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Abstract: Missing data are a problem in geophysical surveys, and interpolation and 
reconstruction of missing data is part of the data processing and interpretation. Based on the 
sparseness of the geophysical data or the transform domain, we can improve the accuracy and 
stability of the reconstruction by transforming it to a sparse optimization problem. In this paper, 
we propose a mathematical model for the sparse reconstruction of data based on the L0-norm 
minimization. Furthermore, we discuss two types of the approximation algorithm for the L0-
norm minimization according to the size and characteristics of the geophysical data: namely, 
the iteratively reweighted least-squares algorithm and the fast iterative hard thresholding 
algorithm. Theoretical and numerical analysis showed that applying the iteratively reweighted 
least-squares algorithm to the reconstruction of potential fi eld data exploits its fast convergence 
rate, short calculation time, and high precision, whereas the fast iterative hard thresholding 
algorithm is more suitable for processing seismic data, moreover, its computational effi ciency is 
better than that of the traditional iterative hard thresholding algorithm. 
Keywords: Geophysical data, sparse reconstruction, L0-norm minimization, iteratively 
reweighted least squares, fast iterative hard thresholding

Introduction

In geophysical data acquisition, data are often 
incomplete and irregular because of poor fi eld conditions, 
equipment failure, and noise. However, various kinds 
of geophysical data processing methods, such as the 
continuation of the potential field, and seismic data 
migration and inversion, require complete data sets (Wang 
et al., 2011). Incomplete data cause loss of information, 
and subsequently introduce noise in the data processing 
and lower the quality of the results (Meng et al., 2012). 
Thus, data reconstruction is a significant problem in 
geophysical data processing and interpretation.

Reconstruction methods differ for data sets of 

different size and characteristics. For potential field 
data, the reconstruction methods mainly include 
the linear interpolation method, the spline function 
method, and the inverse interpolation method (Guo 
et al., 2005), whereas the reconstruction of seismic 
data is mostly based on transform methods such as 
the Fourier transform (Duijndam et al., 1999; Liu 
et al., 2004) and the radon transform (Trad et al., 
2003), which use the characteristics of the data in the 
transform domain. However, regardless of the type of 
data, the reconstruction of incomplete data sets is an 
ill-posed inverse problem that requires regularization 
constraints to ensure the stability of the solution. L2-
norm minimization algorithms, such as the Tikhonov 
regularization method (Tikhonov and Arsenin, 1977), 
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are commonly used. General quadratic constraints can 
also effectively improve the stability of algorithms with 
continuous solutions, but it smooth the discontinuous 
features of the data, thus reducing the resolution of the 
inversion results.

In order to guarantee the stability and accuracy of 
the solutions, geophysicists used the optimization 
algorithms based on L0-norm minimization to analyze 
seismic reflection data (Levy and Fullagar, 1981). 
Presently, sparse optimization algorithms are widely 
used in seismic data reconstruction and denoising 
(Tang and Yang, 2010; Cao et al., 2012; Tang et al., 
2012), the deconvolution of poststack seismic data, 
wave impedance inversion (Pei, 2009), full waveform 
inversion (Li, a., 2012), and others. Because the L0-norm 
is a measure of data sparsity, the L0-norm minimization 
is the optimum sparse optimization algorithm; however, 
it is a combinatorial optimization for directly solving 
the problem without a polynomial time solution. 
Donoho et al. (2012) proved that the solutions of the 
L1-norm minimization and the L0-norm minimization 
are equivalent when the measurement matrix satisfies 
certain constraint conditions. The L1-norm minimization 
differs from the L0-norm minimization and has many 
direct solution methods. Nonetheless, the equivalent 
decision conditions are complex and the solutions of the 
algorithm cannot locate the sparse coeffi cient (Jiao et al., 
2011). Though it is diffi cult to directly solve the L0-norm 
minimization, we can avoid complicated calculations 
for the equivalent conditions of the decision operation 
in the L1-norm minimization algorithm with better 
approximate solution methods, and solve the problem of 
the sparse coeffi cient position confusion. There are many 
approximate solution methods. Greedy algorithms such 
as the matching pursuit algorithm (Mallat and Zhang, 
1993; Tropp and Gilbert, 2007) with low computational 
complexity and high-speed computational capability 
have been widely applied. However, low computation 
precision and poor antinoise ability make them 
unsuitable for the reconstitution of less sparse data. The 
hard iterative thresholding (HIT) algorithm is simple and 
suitable for large-scale data processing, its shortcoming 
is that the convergence rate is too slow (Blumensath 
and Davies, 2009). To improve the convergence rate of 
the HIT algorithm, many accelerated iteration methods 
were proposed, such as the regularized HIT method 
(Blumensath and Davies, 2010), the expectation–
conditional maximization either (ECME) algorithm 
(Qiu and Dogandzic, 2010), the two-step iterative 
shrinkage–thresholding (IST) algorithm (Bioucas-Dias 
and Figueired, 2007), etc. These algorithms, however, 

need harsh conditions or do not guarantee convergence 
(Blumensath, 2012). 

In this paper, we discuss a geophysical data sparse 
reconstruction mathematical model based on the L0-
norm minimization and introduce two approximation 
algorithms for the L0-norm minimization according 
to the different size and characteristics of the data; 
namely, the iteratively reweighted least-squares (IRLS) 
algorithm based on the L0-norm minimization and the 
fast iterative hard thresholding (FIHT) algorithm with 
fast convergence rate. We also show with numerical 
experiments that  the two algori thms have low 
computational complexity, fast convergence rate, and 
high accuracy.

Methods and principles

Geophysical data sparse reconstruction modeling 
based on L0-norm minimization

According to the compressed sensing theory proposed 
by Candes and Wakin (2006), and Donoho et al. (2006), 
the collection of geophysical data can be viewed as a 
projection process 

                          Y = AX + e ,  (1)

where A is the projection matrix (M*N, M < N), namely 
the observation matrix, and X  RN represents the original 
regular geophysical data. Through the projection matrix 
A, the high-dimensional data in X are mapped in the 
low-dimensional space (M dimension) from the high-
dimensional space (N dimension) to obtain Y. The latter 
is the incomplete measured data (Y  RN), and e  RM is the 
noise. The corresponding geophysical data reconstruction 
is an inverse problem of projection, which uses the low-
dimensional observation data Y and the projection matrix 
A to retrieve the original data X in high-dimensional data 
space by solving the least-squares problem

                         2

2
min .Y - AX   (2)

Because M < N, equation (1) is an underdetermined 
system of equations; therefore, equation (2) is an ill-
posed problem. The correctness of the solution cannot 
be guaranteed by directly solving equation (2). If X is 
sparse or the transform coefficients in the transform 
domain are sparse, then the data reconstruction can 
be converted into a sparse optimization problem. As a 
result, we need to convert X to the transform domain
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                               X = ,   (3)

where Ψ is the transform operator, and the concrete form 
is decided by using the transform method. ΘT = [θ1, θ2, …, 
θi, …, θN] are the transform coeffi cients in the transform 
domain. X and Θ are equivalent representations of X in 
the time–space and transform domains. If most elements 
of Θ are zero, Θ is sparse, and the corresponding 
transformation is called the sparse transformation of 
X. Using the L0-norm minimization as the objective 
function, the reconstruction of geophysical data can be 
transformed into the L0-norm minimization based on the 
sparse optimization

              2

0 2
min s.t. ,Y - A  (4)

where ||Θ||0 is the L0-norm of Θ, i.e., the measure of 
sparseness. 

There are two prerequisites for solving the sparse 
optimization problem and obtain accurately reconstructed 
data. First, we have to design an efficient observation 
matrix A. Traditional regular undersampling will generate 
coherent aliasing, which affects the quality of the results. 
Although random undersampling methods can convert 
coherent aliasing to signal-independent noise, they cannot 
control the sampling interval, leaving behind sampling 
redundancies or defi ciencies. Poisson sampling (Dunbar 
and Humphreys, 2006) and the jitter sampling method 
(Hennenfen and Herrmann, 2008) have found wide use 
in image processing and can even the sampling points 
as possible under the conditions of random sampling. 
Sampling data with blue-noise spectrum characteristics 
can improve the quality of the reconstruction data. 
Second, we need to choose a suitable sparse transform 
operator Ψ to sparsely represent X. For greater sparse 
data representation and accurate reconstruction, less 
observation data are needed. The sparse transform 
method should be chosen according to the specifi c data 
characteristics. A method that is suitable for one type of 
data is not necessarily suitable for another type of data. 
In light of the geophysical data specifics, it is better to 
choose the Fourier transform or cosine transform for the 
potential fi eld data, because of good continuity and slow 
change. Seismic data consist of complex curve elements. 
Thus, the wavelet and curvelet transforms, which have 
time–frequency local analysis ability (Candès and 
Donoho, 2000; Herrmann and Hennenfent, 2008), should 
be chosen. The curvelet transform has primitive curve 
shapes. It maintains the traditional wavelet multiscale 
features, and also has directivity and anisotropy. Thus, it 
is more suitable for sparse representation of the singular 
characteristics of two-dimensional curves and is a good 

choice for the seismic data sparse transform.

The sparse reconstruction algorithms based on 
L0-norm minimization
Iteratively reweighted least squares (IRLS)

The Lagrange multiplier method is used to transform 
equation (4) into an unconstrained optimization problem

 
                2

2 0
min ,Y - A  (5)

where λ > 0 is the Lagrange multiplier. Equation (5) 
is a nonconvex problem with no analytical solution. 
However, borrowing the IRLS algorithm and introducing 

a weight coeffi cient matrix W, we can have 
2

2
W  as 

approximate expression of the ||Θ||0. The diagonal weight 
coefficient matrix is 1 2 3diag , , ,.. NW  and the 
diagonal elements ωi are iteratively updated according to 
the θi solution 

                     
-1

,t+1 t
i i  (6)

where t is the number of iterations and ε is a small 
numerical parameter; thus, preventing the overflow of 
the right-hand side of equation (6).

We substitute equation (6) into 
2

2
W  and if the 

algorithm is convergent, then 
2

02
.W  By 

iteratively solving the following regularized least-squares 
problem, we can solve equation (5) using equation (7)

              
22

2 2
min .Y - A W  (7)

Typical methods for solving the extreme-value problem 
may be used to solve equation (7), i.e., ∂L(Θ)/∂Θ = 0. 
The analytical expressions of the optimal solution can be 
obtained from

      
-1

.T TW A A W A I Y  (8)

In applying the algorithm, the specific steps of the 
iterative process are the following: 
● Let the initial value of the t iteration be zero and 

make the initial value of the weight coeffi cient matrix W 
the unit matrix.
● Substitute the corresponding A, Ψ, and Θ into 

equation (8) and iteratively obtain the solution Θt of the t 
iteration.  
● Use the solution of the t iteration to update the 

weight coeffi cient matrix 
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1 1 1 1 1
1 2 3

-121

diag , , , .. . ,

.

t t+ t t t
N

t t
i i

W

 (9)

● If 
21
2

-t+ t  or the number of iterations t 
exceeds the maximum number of iterations T, stop the 
iteration.
● Finally, the data reconstruction is X = ΨΘ.

Fast iterative hard thresholding (FIHT) 
When faced with massive data sets, the  IRLS 

a lgo r i t hm r equ i r e s  h igh -d imens iona l  ma t r i x 
inversion. This kind of operation is quite complex 
and time-consuming. Therefore, the IRLS algorithm 
is not suitable for large-scale data processing. 
The FIHT algorithm, which is based on the L0-norm 
minimization via continuous iterative corrections, can 
avoid the inverse operation of high-order matrices. The 
solution formula of the FIHT algorithm is simple and 
generally of the form 

        1
KH Tn n nA Y - A , (10)

where n is the number of iterations and Hλt is the 
thresholding operator that is expressed as 

              H
0,

,
,i i

t
i

t

t
 (11)

where λt is the threshold. The FIHT algorithm is widely 
used in various fi elds because of its low computational 
complexity. Nonetheless, the algorithm also has the same 
shortcomings as other iterative thresholding algorithms, 
namely, slow convergence rate. 

To overcome the slow convergence rate of the 
traditional iterative thresholding (TIT) algorithms, 
Beck and Teboulle (2009) presented the fast iterative 
shrinkage-thresholding algorithm based on L1-norm 
minimization. In this algorithm, the nth iteration result 
is the optimum combination of the (n−1)th and (n−2)th 
iteration solutions, and the combination coefficient is 
calculated using the optimization algorithm. Compared 
with the sublinear global convergence of the traditional 
iterative shrinkage−thresholding algorithm, the 
convergence rate of FIST is greatly improved

*

2

2 2 0

F F

1O F ,

n

n
Y - A  (12)

where n is the number of iterations and Θ* is the global 

optimal solution.
We used the accelerated FIST and iterative hard 

thresholding (IHT) algorithms to obtain the fast iterative 
hard thresholding (FIHT) algorithm for solving the L0-
norm minimization problem. The iteration process of the 
algorithm is

0
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 (13)

Unlike the traditional iterative hard thresholding 
algorithm, the nth iteration values in the FIHT algorithm 
is the optimum combination of the (n−1)th and (n−
2)th iteration solutions to improve the stability of the 
algorithm. The optimization algorithm is used to retrieve 
the optimum step of the iterations and to accelerate 
the convergence rate. The threshold value λt is the 
correlation function containing the initial threshold 
T0, attenuation factor a, and number of iterations n. 
Adjusting T0 and the attenuation factor a in terms of the 
amplitude of the data variations can also speed up the 
algorithm convergence rate. 

Numerical experiments

Potential field data sparse reconstruction 
experiments 

To evaluate the sparse reconstruction algorithms 
proposed in this paper,  we applied them to the 
reconstruction of actual geophysical data. First, we used 
fi eld data to test the application effect of the algorithms. 
Figure 1 shows gravity anomaly data of a region in the 
Sichuan province. There are 59 measuring lines, 125 
points in each line, a total of 7375 observation points, 
the spacing between the observation points is 50 m, 
and the amplitude of the data is between 280 and 340 
mGal. We used Poisson sampling for the 2000 sampling 
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points. The distribution of the sampling points is shown 
in Figure 2 and the corresponding frequency spectrum 
in Figure 3. As shown in Figure 2, the sampling points 
are distributed randomly and uniformly. There are 

no redundancies or deficiencies in the sampling area. 
Figure 3 exhibits typical blue-noise frequency spectrum 
characteristics and no coherent aliasing is produced by 
regular undersampling. 

Fig.1 Contour map of the original data. Fig.2 Sample distribution of Poisson sampling. 

Fig.3 Frequency spectrum of the data from Poisson sampling.

Under the condition of unchanged random sampling, 
we respectively applied the iteratively reweighted least-
squares and fast iterative hard thresholding algorithm to 
reconstruct the incomplete sampling data set. To compare 
the effect of the algorithms, we used the reconstruction 
results of the orthogonal matching pursuit algorithm and 
the iterative hard thresholding algorithm. According to the 
spatial variation characteristics of the potential fi eld data, 
these algorithms use the discrete cosine transform as the 
sparse transform method. Table 1 lists the calculation time, 
mean square error (MSE) and the relative error (RE) of the 
different algorithms, and the corresponding diagrams.

Table 1 Recovery results according to different methods
Algorithms Calculation Time (s) MSE (10-3 gal)  RE Results Error

IRLS 452.9 0.3377 6.73*10-4 Figure 4a Figure 4b
FIHT
OMP
IHT

1680.7
269.6
5112.4

0.3840
1.6295
1.3648

7.29*10-4 
3.28*10-3

2.94*10-3

Figure 5a
Figure 6a

Figure 5b
Figure 6b 
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According to Table 1 and the corresponding diagrams, 
the IRLS and FIHT algorithms are superior to the 

OMP and IHT algorithms based on the accuracy of 
the calculations. Regardless of the MSE magnitude 

Fig.4a Contour map of the IRLS reconstruction results. Fig.4b Contour map of the IRLS reconstruction error. 
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To further compare the performance of the various 
algorithms in the reconstruction of potential field 
data, we also considered the iterative convergence 
curves of the IRLS algorithm, the FIHT algorithm, 
the OMP algorithm, and the IHT algorithm. Figure 7 
shows the number of iterations on the horizontal axis 
and the vertical axis is the logarithm of relative error 

2 2
10 2 2

log ( x - x x ). As shown in the iterative 

convergence curve, the IRLS algorithm has the fastest 
convergence rate. Relative to the IHT algorithm, the 
convergence rate of the FIHT algorithm is better and can 
sooner meet the termination conditions of the algorithm. 
The OMP algorithm convergence rate is initially fast 
and the relative error is low; however, in the subsequent 
iterations, the convergence speed is very slow and  
attenuates to zeros fastly. Therefore, subsequent 
iterations do not improve the reconstruction precision of 
the data. 

Fig.5a Contour map of the FIHT reconstruction results. Fig.5b Contour map of the FIHT reconstruction error. 

Fig.6a Contour map of the OMP reconstruction results. Fig.6b Contour map of the OMP reconstruction error. 

l

y/5
0 m

5

4

3

2

0 0 60 80 00 0

284
288
292
296
300
304
308
312
316
320
324
328
332
336
340

x/50 m

y/5
0 m

5

4

3

2

0 0 60 80 00 0

2
3

1

x/50 m

l

y/5
0 m

20 40 60 80 100 120

282
286

296
294
290

302
306
310
314
318
322

330
326

334
338

x/50 m

al

y/5
0 m

5

4

3

2

11

7

3
5

9

1
-1
-3
-5
-7
-91

x/50 m

0 100 200 300 400 500 600 700
3 5

3

2 5

2

1 5

1

0 5
0

The number of iterations

Th
e l

og
ar

ith
m 

of 
re

lat
ive

 er
ro

r IRLS
OMP
IHT
FIHT

Fig.7 Iterative convergence curves of the algorithms used 
in the reconstruction of the potential fi eld data.

or the RE magnitude, the first two algorithms are one 
order lower than the other two algorithms. As shown 
in Figures 4a and 5b, most of the fitting error in the 
reconstructed and original data is near zero, except 
near the edges because of boundary effects. In terms of 
computation time, the IRLS is slightly longer than the 
OMP. Even though the FIHT is slower than the IRLS, its 
computation time is less than a third of the IHT, proving 

the correctness and effi ciency of the FIHT acceleration 
strategy. The computation time of the OMP algorithm is 
the shortest of the four algorithms but its antinoise ability 
is low. Furthermore, the accuracy of the reconstruction 
results (Figures 6a and 6b) is low. The advantage of the 
low computation time of the OMP algorithm relative to 
the IRLS and FIHT is not enough to compensate for the 
low precision of the calculations.

Seismic data sparse reconstruction experiments 
In small-scale and gentle-change potential field 

data reconstruction experiments, the computational 
efficiency and accuracy of the IRLS algorithm are 
superior to those of the FIHT algorithm. However, the 
IRLS algorithm is not suitable for large-scale seismic 
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Fig.8 Original simulation seismic 
data.

Fig.9 Irregular seismic data by 
Poisson sampling.   

Fig.10 Frequency spectrum of the irregular 
seismic data by Poisson sampling.

Fig.11 Reconstruction results of the FIHT 
algorithm.

Fig.12 Reconstruction error of the FIHT 
algorithm.
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data sparse reconstruction because it involves the direct 
inverse matrix and sparse transform, such as the curvelet 
transform, which is well suited for the sparse expression 
of seismic data that cannot be written in matrix form.

To test the effectiveness of the FIHT algorithm in 
seismic data reconstruction, first of all, we applied 
the algori thm to simulate simple seismogram 
reconstruction experiments, using the curvelet 
transform for the sparse representation of the seismic 
data. Figure 8 is a simulated seismic record. The 
spatial sampling interval is 10 m and the time sampling 
interval is 0.5 ms. Figures 9 and 10 respectively show 
the sampling data and diagram obtained by using 
the Poisson sampling method. The sampling data are 
half of the total data. The data sampling interval in 
Figure 9 is uniform, without being too large or too 

small. From the diagram, we can also see that Poisson 
sampling avoids coherent aliasing arising from regular 
undersampling and guarantees the reconstruction 
accuracy of the data. For the FIHT algorithm, the number 
of iterations was 56, the computation time was 325.6 
s, the signal-to-noise ratio was 24.65 dB, and the mean 
square error was 0.0034. Figures 11 and 12 respectively 
show the reconstruction results and error. As shown in 
Figure 11, the seismic data reconstruction results well 
agree with the original data and there are deviations 
where the change in the data amplitude is intense. The 
experimental results show that either the SNR or the 
quality of the results is satisfactory. Compared with the 
traditional iterative hard thresholding algorithm, the 
number of iterations decreased from hundreds to dozens, 
thus, minimizing the computation time.
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undersampling into irrelevant random noise, which 
meets the prerequisites for data sparse reconstruction. 
We also adopted the curvelet transform and improved 
the algorithm convergence rate by adjusting the iterative 
format, the iteration step length μ, the initial threshold 
T0, and the attenuation factor a. After 63 iterations, the 
fast iterative shrinkage–thresholding algorithm meets the 
accuracy requirements of the solution. The computation 
time was 854.9 s, the relative error was 0.1407, and the 
signal-to-noise ratio was 8.51 dB. 

Fig.13 The 2D poststack seismic data 
of the SEG/EAEG salt velocity model.  

Fig.14 Irregular seismic data by 
Poisson sampling.
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Fig.15 Frequency spectrum of irregular 
seismic data by Poisson sampling.

Fig.16a Reconstruction results of the fast 
iterative hard thresholding algorithm.

Fig.16b Reconstruction error of the fast hard 
iterative hard thresholding algorithm.

To further examine the algorithms’ performance in 
complex data reconstruction, we adopted the poststack 
seismic data of the international general 2D SEG/
EAGE salt dome model (Figure 13) to test the FIHT 
algorithm. For comparison, we also tested the fast 
iterative shrinkage–thresholding algorithm. For the 
Poisson sampling method, the sampling results and the 
corresponding spectrum are shown in Figures 14 and 
15. From Figure 15 we can see that Poisson sampling 
transforms the coherent aliasing because of regular 

Figures 16a, 16b, 17a, and 17b respectively show the 
reconstruction results and error of the FIHT and FIST 
algorithms. As shown in Figure 16a, the vast majority of 
the poststack seismic data produced accurate reconstruction 
results, regardless of the deviations in the boundaries or 

regions where the data amplitude change is intense. This 
demonstrates the effectiveness and practicability of the 
FIHT algorithm. In contrast, the reconstruction effect of 
the FIHT algorithm is better than the FIST algorithm, for 
the reconstructed data show better continuity. 
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Fig.18 Iterative convergence curves of the algorithms 
used in the reconstruction of the 2D poststack seismic 
data of SEG/EAEG salt velocity model.
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Fig.17a Reconstruction results of the fast 
iterative shrinkage–thresholding algorithm. 

Fig.17b Reconstruction error of the fast 
iterative shrinkage–thresholding algorithm.

are proposed in this paper with simple computational 
format and low calculation complexity. Based on the 
sparseness of the geophysical data or the transform 
domain, we achieved good reconstruction results for 
irregular geophysical data by using this algorithm. The 
choice of the reconstruction algorithm needs to consider 
the characteristics of the corresponding data: that is, 
the good continuity of moderate-scale data well suit the 
iteratively reweighted least-squares algorithm with high 
convergence rate and short computation, whereas the poor 
continuity of large-scale data suits the fast iterative hard 
thresholding algorithm. 

It is noteworthy that despite the effort put on 
geophysical data sparse reconstruction algorithms, 
most of them are still at the development stage and can 
only be applied to simple experimental data, whereas 
actual data are complex, contain various kinds of 
environmental noise, and their size is much larger than 
that of the experimental data. Nonetheless, it is critical 
for geophysical data processing to maintain the efforts of 
effectively reconstructing irregular actual data.
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