereas 
little of the effective signal remains on the removed 
noise profile. From Figure 7, we can see that the 

FXdecon poorly preserves the weak signal because the 
horizontal refl ection disappears in the denoising section 
(Figure 7a). This phenomenon is also seen in the F–K 
spectrum (Figure 8e). Although the noise attenuation 
results obtained with FXEMD are better than the results 
with FXdecon, residual signals of conflicting events 
remain on the noise section (Figure 6b). In addition, by 
comparing the F–K spectra in Figures 8a and 8d, we see 
that the effective signals become weak for wavenumbers 
between −0.05 and 0.05. When the wavenumbers are 
larger than 0.05 and smaller than −0.05, the energy of 
the effective signals almost disappears. This implies that 
the FXEMD method is equivalent to a binary fi lter in the 
wavenumber domain, and it destroys the dip event if the 
process window is not appropriately selected. This issue 
will be discussed later. In real seismic data processing, 
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Fig.4 Synthetic data: (a) noise-free synthetic data and (b) data with 25% Gaussian noise added.

Fig.5 Noise attenuation using the FXCEMDdecon method (a) and the removed noise section (b).

 Fig.6 Noise attenuation using the FXEMD method (a) and the removed noise section (b).
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 (e) denoising results with the FXdecon method
Fig.8 Comparison of F–K spectra.

random noise attenuation is mainly used to embellish 
poststack data. Serious damage to weak refl ections and 
minor fault refl ections will result in misinterpretations. 

Fig.7 Noise attenuation using the FXdecon method (a) and the removed noise section (b).

Hence, all results confirm that the proposed scheme 
offers the best noise attenuation performance.
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Next, the superiority of the FXCEMDdecon 
method is examined. From the spectrum of IMFs for 
white Gaussian noise in Figure 9, we can see that the 
frequency range of IMFs decreases by half, which 
suggests that EMD is equivalent to a binary fi lter, and 
this feature does not change as the data length changes 
(Rilling et al., 2007). Therefore, when the FXEMD 
approach is used, subtracting the first IMF will only 
lead to an effective signal between lower wavenumber 
ranges. When the signals of the most confl icting events 
are outside the half-range of the original wavenumbers, 
the effective signals are destroyed. Therefore, FXEMD 

                                           (a) Noise-free synthetic data                                                                    (b) Noisy synthetic data

                       (c) denoising results with the FXCEMDdecon method                               (d) denoising results with the FXEMD method
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is not appropriate to process seismic data when steep 
events exist. A feasible solution is to select and process a 
small lateral time window.

FXdecon. Second, considered as an oscillation with 
specific frequency, each CIMF has a relatively single 
slope. When the FXdecon is used in CIMFs, different 
slope events can be filtered, and the errors owing to 
mixtures of dipping events are avoided. Therefore, the 
proposed FXCEMDdecon method has the best signal 
preservation performance.

Field data example

The proposed method is applied to fi eld seismic data 
of carbonate reservoirs in western China. Random noise 
is common in seismic profiles and overlaps with the 
effective signals in the frequency range. The SNR of 
the seismic data is small largely because of the noise. 
The random noise attenuation directly affects the final 
processing results.

To demonstrate the denoising effect, we choose a 
seismic profile with low SNR. As shown in Figure 10, 
seismic events have poor continuity, and the signals 
are weak. Figures 11a, 11b, and 11c show the noise 
attenuation profiles of the FXCEMDdecon, FXEMD, 
and FXdecon methods. We can see that FXCEMDdecon 
method offers the best noise attenuation and signal 
preservation. In particular, for the weak event around 
2.2 s and 2.6 s as well as the discontinuous events 
below the strong event around 2.7 s (marked by the 
ellipses), the FXCEMDdecon method preserves 
the weak reflections and enhances the continuity of 
events. Though the FXEMD method uses the EMD 
algorithm to decompose nonstationary seismic data into 
stationary IMFs, simply subtracting the fi rst CIMF will 
result in signal loss and will prevent the random noise 
attenuation in the other IMFs. The FXdecon method 
directly processes nonstationary seismic data and hardly 
achieves ideal amplitude-preserving denoising. Clearly, 
the FXCEMDecon method has two advantages over the 
FXEMD and FXdecon methods.

Am
pl

itu
de

IMF1IMF2IMF3

IMF4

IMF5

IMF6

IMF7

Frequency (Hz)
0 50 100 200150 250 300 350 400 450 500

60

50

40

30

20

10

0

Fig.9 Spectra of IMFs for white Gaussian noise.

The FXdecon method is essentially a dip fi lter in the f–
x domain (Gulunay, 1986). It is based on the assumption 
that seismic events have the same slope. When different 
slope events appear in the seismic section, signals 
with strong energy significantly contribute to the filter 
operator, whereas signals with weak energy (particularly 
with energy close to noise) contribute little. Thus, the 
calculated fi lter operator will attenuate the weak signals 
as noise, resulting in signal energy loss.

The FXCEMDdecon method offers two advantages. 
First, CEMD makes seismic data more suitable for 
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Fig.10 Original seismic profi le from western China.

Trace
1

2.0

2.5

3.0

Ti
m

e (
s)

3.5

31 61
(a) (b)

91 121 151
Trace

1

2.0

2.5

3.0

Ti
m

e (
s)

3.5

31 61 91 121 151



54

Random noise attenuation

527.
Gulunay, N., 1986, FXDECON and complex Wiener 

prediction fi lter: 56th Annual International Meeting, SEG, 
Expanded Abstracts, 279–281.

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. 
H., Zheng, Q., Yen, N. C., Tung, C. C., and Liu, H. H., 
1998, The empirical mode decomposition and the Hilbert 
spectrum for nonlinear and non-stationary time series 
analysis: Proceedings of the Royal Society of London. 
Series A: Mathematical, Physical and Engineering 
Sciences, 454(1971), 903–995.

Ioup, J. W., and Ioup, G. E., 1998, Noise removal and 
compression using a wavelet transform: 68th Annual 
International Meeting, SEG, Expanded Abstracts, 1076–
1079.

Rilling, G., Flandrin, P., Goncalves, P., and Lilly, J. M., 
2007, Bivariate Empirical Mode Decomposition: IEEE 
Signal Processing Letters, 14(12), 936–939.

Sacchi, M. D., and Kuehl, H., 2001, ARMA formulation of 
FX prediction error fi lters and projection fi lters: Journal 
of Seismic Exploration, 9(3), 185–197.

Soubaras, R., 1994, Signal-preserving random noise 
at tenuat ion by the f–x  project ion:  64 th Annual 
International Meeting, SEG, Expanded Abstracts, 1576–
1579.

Trickett, S. R., 2003, F-xy eigenimage noise suppression: 
Geophysics, 68(2), 751–759.

Wang, D. L., Tong, Z. F., Tang, C., and Zhu, H., 2010, An 
iterative curvelet thresholding algorithm for seismic 
random noise attenuation: Applied Geophysics, 7(4), 315
–324.

Yuan, S. Y., and Wang, S. X., 2011, A local f–x Cadzow 
method for noise reduction of seismic data obtained in 
complex formations: Petroleum Science, 8(3), 269–277.

Ma Yan-Yan received a BS (2007) in Information and 
Computing Science and a MS (2011) 
in Earth Exploration and Information 
Technology from China University of 
Petroleum (Beijing). She is presently 
a Ph.D. candidate in China University 
of Petroleum (Beijing), majoring in 
Geological Resources and Geological 
Engineering. Her research interests are 

seismic data processing and reservoir prediction.

Conclusions

Seismic data become complex when transferred to the 
frequency domain from the time domain. The unity of 
complex signals may be damaged when noise detection 
and attenuation is independently applied to the real and 
imaginary parts of a complex signal. We improve the 
conventional EMD-based noise attenuation method 
by directly using CEMD and applying FXdecon to all 
CIMFs. The method can be treated as an extension of 
conventional EMD in combination with the FXdecon 
method. Synthetic and real seismic data were used to 
verify the performance of the method in random noise 
attenuation and seismic signal restoration. 
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