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Abstract: When simulating seismic wave propagation in free space, it is essential to introduce 
absorbing boundary conditions to eliminate refl ections from artifi cially truncated boundaries. 
In this paper, a damping factor referred to as the Gaussian damping factor is proposed. The 
Gaussian damping factor is based on the idea of perfectly matched layers (PMLs). This work 
presents a detailed analysis of the theoretical foundations and advantages of the Gaussian 
damping factor. Additionally, numerical experiments for the simulation of seismic waves are 
presented based on two numerical models: a homogeneous model and a multi-layer model. 
The results show that the proposed factor works better. The Gaussian damping factor achieves 
a higher Signal-to-Noise Ratio (SNR) than previously used factors when using same number 
of PMLs, and requires less PMLs than other methods to achieve an identical SNR. 
Keywords: simulation of seismic wave, perfectly matched layer (PML), damping factor

Introduction

Numerical simulations are important for studying 
seismic wave propagation and pre-stack migration in 
complex media. In seismic exploration, waves propagate 
in free space. Because of fi nite computational resources, 
it is necessary to truncate the computational area. 
However, truncation results in artifi cial refl ections from 
the introduced boundaries. These refl ections reduce the 
Signal-to-Noise Ratio (SNR) of the seismic records 
and degrade the accuracy of the migration results. In 
practice, introducing absorbing boundary conditions can 
efficiently eliminate these reflections without greatly 
expanding the computational domain. 

The PML (perfectly matched layer) (Berenger, 
1994) is considered to be the best absorption boundary 
condition. The key idea of the PML (Hasting et al., 

1996) is the construction of absorbing layers outside 
the computational area to attenuate incident waves at an 
exponential rate. Because of its excellent absorption over 
a wide range of incident angles and its insensitivity to 
frequency, the PML technique has been used extensively 
in seismic wave modeling (Komatitsch et al., 2003; 
Wang et al., 2003) and migration (Du et al., 2010). 

Damping factors play a key role in the PML technique’
s absorption capability. Currently, the most widely used 
damping factor is the m-power factor proposed by Hasting 
(1996). He discussed the maximum value of the damping 
factor in detail and presented the corresponding refl ection 
coefficient based on an anisotropic medium. The study 
also chose to use a fourth-order scheme to ensure high 
performance and stability. Wang (2007) applied the 
m -power damping factor to acoustic wave modeling 
and presented a corresponding reflection coefficient. 
Subsequently, Chen (2010) analyzed the disadvantages 
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of the m-power damping factor and proposed the sine-
damping factor. The sine-damping factor’s absorption 
performance was demonstrated by numerical results using 
a homogeneous model and the Marmousi model. Chen 
also listed the principles for selecting a damping factor:

1. The damping factor must increase with the 
propagating distance, so that the absorption capacity can 
be gradually enhanced.

2. The factor must vary slowly enough to avoid inner 
refl ections caused by numerical discontinuities.

In this paper, first, we review the acoustic wave 
equation in the PML, derive the equivalent second-order 
equation and prove its absorption property. Second, we 
propose the Gaussian damping factor and analyze its 
properties in comparison with that of other common 
damping factors. Finally, numerical experiments are used 
to demonstrate the advantages of the proposed Gaussian 
damping factor.

PML based absorption boundary 
condition theory

Independent of the boundary conditions, the key 
concept of the PML is to place a layer of artificial 
absorbing material adjacent to the edges of the 
computation domain. When seismic waves enter the 
boundary, they are attenuated by this layer and eventually 
eliminated. In the two-dimensional case, the acoustic 
wave equation is 
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where u(x, t) (x = (x, z)) is the seismic wavefield and 
v(x) is the seismic wave velocity. The first-order PML 
absorbing boundary condition for acoustic wave equations 
can be defi ned as (Collino, 2001; Wang et al., 2007) 
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where ux and uz are the components of u along the 
x-axis and z-axis, respectively, ξ (x, t) and η (x, t) are 

the auxiliary wavefields, and αx(x)(>0) and αz(x)(>0) 
are the damping factors along the x-axis and z-axis, 
respectively. In particular, when assuming αx = αz = α and 
a homogeneous PML medium (i.e., a constant α), the 
equivalent second-order equation can be shown to equal
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As the propagation distance increases, the seismic 
wavefi eld u is attenuated by the PML and decays at an 
exponential rate. The damping factor α corresponds 
to the decay rate. The larger α is, the more rapidly the 
seismic wave will be attenuated. When α = 0， equation 
(3) degrades to the acoustic wave equation (equation (1)). 
If α(x) varies slowly, then slight refl ections in the PML 
can be neglected and equation (3) can be applied to a 
heterogeneous PML. Figure 1 illustrates the arrangement 
of the PML.

PML

PM
L Region of interest
α(x) = 0

α(x) > 0

Fig.1 Illustration of the PML arrangement. 

In accordance with wave propagation properties, 
transmission of seismic wave from one material to another 
causes reflections at the interface, it is necessary to set 
α(x) = 0 at the interior absorption boundary to ensure 
that seismic waves completely enter the PML. Next, one 
must slowly turn on the absorbing capacity of the PML to 
attenuate seismic waves with slight refl ections. This can 
be accomplished by letting α(x) monotonously increase 
in the PML, reaching a maximum value at the exterior 
absorption boundary.

In practice, the PML absorption boundary needs to be 
discretized. This means that PMLs should be placed with 
an increasing damping factor from the interior absorption 
boundary to the exterior boundary. For a given thickness, 
the absorbing capacity is determined by the properties 
of the damping factor. Currently, two damping factors 
are commonly used: the m-power damping factor and 
the sine-damping factor. The m-power damping factor 
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(Collino and Tsogka, 2001):
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where MLP  is the thickness of the PML, x = 0 indicates 
the exterior absorption boundary, x = MLP  indicates the 
interior absorption boundary, m is the order, and A is the 
maximum value determined by the refl ection coeffi cient 
at normal incidence. The refl ection coeffi cient at normal 
incidence is defi ned as (Komatitsch and Tromp, 2003)
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Chen (2010) defi ned the sine-damping factor as 
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The sine-damping factor’s reflection coefficient at 
normal incidence is 
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The gradient of the m-power damping factor is
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where m is an experiential parameter. If m = 1, then 
α(x) is linear and not smooth at the interior absorption 
boundary.  This  could cause a  large numerical 
discontinuity after discretization on a sparse grid. For 
larger values of m, α(x) becomes smoother at the interior 
absorption boundary. However, the gradient of α(x) at 
the exterior boundary increases. This implies that α(x) 
excessively increased at the exterior boundary, which is 
bad for the absorption. Experience shows that setting m 
= 4 usually provides the best absorption results (Hasting 
et al., 1996). In comparison, the gradient of the sine-
damping factor is
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It is smooth and varies slowly on the given interval. 
These advantages overcome the disadvantages of the 
m-power damping factor.

Gaussian damping factor

The damping factor has a signifi cant infl uence on the 
decay rate. An ideal damping factor has two necessary 
properties: smoothness at the interior boundary (to allow 
seismic waves to completely enter the PML), and a low-
rate variation in the PML (to prevent large transitions 
once the PML is discretized). 

The Gaussian function can be derived in an arbitrary 
order. Based on this fact, this paper proposes a new 
Gaussian damping factor:
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The reflection coefficient at normal incidence can 
be computed in a similar manner to the computation in 
Hasting et al. (1996): 
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The properties of the proposed Gaussian damping 
factor are as follows. The gradient of equation (7) is
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Because 0)( MLP , the smoothness property is 
satisfi ed. 

For simplicity, let MLP  = 1 and A = 1. Figure 2 and 
Table 1 show the properties of the three factors (m-power, 
sine, and Gaussian). Figure 2a shows plots of the factors 
and Figure 2b shows plots of the factor gradients (m = 4). 
Table 1 lists the values of the gradients at x = 0, 1/3, 1/2, 
and 1.

Table 1 Comparison of the damping factor gradients
x = 0 x = 1/3 x = 1/2 x = 1

m-power -4 -1.6875 -0.6655 0
Sine -1.5707 -1.4512 -1.1944 0

Gaussian -2.7726 -1.5354 -0.9403 0

Figure 2b and Table 1 show that all gradients 
are zero at x = 1 and that all factors are smooth,  
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respectively. However, at x = 1/2, the gradient of the 
m-power damping factor is smaller and its value at 
the exterior boundary (x = 0) is much larger than the 
values of the other damping factors. This implies 
that the m-power damping factor varies much faster 

around the exterior boundary and is more likely to 
cause refl ections on sparse grids. In comparison, the 
sine-damping factor and the Gaussian damping factor 
perform better at the exterior boundary. 

Fig.2 Plots of the damping factors (a) and the factor gradients (b).

A pseudo-spectral method

The simulation region shown in Figure 1 can be 
divided into two parts: the region of interest and the 
PML region. In the region of interest, the seismic 
wavefi eld is the solution of the acoustic wave equation 
(equation (1)), whereas, in the PML region, the 
seismic wavefield equation becomes equation (3). To 
numerically evaluate the nonreflecting solution, the 
problem needs to be discretized. This paper uses the 
pseudo-spectral method to solve the problem, which 
involves spectral differentiation in the spatial domain 
and forward marching in the time domain. This can 
effi ciently guarantee the accuracy in spatial domain and 
suppress numerical dispersion. In the region of interest, 
the second-order central difference scheme is 
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zx

nnn uFkkFvtuuu ])([2 2212211 , (13)

where F is the two-dimensional Fourier transform 
operator and F-1 is its inverse. In the PML region,  
equation (13) is discretized to have:
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Next, it is necessary to discretize the dampling factors. 
The discretized form of the Gaussian factor is 
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where PML is the total number of grid points occupied 
by the PML, and i is the grid point index (i = 0 at the 
exterior absorption boundary and i = PML at the interior 
absorption boundary). Take the left PML boundary as an 
example. Equation (14) can be further discretized to 
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where j and k represent the x-axis and the z-axis 
coordinates, respectively, and nz is the total number of 
grid points along the z-axis. The discretization process 
is similar for the m-power damping factor and the sine-
damping factor. 

Numerical experiments

Numerical experiments were conducted to verify the 
effi ciency of the Gaussian damping factor in this section.. 
The fi rst experiment uses a homogeneous medium with 
a seismic wave velocity of 2000 m/s. The model scale 
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is 200×200 and the spacing intervals ∆x and ∆z are 20 
m. The time interval ∆t is 2 ms. The source is motivated 
by a Ricker wavelet with a maximum frequency of 20 
Hz. To compare the absorption performance of the three 
factors, the fi rst experiment applies a special PML design 
that is shown in Figure 3. The top and bottom absorption 
boundaries use the Gaussian damping factor. The left 
absorption boundary uses the sine damping factor, 
and the right absorption boundary uses the m-power 
damping factor (m = 4). The parameter A in equation (8) 
is computed using the refl ection coeffi cient and the four 
absorption boundaries have an identical thickness. Fig. 3 Construction of the PMLs. 

(a) PML = 0                                                                                       (b) PML = 10       

(c) PML = 20                                                                                     (d) PML = 30             
Fig.4 Wavefi eld snapshot of model with a homogeneous medium. 

Figure 4 shows wavefield snapshots at t = 0.84 s 
for different values of PML. Figure 4a – 4d correspond 
to PML = 0, 10, 20, and 30, respectively. Figure 4a 
is the unabsorbed result; reflections are strong and 
the amplitude reaches 10-1. The use of PMLs causes 
the reflections to attenuate rapidly. For PML = 10 the 
amplitude of the refl ections is reduced to 10-3 or lower 
(Figure 4b). For increasing values of PML, the absorption 
effect gradually improves. For PML = 30, the maximum 
amplitude of the refl ections is less than 10-3.

By comparing the wavefield behavior near the four 

boundaries, we find that the sine-damping factor has a 
better absorption performance than the m-power damping 
factor and a worse absorption performance than the 
Gaussian damping factor. For example, in Figure 4d, 
the refl ections from the up and down boundaries, whose 
maximum amplitude is less than 10-4, are weaker than 
the reflections from the left and right boundaries. This 
demonstrates that the proposed factor can better constrain 
artificial reflections from the truncated boundaries, 
resulting in more accurately modeled wavefi elds.

To qualitatively investigate the absorption effects of 
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the Gaussian damping factor, the second experiment is 
based on a multi-layer model shown in Figure 5. The 
acoustic source is the same as the fi rst experiment. The 
numbers of grid points along the x and z axes  are 200 
and 100, respectively. The step size is ∆x = ∆z = 20 m. At 

Fig.5 Multi-layer model. 

                  (a) Unabsorbed record.
(SNR = 11.33 dB)

Fig. 6 Single shot records. 

(b) Record obtained with the m-power absorption factor. 
(PML = 10, SNR = 34.38 dB)             

(c) Record obtained with the sine-absorption factor. 
(PML = 10, SNR = 37.53 dB)

(d) Record obtained with the Gaussian absorption factor.  
(PML = 10, SNR = 38.17 dB)

the same time, the time interval is uniformly discretized 
into 700 grids with step size ∆t = 2 ms.The source is 
located at (2000 m, 0 m), Figure 1 shows the construction 
of the PMLs, which have an identical damping factor and 
thickness. Figure 6a presents the unabsorbed single shot 
record, Figure 6b presents the record obtained with the 
m-power damping factor, Figure 6c presents the record 
obtained with the sine-damping factor, and Figure 6d 
presents the record obtained with the Gaussian damping 
factor. In the unabsorbed record (Figure 6a), there are 
strong reflections from the truncated boundaries. These 
reflections are greatly attenuated in Figures 6b and 6c, 
and are increasingly attenuated in Figure 6d, which is 
almost identical to the nonrefl ecting record obtained by 
enlarging the computational domain. This demonstrates 
that, in the multi-layer model, the Gaussian damping 
factor has a better performance than the other two factors 
(for an identical PML).
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Because artificial reflections can be regarded as 
regular noise, a SNR is introduced to quantitatively 
evaluate the absorbing results as follows:  

                  ,lg10SNR 2
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where Psignal denotes the nonreflecting record and is 
obtained by extending the computational domain, and 
Pnoise denotes the difference between the record obtained 
with the PML absorbing boundary condition and the 
nonreflecting record. The SNR represents the energy 
difference between records with and without refl ections. 
A large SNR implies the record contains little refl ection. 
Figure 7 presents SNR plots of the seismic records 
obtained with different damping factors. Table 2 presents 
part of the SNR data. 

the Gaussian damping factor is better at eliminating 
reflections than the other factors. Additionally, for 
identical SNRs, the Gaussian damping factor requires 
less PMLs in comparison to the other factors. However, 
Gaussian and Sine factor SNR curve tends to be close as 
PML increases.

 Additionally, for identical SNRs, the Gaussian 
damping factor requires less PMLs in comparison to the 
other factors.

Conclusions

This paper proposed a damping factor referred to 
as the Gaussian damping factor. The properties of the 
Gaussian damping factor and the sine type absorption 
factor, and types of power function were analyzed and 
compared. Numerical experiments with a homogeneous 
model and a multi-layer model were presented, and 
showed that the Gaussian damping factor yielded a 
higher SNR and only required fewer PMLs. Because it 
is difficult to theoretically prove the advantages of the 
proposed factor, we evaluated the factor based on its 
properties and its performance in numerical experiments. 
The idea used in the construction of Gaussian factor 
is also helpful to derive other PML factors in wave 
equations.   Because of the extensive application of PML 
absorbing boundary conditions in seismology, the results 
of this paper can be used to obtain relatively accurate 
data in numerical modeling, migration, and inversion.
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