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Abstract: We apply the newly proposed double absorbing boundary condition (DABC) 
(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference 
(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is 
used on two parallel artifi cial boundaries, and thus double absorption is achieved. Using the 
general 2D acoustic wave propagation equations as an example, we use the DABC in seismic 
FD modeling, and discuss the derivation and implementation steps in detail. Compared 
with the perfectly matched layer (PML), the complexity decreases, and the stability and 
fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical 
experiments. The results show that absorption using the DABC is considerably improved 
relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.
Keywords: Double absorbing boundary condition, numerical modeling, finite-difference 
method, artifi cial boundary condition

Introduction

Artificial boundary conditions, modeling accuracy, 
and numerical dispersion are considered the most 
important and diffi cult problems in numerical modeling. 
Owing to computing resources limitations, the wavefi eld 
value can only be calculated in the finite domain. To 
reduce the effect of boundary refl ections on the original 
wavefi eld, an artifi cial boundary is introduced.

Presently, three types of boundary conditions are 
typically used in seismic modeling: the Clayton–
Engquist boundary condition (CEBC) (Clayton and 

Engquist, 1977), attenuation-based boundary condition 
(Cerjan et al., 1985), and perfectly matched layer (PML) 
(Bérenger, 1994). CEBC can well tackle vertical incident 
waves, but it is unsuitable for waves with a wide incident 
angle. The attenuation-based boundary condition is not 
good at absorbing low-frequency signals. Among these 
approaches, PML is able to acquire the best results but at 
a high computing cost. With improvements in computer 
performance, PML has attracted more attention, and 
many have investigated the method stability (Bécache 
et al., 2003), calculation efficiency (Gedney, 1996), 
absorption effect (Komatitsch and Tromp, 2003; Yan 
and Liu, 2013b), the application domain (Song et al., 
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2011; Zhao and Shi, 2013) and the propagation medium 
(Collino and Tsogka, 2001; Yan and Liu, 2013a). PML 
instability appears in tangential incident waves, or it 
is expressed as prolonged modeling in complex media 
such as anisotropic and porous media. The convolutional 
perfectly matched layer (C-PML) can deal with the 
instability due to tangential incident waves but at a high 
computation cost (Roden and Gedney, 2000). Besides 
these three types of boundary conditions, new boundary 
conditions are constantly proposed with the aim to 
reduce complexity and improve flexibility. The most 
representative boundary condition is the hybrid (Liu 
and Sen, 2010, 2012). The hybrid absorbing boundary 
condition introduces a transition zone between the inner 
region and the boundary to realize the smooth transition 
between the one-way and two-way wave equations and 
to eliminate the artifi cial boundary refl ections. However, 
this boundary condition is constructed on the basis of 
the classic low-order boundary conditions, e.g., CEBC 
and Higdon ABC (Higdon, 1987), with second-order 
precision.

The local high-order absorbing boundary condition 
(ABC), a method presented by Collino (1993), is equally 
popular with PML, and it can achieve absorption with 
any precision order. Each point on the boundary of the 
local high-order ABC is only related to adjacent points 
and corresponds to a set of auxiliary variables. The 
condition can be easily implemented with relatively 
good absorption effect. The change in the wave equation 
under PML leads to complex theoretical derivations 
and is difficult to perform. However, the high-order 
ABC processes boundary and interior regions separately 
and thus greatly minimizes computation difficulties. 
However, the high-order ABC cannot readily treat 
corners (Rabinovich et al., 2010). Recently, Hagstrom 
et al. (2014) proposed the double absorbing boundary 
condition (DABC). This method offers the advantages of 
the high-order ABC using a fi nite thickness and avoiding 
the special treatment of corners. In addition, the DABC 
improves the absorption effect by increasing either the 
boundary thickness or the order of precision. Therefore, 
in contrast to the high-order ABC, it improves fl exibility. 
Simultaneously, the DABC also avoids the instability 
problems of the PML (Rabinovich et al., 2010).

For effi cient and accurate application of the boundary 
condition in seismic modeling, we opted for the DABC. 
We performed adaptability analysis of the DABC 
with finite-difference (FD) methods, then derived the 
particular form of the DABC by modeling the 2D 
acoustic wave propagation equation, and discussed 
the methodology in detail. Then, we modeled a 

homogeneous and a complex medium separately under 
different boundary conditions. Finally, the results are 
summarized in the conclusions.

Method

Basic theory
As in the high-order ABC, the auxiliary variable j in 

the DABC is part of equation (1) (Hagstrom et al., 2014)
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where P is the order of the absorption accuracy, v is the 
velocity, and , , ,j j j ja a  are the coeffi cients.

We derive the DABC form that is appropriate for 2D 
seismic modeling. The 2D acoustic wave equation is

2 2 2

2 2 2 2
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p x z t p x z t p x z t
x z v x z t
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In the above equation, p(x, z, t) is the wavefield. The 
right-hand expression is the source and (xs, zs) is the 
source position. Figure 1 shows the structure of the CEBC 
and high-order ABC (Clayton and Engquist, 1977).
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Fig.1 Structure of CEBC and high-order ABC.

In Figure 1, ΓW, ΓE, ΓN,ΓS represent the west, east, 
north, and south boundaries, respectively. Γ = ΓW  ΓE  ΓS

 ΓN denotes the artifi cial boundary region. ΩI represents 
the interior region and the calculation region is Ω = ΩI 

 Γ. The wavefi eld is governed by the 2D acoustic wave 
equation in the interior region, and the wavefi eld on the 
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right boundary is governed by the following equation

              E : ( , , ) ( , , ) 0.t xp x z t v p x z t  (3)

The high-order ABC introduces a high-order part in 
the CEBC, which allows absorption with any order of 
accuracy. Considering the right boundary ΓE, e.g., the 
wavefi eld on this boundary satisfi es equation (4)(5)(6). 
We substitute p(x, z, t) with p for simplicity

                      1( ) .t x tv p  (4)

   1( ) ( ) , 0, , ,t x j t x jv v j P    (5)

                               1 0.P  (6)

The absorption precision can improve by increasing P 
(Bécache et al., 2010). A sequence of auxiliary variables 

j = j (x, y, t) is introduced to eliminate the squared 
items, resulting in the low-order form (Givoli and Neta, 
2004). 

Equations (5) and (1) are the same when aj = āj = 1, σj = 

σj = 0. This set of parameters guarantees the stability and 
effectiveness of the proposed method.

Figure 2 shows the structure of the DABC. The DABC 
boundary region ΩL, where there are variable j,  includes 
four inner boundaries (ΓIN, ΓIS, ΓIW, ΓIE), four outer 
boundaries (ΓN, ΓS, ΓW, ΓE), and the region between the 
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Implementation steps

Here we use the Figure 3 to illustrate the DABC 
application in acoustic wave equation modeling. The 
Figure 3a shows a 2D infinite area in the east and west 
directions. The Figure 3b shows the DABC structure 
when we set the DABC in the east and the west directions.

Fig.2 Structure of DABC.

inner and outer boundaries. In the DABC, high-order 
ABCs are applied in two parallel FD grids. ΩI is the 
interior region, and Ω = ΩL  ΩI is the calculation region.
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   (a) Infi nite area in the east and west directions               (b) The DABC on east and west directions
Fig.3 Design of DABC.

In the Figure 3, Nz is the gird number in z orientation. 
The x coordinates of the four high-order absorbing 
boundaries are xIE, xE, xIW and xW. ΩL = ΩWL  ΩEL (xIE ≤ 

x ≤ xE  Γ xW ≤ x ≤ xIW, 0 ≤ z ≤ Nz) is the DABC boundary 
region. Ω I represents the interior region and the 
calculation region is Ω = ΩL  ΩI. j satisfy the wave 

equation and the initial zero conditions, where p is as in 
equation (2)

        … L

( , , 0) 0,      

( , , 0) 0, 0, , 1  .
j

j

x y t

x y t j P in  (7)



114

Seismic modeling

The termination conditions are satisfied by j on the 
outer boundaries ΓW and ΓE

                     P+1( ) 0,x tv  (8)

                       P+1( ) 0.x tv  (9)

And, on ΓIW, ΓW, ΓIE, and ΓE, j and j+1 satisfy the 
recursive relations as in equation (5). The left side of 
equation (5) is known and the right side of equation (5) 
is unknown when we calculate the inner boundaries, 
whereas the right side of equation (5) is known and the 
left side of equation (5) is unknown when we calculate 
the outer boundaries.

We use FD discretization for time and space, where 
dx and dz are the sampling intervals in the x and z 
directions, respectively. j is the precision order variable. 
k is the grid number in the x direction. l is the grid 
number in the z direction. Superscripts j–1, n, and n+1 
represent three moments of time in the time order. 
Discrete operators are defi ned as follows:

Forward average in space: 

                       1, ,( ) / 2,x k l k lA p p  (10)

Backward average in space: 

                     1, ,( ) / 2,x k l k lA p p   (11)

Forward average in time:

                     1( ) / 2,n n
tA p p   (12)

Forward difference in space:

                     1, ,( ) / 2,x k l k lD p p  (13)

Backward difference in space: 

                     , 1,( ) / 2,x k l k lD p p  (14)

Forward difference in time:

                      1( ) / 2.n n
tD p p   (15)

Implementation steps in acoustic wave equation 
FD modeling with DABC

Step 1. pn in Ω and j
n in ΩL are given for j = 0, …, 

P + 1.
Step 2 . Compute pn+1 in Ω except for ΓW and ΓE,

  1 1
, , ,

2
1, 1, , 1 , 1 ,

=2

+( / ) (         4 ),

n n n
k l k l k l

n n n n n
k l k l k l k l k l

p p p

v t h p p p p p

where h = min (dx, dz).
Step 3. j

n+1 = pn+1 in ΩL.
Step 4. Compute j

n+1(j = 0, …, P + 1) for all the 
interior grid points of ΩL except ΓIW, ΓW, ΓIE, and ΓE

1 1
, , , , , ,

, 1, , 1, , , 1 , , 1 , ,         

=2

+( / ) ( 4 ).

n n n
j k l j k l j k l

n n n n n n
j k l j k l j k l j k l j k lv t h

Step 5. Compute j
n+1( j = P, P–1, …, 0) on the outer 

boundaries ΓW and ΓE with equation (5)
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x t j l t x j l x t j l t x j lA D vA D A D vA D

The unknown items in the above equations are 1
,W,
n
j l  

and 1
,E,
n
j l . The explicit form is

1
,W, 1,W 1, 1,W 1,

1
,W 1,
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=2 2

1            ,
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where 1 vw
t x

.

Step 6 . 
1 1

W, 0,W,
n n
l lp  and 

1 1
E, 0,E,
n n
l lp .

Step 7. Compute j+1
n+1 ( j = 0, …, P) on the inner 

boundaries ΓIW and ΓIE with equation (5)

  ,IW, ,IW, 1,IW, 1,IW, ,n n n n
x t j l t x j l x t j l t x j lA D vA D A D vA D
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The unknown items in the above equations are 1
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n
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,IE,
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in which 1 vw
t x

.

Step 8. pn = pn+1 and n = n+1, then compute pn+1.

Numerical modeling

We designed two groups of FD numerical modeling 
experiments. The absorption effects of the CEBC, 
PML, and DABC are compared using three indicators: 
a snapshot, the wavefi eld value received at fi xed points, 
and the sum of energy in the entire computational 
domain.

Homogeneous model
Non-ABC, CEBC, PML, and the proposed DABC 

are used. As shown in Figure 4, the absorption results 
of the four boundary conditions are compared for the 
same conditions. To show the results in different stages 

of wave propagation, we choose four typical moments 
at 0.261 s, 0.316 s, 0.386 s, and 0.476 s. The velocity 
is 2800 m/s, the space sampling interval is 6 m × 6 m, 
the number of grid points is 251 × 251, and the time 
step is 1 ms. Twentieth- and second-order regular-
grid fi nite differences are used for spatial and temporal 
discretization. We use a 30 Hz Ricker wavelet as the 
source, and the source position is located at the center of 
the model (750 m, 750 m). The boundary thickness for 
the PML and DABC is set at ten. The attenuation factor 
of PML is set at 900. When using the DABC method, 
modeling with high absorption precision increases the 
calculation cost. The order P of DABC is set equal 
to three to achieve the same absorption effect as in 
the PML. From the snapshots of the third and fourth 
moments, we find that the CEBC absorbs most of the 
strong refl ection, though some refl ected energy remains. 
However, after the absorption of the PML and DABC, 
the refl ection is nearly eliminated.
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Fig.4 Snapshots at different moments. (a) Non-ABC; (b) CEBC; (c) PML; (d) DABC.
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In Figure 5, the direct and reflected waves at (300 
m, 750 m) are compared using the aforementioned 
four methods. In Figure 5a, we find that the direct 
wave is nearly the same for these four methods, but 
the differences in the reflected wave are obvious. In 
the CEBC, some reflected wave energy is still visible, 

whereas in the PML and DABC, the reflected wave is 
completely absorbed. Figure 5b shows the comparison 
of the refl ected wave under the DABC and PML, from 
which we see that the refl ected wave energy is negligible 
when compared with that of the direct wave, and the two 
boundary conditions have similar effectiveness.
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                    (a) Direct and refl ected waves under non-ABC, CEBC, PML, and DABC          (b) Refl ected wave under DABC and PML
Fig.6 Sum of energy.

Figure 6 show the sum of the energy for different 
boundary conditions. Figure 6a shows the sum of the 
wave energy as a function of time. The energy sum of 
the refl ected wave at a later stage is also shown in Figure 

6b. The results suggest that the proposed DABC absorbs 
the reflected wave nearly completely, similar to the 
PML.

                  (a) Direct and refl ected waves under non-ABC, CEBC, PML, and DABC              (b) Refl ected wave under DABC and PML
Fig.5 Wavefi eld values at (300, 750).

SEG salt model
Figure 7 shows the SEG salt model velocities. The 

number of grid points is 649 × 150, the space sampling 
interval is 10 m × 10 m, and the time step is 1 ms. 
Sixteenth- and second-order finite differences are used 
in the spatial and temporal discretization. We use a 30 
Hz Ricker wavelet as the source, and the source position 
is located at the center of the model surface (3240 m, 0 

m). The boundary thickness of the PML and DABC is 
set at 18. The attenuation factor of PML is set at 800. 
The DABC order P is set at five to achieve the same 
absorption precision as in the PML.

Figure 8 shows the FD model seismograms for the 
SEG salt model for the non-ABC, CEBC, PML, and 
DABC schemes. Figure 9 shows the details in the red 
rectangles of Figure 8. A strong boundary reflection 
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Fig.8 Seismograms for SEG salt model for different boundary conditions.

destroys the seismic data under non-ABC. CEBC 
absorbs some of the boundary reflection but a strong 
boundary reflection remains. However, there is nearly 
no boundary reflection for the PML and DABC. The 

numerical modeling of this complex model shows that 
the DABC effectively absorbs the boundary reflection. 
The absorption of the DABC is much better than that of 
the CEBC, and almost the same as the classic PML. 
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       (c) PML                                                                                                      (d) DABC
Fig.9 Partial enlargement of Figure 8.

Conclusions

We applied the DABC to seismic modeling for the 
fi rst time. After analyzing the adaptability of the DABC 
in FD numerical modeling, we derived the particular 
form of the DABC by modeling the 2D acoustic wave 
equation and proposed specific methodological steps. 
Through its application to a homogeneous and a complex 
medium, we conclude the following. 

The absorption of the DABC is clearly better than that 
of the CEBC and is as good as that of the PML.

The DABC does not require any modification of the 
wave equation when it is applied to seismic modeling. In 
addition, special treatmexnt of corners is avoided, which 
signifi cantly reduces computational diffi culties.

There are two ways to increase the absorption of the 
DABC. One is to widen the thickness of the boundary; 
the other is to increase the absorption precision. 
Therefore, fl exibility improves.

Without the PML stability constraints, the DABC is 
much more stable. And fi nally, the DABC can be directly 
applied to 2D or 3D numerical modeling of the wave 
equation in complex media, which allows for perfect 
absorption. Its fl exibility and stability can also facilitate 
subsequent inversion and migration.
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