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Abstract: Nonlocal means fi ltering is a noise attenuation method based on redundancies in 
image information. It is also a nonlocal denoising method that uses the self-similarity of an 
image, assuming that the valid structures of the image have a certain degree of repeatability 
that the random noise lacks. In this paper, we use nonlocal means fi ltering in seismic random 
noise suppression. To overcome the problems caused by expensive computational costs and 
improper fi lter parameters, this paper proposes a block-wise implementation of the nonlocal 
means method with adaptive fi lter parameter estimation. Tests with synthetic data and real 
2D post-stack seismic data demonstrate that the proposed algorithm better preserves valid 
seismic information and has a higher accuracy when compared with traditional seismic 
denoising methods (e.g., f-x deconvolution), which is important for subsequent seismic 
processing and interpretation.
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Introduction

The expansion of seismic studies to deep layers, 
complex structures and lithology exploration have 
increased the demand for high quality seismic data. 
The quality of the seismic data directly affects the 
subsequent processing and interpretation. Improving 
the signal-to-noise ratio and data quality are crucial for 
studies that use seismic data. Many denoising methods 
have been proposed such as f-k filtering (Stewart and 
Schieck, 1993), median filtering (Bednar, 1983), f-x 
deconvolution (Canales, 1984), and curvelet thresholding 
(Neelamani et al., 2008). However, in addition to 
removing noise, such methods also remove some useful 

data components. How to protect the useful seismic 
information while removing noise is very important for 
high-resolution seismic exploration and the interpretation 
of seismic data. 

The nonlocal means (NLM) fi ltering method originated 
in the field of image processing. Because many image 
denoising methods cannot retain fine structures, the 
NLM fi ltering algorithm was proposed by Buades et al. 
(2005). This algorithm is an innovation of the traditional 
local denoising model and accomplishes denoising by 
fully utilizing redundant information in natural images. 
The algorithm can retain useful image information 
during denoising. The NLM algorithm contains two 
main features: the restored value of each pixel is a 
weighted average of the gray values of all similar pixels 
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within the image, and the similarity between different 
pixels is computed using the neighborhoods around 
the pixels (which is better than the direct measurement 
of the pixels themselves). Because for each pixel the 
algorithm computes the weighted average of all the 
pixels with similar gray values, the algorithm is highly 
redundant, which restricts its applications (Buades et al., 
2005). To overcome this problem, Mahmoudi and Sapiro 
(2005) attempted to decrease the computational time by 
considering only a portion of the image for denoising, 
and ignored images parts with small weights. Buades 
et al. (2010) proposed a block-wise implementation 
of the nonlocal means denoising algorithm, referred 
to as BNLM. Wang et al. (2006) proposed an efficient 
algorithm based on image integration and the fast 
Fourier transform. Sheng et al. (2009) implemented such 
an algorithm on a GPU using parallel computing. The 
NLM denoising algorithm has been used successfully to 
denoise various types of data, such as MRI data (Coupé 
et al., 2008) and radar data (Deledalle et al., 2011). 
Bonar and Sacchi (2012) were the first to use NLM 
in seismic data processing, using the traditional NLM 
methods and analyzing the impact of different filter 
parameters. Considering the computational efficiency 
and the selection of filter parameters in the real data 
processing, we propose an adaptive filtering method 
based on the block-wise implementation of nonlocal 
means, referred to as ABNLM. Tests with synthetic 
and real data show that the ABNLM method can retain 
useful seismic information during the denoising process, 
eliminating the impact of improper filter parameters. 
Compared with f-x deconvolution, ABNLM results are 
more accurate. The implementation of this algorithm 
also lays a good foundation for its applications in large-
scale seismic data processing.

Theory

NLM fi ltering
For each pixel xi in the image, the value of the pixel 

after NLM fi ltering is as follows (Buades et al., 2005):

                 NL(xi ) w(xi ,x j )x j
x j V

,  (1)

where V is the image and the weight w(xi, xj) depends 
upon the similarity between the pixels xi and xj, satisfying 

the conditions 0 ≤ w(xi, xj)≤ 1 and ( , ) 1
j

i j
x
w x x . 

Note that the value of the pixel that is supposed to be 
processed is a weighted average of all pixels in the 
image. In order to better measure the similarity between 
pixels, a method utilizing their neighborhoods was 
introduced by Buades et al. (2005).

In the image, Ni represents the neighborhood of the 
pixel xi and has an area of (2d+1)2. The pixels in the 
neighborhood Ni are denoted xNi, where xNi = (xk, k  Ni). 
Therefore, the similarity between pixels xi and xj 
depends upon the similarity of the intensity of vectors 
xNi and xNj. The Euclidean distance between vectors 
xNi and xNj is used to measure their similarity and is 
represented as ||xNi – xNj||2

2. Efros and Leung (1999) 
proved that computing the similarity of the neighborhood 
with Euclidean distance is an effective method. The 
weight can be computed using the Euclidean distance:
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where Zi is a normalizing factor defi ned by
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and ensures that ( , ) 1
j

i j
x
w x x . The parameter h 

controls the decay of the exponential function. Studies 
have shown that the filter parameter h is related to the 
standard deviation of the image noise; when h is too 
large, the image will be blurred, but smaller values of 
h will make the denoising incomplete (Buades et al., 
2008).

In the traditional NLM denoising algorithm, each 
pixel is denoised by computing a weighted average of 
all other pixels in the image. For 2D images of size T 2, 
the computational complexity of the denoising algorithm 
is about O(T 2*T 2*(2d+1)2), making its computational 
efficiency greatly reduced. This makes it difficult to 
conduct real-time processing of large-scale seismic data 
(Coupé et al., 2008). To overcome  this problem, we 
introduce an improved denoising algorithm based on the 
block-wise implementation.

BNLM fi ltering
The BNLM filtering method can improve the 

computational effi ciency of denoising algorithms and is 
composed of the three following important steps (Coupé 
et al., 2008):

(1) Dividing the image into overlapping blocks:
The image V is divided into small overlapping blocks 
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Bik of area (2a+1)2 centered on pixel Sik so that V =  Bik. 
The distance between different blocks is represented as n 
and satisfi es 2a + 1 > n to ensure global continuity in the 
image. For simplicity, we defi ne n = 2a – 1.

(2) NLM fi ltering is performed with these blocks:
For each block Bik, NLM fi ltering is performed as follows:

           ( ( )) ( , ) ( ).
j

ik ik j j
B V

NL u B w B B u B  (3)

where 
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V represents the image, u(B) represents the value of 
the block B, and Zik is a normalizing factor that ensures 

( , ) 1
j

ik j
B
w B B .

(3) Because pixels can be included in the overlapping 
blocks after fi ltering, we can obtain more than one value 
for each pixel. For a given pixel, we suppose the different 
values are stored in the vector A and the fi nal denoising 
value is the average of elements in the vector A:

                      
1( ) ( ).i

p A
NL x A p

A
  (4)

In the block-wise implementation, the NLM algorithm 
is performed based on every block instead of each pixel. 
The similarity between different blocks is measured 
by the Euclidean distance between the blocks. Figure 
1a describes the strategy of traditional NLM filtering. 
For denoising each individual pixel, all pixels in the 
image are used to calculate the necessary weights. The 
similarity is computed through their neighborhood 
and the restored value is the weighted average of these 
pixels. Figure 1b describes the strategy of BNLM 
filtering. NLM filtering is performed based on every 
block, and the similarity is measured between the blocks. 
Weighted averages are computed for each individual 
block. The computational complexity decreases when 
the BLNM filtering algorithm is used. The complexity 
for an image of size T 2 is about O((2a+1)2*T 2*(T/n)2). 
For example, when a = d, the complexity is divided by 
n2, which improves the computational efficiency and 
reduces the computational burden.

Fig.1 The strategy of traditional NLM fi ltering (a)and the strategy of BLNM fi ltering (b).

Adaptive fi lter parameter

The NLM denoising algorithm results are largely 
influenced by the selection of the filter parameter h. 
If the parameter is too big, then the details and edge 
information will be lost while denoising, making the 
image blurred. If the parameter is too small, then the 
noise cannot be completely suppressed. Experiments 
show that for the BNLM algorithm, the optimal filter 
parameter is approximately the standard deviation of the 
image noise (Manjón et al., 2010). Therefore, we can 

estimate the fi lter parameter by estimating the standard 
deviation of the image noise. 

Suppose that the noise standard deviation of an image 
is represented as σ, then:

22 2
0 02 2

( , ) ( ) ( ) ( ) ( ) 2 .i j i j i jd B B E u B u B u B u B
 (5)

where u is the image with noise and u0 is the noise free 
image. If Bi = Bj, then d(Bi = Bj) = 2σ2. If we assume that 
the block Bi has at least one block equal to itself, Bj, 
then:

(a)

Ni
xi

(b)
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w(xi, xj)
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             2 min( ( , )) / 2, .i jd B B j i   (6)

Using this formulation, we can obtain the optimal fi lter 
parameter h by estimating the noise standard deviation. 

Experimental analysis

We introduce nonlocal image processing into 
seismic denoising. The seismic data satisfies the NLM 
assumption of NLM that the valid information has a 
certain redundancy. This phenomenon exits in most 
data or images. We treat the seismic cross section as a 
gray image. The intensity of each pixel is between 0 
and 255 and is related to the amplitude of the different 
sampling points. Because the amplitude of the seismic 
data is not always positive, it is necessary to deduct the 
minimum value of the seismic data before this method is 
performed to ensure the amplitude is not negative. Then, 
the data can be treated as a 2D gray image, and the value 
of each sampling point is equivalent to the pixel intensity 
and ranges from 0 to 255. Using this nonlocal averaging 
technique, the restored value plus the minimum values is 
the fi nal denoising result for each pixel.

In order to demonstrate the effectiveness of this 
method in seismic processing, tests on synthetic and real 
data are performed. We define the signal-to-noise ratio 
(SNR) as SNR = 20log10||m0||2/||m–m0||2, where m0 is 
the noise free data and m is the denoising result.

Experiments on synthetic data

For synthetic seismic data without noise, the time 

sampling interval is 2 ms and the number of traces is 101 
(Figure 2a). We add Gaussian white noise to the seismic 
data (Figure 2b). The SNR is 7.56 and the noise standard 
deviation is 0.0304. Figure 2c shows the denoising 
result after f-x deconvolution using a sliding 30×15 
window in the time and space directions. The SNR 
after f-x deconvolution is 10.94. Although the noise is 
suppressed to a certain extent, the useful information is 
also destroyed, especially at the top of hyperbola located 
at about 0.2 s. Figure 3a shows the difference between 
the f-x denoising result (Figure 2c) and the noise free 
data (Figure 2a). There is a large number of valid 
information residuals in the range of 0.2–0.8 s that make 
the denoising result not conducive to the subsequent 
processing. Figure 2d is the denoising result after BLNM 
filtering (a = 3, h = 0.0102). The SNR after BLNM 
filtering is 14.64; the noise is suppressed and the SNR 
is improved compared to the f-x deconvolution results. 
From the difference (Figure 3b) between the denoising 
result (fi gure 2d) and the noise free data (Figure 2a), we 
can see that there is almost no useful signal, however, the 
noise is not suppressed clearly because of the small fi lter 
parameter. Figure 2e is the denoising result from BLNM 
fi ltering (a = 3, h = 0.1824). The result has an SNR of 
13.30 and the fi lter parameter is obviously too large. The 
noise is suppressed better compare with Figure 2d, and 
the denoising result should be more clear. However, the 
energy of the useful information is weakened compared 
with the noise free data (Figure 2a). Figure 3c is the 
difference between this denoising result (Figure 2e) and 
the noise free data, from which we can see that although 
the noise is suppressed well, the valid signal is weaken 
because of the big filter parameter. Figure 2f is the 
denoising result from ABLNM fi ltering (a = 3); the SNR 
is 21.57 and the random noise is suppressed very well. 
The denoising result is very clear and the valid signal 
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                      (a) Synthetic seismic data without noise.                       (b) Synthetic seismic data contaminated with noise, SNR=7.56. 
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is distinct. Figure 3d shows the difference between 
the denoising result and the noise free data; there is 
almost no useful information and this denoising method 
overcomes the impacts of improper fi lter parameter and 
the valid signal is not destroyed. Compared with the f-x 

deconvolution method, this method better protects the 
useful information.

The differences between the denoising results from 
different methods and the noise free data are shown in 
Figure 3.

               (c) F-x deconvolution denoising result, SNR=10.94.            (d) BLNM denoising result with small fi lter parameter, SNR=14.64. 

                     (e) BLNM denoising result with big fi lter parameter, SNR=13.30.                     (f) ABLNM denoising result, SNR=21.57.
Fig.2 Different denoising results of the synthetic seismic data.

          (a) By f-x deconvolution.                                                    (b) By BLNM with a small fi lter parameter.



38

An adaptive nonlocal means algorithm

0 200 400 600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

1.2

Distance (m)

Tim
e (

s)

0 200 400 600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

1.2

Distance (m)

Tim
e (

s)

Experiments on real data

A section of the real 2D post-
stack seismic data from land has a 
time sampling interval of 4 ms, trace 
interval of 12.5 m, a time range of 1.2–
2.2 s, and 151 traces (Figure 4a). There 
are many discontinuous and unstable 
seismic events in this seismic section, 
the valid information and these seismic 
events become blurred because of 
noise, we use f-x deconvolution 
and ABLNM (a = 5) to remove the 
noise. Figure 4b is the denoising 
result from f-x deconvolution with 
a 25×15 window along the time and 
space directions. The post-filtering 
result is more clear but the valid 
signal is also destroyed during noise 
removing, especially the fl uctuant and 
discontinuous events delineated by the 
squares located at 1.3 s and 1.5 s and 
the tips of seismic events delineated 
by the ellipse located at about 1.6 s. 
We can use sliding windows in the f-x 
deconvolution to overcome the errors 
from nonlinear events, however, the 
error correction is limited. From the 
section showing noises removed using 
f-x deconvolution (Figure 4d), we see 
that there is some valid information 
residuals ,  implying that  useful 
information is also reduced during 
noise removal that is not conducive 
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 (a) Original post-stack seismic data. 

0 200 400 600 800 1000 1200 1400 1600 1800
Distance (m)

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

Tim
e (

s)

(b) F-x deconvolution denoising result. 

                                   (c) By BLNM with large fi lter parameter.                                                                           (d) By ABLNM.
Fig.3 Difference profi les for different methods.
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(c) ABNLM denoising result.
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(d) Noise removed by f-x deconvolution. 
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(e) Noise removed by ABNLM.
Fig.4 Real seismic data denoising results.

to the subsequent processing. Figure 
4c shows the denoising result from 
ABLNM; this result seems better and 
the useful information is prominent 
compared with the f-x deconvolution 
denoising result, and the complex 
structures and the discontinuous layers 
are also protected. Figure 4e shows the 
noise removed using ABLNM method; 
there is nearly no valid information 
residuals, showing that the useful 
information is not lost during noise 
removal, which is very important for 
further processing and interpretation.

Conclusions

The ABNLM is a denoising method 
based on the idea that any image has 
redundancy. It is composed of BNLM 
fi ltering and adaptive fi lter parameter 
estimation, overcoming problems 
resulting from computational burdens 
and improper filter parameters. The 
method performs well in seismic 
data processing, and we obtained 
the following conclusions: (1) This 
paper uses a nonlocal idea, which 
was originally developed for image 
processing, in seismic denoising. 
The method assumes that the valid 
information repeated in the image 
or data is distributed in the whole 
space instead of a limited region 
around the pixel, making the process 
nonlocal. The restored value of the 
pixel is the weighted average of 
all pixels in image. Based on the 
redundancy property of seismic data 
and the block-wise implementation, 
we consider the seismic data as an 
image, allowing us to construct a 
simple algorithm that can protect 
the valid signal during denoising. 
Experiments show that a trade-off 
between denoising and protecting the 
useful information can be achieved.

(2) The ABNLM filtering corrects 
problems resulting from improper 
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filter parameters in traditional NLM filtering, and the 
numerical results describe its advantage. Experiments 
on real seismic data show that this method outperforms 
traditional denoising methods (e.g., f-x deconvolution), 
protecting the valid seismic events during denoising, 
especially for complex and discontinuous layers.(3) 
The seismic data is divided into blocks when ABNLM 
fi ltering is performed. The block size should be chosen 
so it is large enough to contain the seismic signal 
information, and it should be larger than or equal to 
the seismic data wavelet length. The infl uence of block 
size and overlapping size on the denoising result and 
computational efficiency will be discussed in further 
research.

(4) The NLM algorithm can be easily implemented in 
parallel processes. Using a parallel implementation and 
a fast algorithm, this method can be extended into three-
dimensional space or higher, providing support for the 
3D pre-stack or post-stack seismic data denoising.
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