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Abstract: Signal to noise ratio (SNR) and resolution are two important but contradictory 
characteristics used to evaluate the quality of seismic data. For relatively preserving SNR 
while enhancing resolution, the signal purity spectrum is introduced, estimated, and used to 
defi ne the desired output amplitude spectrum after deconvolution. Since a real refl ectivity 
series is blue rather than white, the effects of white reflectivity hypothesis on wavelets 
are experimentally analyzed and color compensation is applied after spectrum whitening. 
Experiments on real seismic data indicate that the cascade of the two processing stages can 
improve the ability of seismic data to delineate the geological details.
Keywords: signal purity spectrum, SNR spectrum, resolution, spectrum whitening, color 
compensation

Introduction

Due to the effect of high frequency noise, seismic 
data SNR decreases while increasing the resolution. 
Therefore, preserving SNR while enhancing resolution 
is a key technique for high resolution seismic data 
processing.

Kallweit and Wood (1982) discussed the limit and 
criterion of zero-phase wavelet resolution in the noise-
free case but without involving the effect of noise on 
seismic resolution. Widess (1982) introduced the noise 
factor into the resolution definition and proposed the 
concept of signal purity but without involving the 
estimation of signal purity from seismic data. Li (1986, 
2008) discussed the contradiction of resolution and SNR 

in depth and concluded that although deconvolution 
decreases the seismic data SNR, it doesn’t change 
the SNR spectrum. Puyear and Castagna (2008) 
proposed spectral inversion. Velis (2008) introduced 
stochastic sparse-spike deconvolution. Compared with 
conventional deconvolution, both of the methods greatly 
improve seismic data resolution but noise factors aren’t 
taken into account. 

In addition to noise, another problem in conventional 
deconvolution is the white refl ectivity hypothesis. Rosa 
and Ulrycht (1991) investigated a lot of log data and 
indicated that the spectrum of real reflectivity series 
is blue rather than white, i.e., the amplitude of low 
frequency components are relatively weaker than high 
frequency components. When the reflectivity of real 
seismic data deviates from white, the conventional 
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deconvolution methods, especially spectrum whitening 
and spectral modeling deconvolution, cannot play a full 
role in increasing resolution. Therefore, Zhao and Yu 
(1996) suggested that a blue fi lter should be applied for 
reflectivity color compensation. However, the effects 
of the white reflectivity hypothesis on wavelets after 
deconvolution have not been systematically analyzed 
and discussed. 

After the discussion on the basic concept of the signal 
purity spectrum, we propose a method for the estimating 
the signal purity spectrum from seismic data in the f-x 
domain and use it to defi ne the desired output amplitude 
spectrum after deconvolution. The SNR is preserved 
while enhancing resolution. Then, the effects of the 
white reflectivity hypothesis on wavelets are analyzed 
and color compensation is applied to further improve the 
resolution. The experiments on synthetic and real data 
indicate that the resolution and SNR are well balanced 
and the ability to describe the geological details is 
improved. 

Signal purity and its spectrum

Suppose that a seismic record x (t) consists of seismic 
signal s (t) and noise n (t)

                           ,x t s t n t  (1)

The equation can also be expressed in frequency 
domain as 

                     ,X f S f N f  (2)

The signal purity can be defi ne as
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where R is SNR and it is defi ned as
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The signal purity spectrum is referred as signal purity 

for each frequency component 
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For convenience and no loss of generality, the signal 
purity spectrum is defi ned here as

      1 ,
1 1

S f
p f

r fS f N f
 (6)

where r ( f ) is defi ned as SNR spectrum. 
The seismic record after deconvolution is denoted in 

the frequency domain as

                   ,Y f X f H f  (7)

where H ( f ) is the deconvolution operator in the 
frequency domain and the signal purity spectrum after 
deconvolution is 

1 ,
1 1y

H f S f
p f p f

r fH f S f N f
 (8)

Equation (8) indicates that deconvolution cannot 
change the signal purity spectrum of a seismic record 
since signal and noise for a given frequency are scaled 
by the same operator, although the SNR of the whole 
record may decrease.

Figure 1 shows a seismic signal, noise, and seismic 
record, as well as their amplitude spectra before and after 
deconvolution. Figure 1 (a) to (f) are sequentially the 
seismic signal, noise, and seismic record before and after 
deconvolution and Figure 1 (g) to (l) are the amplitude 
spectra of the seismic signal, noise, and seismic record 
before and after deconvolution. The SNR and signal 
purity before deconvolution are 5.278 and 0.841, 
respectively. They are decreased to 1.401 and 0.584 
after deconvolution. We can explain intuitively from the 
amplitude spectra shown in Figure 1. The high frequency 
components above 90 Hz contribute more proportion 
to the complete seismic record after deconvolution than 
before. However, the high frequency components are 
mostly occupied by noise.

Figure 2 shows the signal purity spectra before and 
after deconvolution. It is clear that although signal 
purity of the whole seismic record is decreased after 
deconvolution, its spectrum has not been changed by 
deconvolution.
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Fig.1 Deconvolution decreases SNR while increasing resolution. 
(a) - (f) are sequentially signal, noise, and seismic record before and after deconvolution and (g) - (l) are sequentially the spectra of the 

signal, noise, and seismic record before and after deconvolution.

where Qi ( f0) is the prediction operator with length m.
Supposing noise is laterally random, then signals can 

be predicted from seismic records with noise by 

                0 0 0
1

,
m

i j i j
j

S f Q f X f  (11)

where Qi ( f0) can be obtained by minimizing the 
prediction error E ( f0):
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The signal si ( f0) can be abstracted from seismic 
record Xi ( f0) by equation (11) and then signal purity at 
frequency  f0 can be estimated by equation (6).

Signal-purity-spectrum-based 
deconvolution

The core of linear deconvolution is compression of the 
wavelet duration time by broadening the frequency band 
(Li, et al., 2008, 2010a). Two problems are involved in 
the process, one is how to estimate the input wavelet 
from seismic records and the other is how to defi ne the 
desired output wavelet. Since it is difficult to directly 
estimate the wavelet from seismic records, the wavelet 
is often assumed to be minimum-phase or zero-phase 
because only the amplitude spectrum or auto-correlation 
is estimated from the seismic records. On this basis, the 
input wavelet amplitude spectrum is modulated towards 
the desired output spectrum for increasing resolution. 
There are many literatures involving the wavelet 
amplitude spectrum estimation (Porsani and Ursin, 2000; 
Li, et al., 2005) so we will not discuss this topic further 
in this paper. We will focus on how to defi ne the desired 

Fig.2 Signal purity spectra before (a) and after (b) 
deconvolution.

Estimation of signal purity spectrum 
from seismic records

Canales (1984) presented an f-x domain random noise 
attenuation method. The basic idea of the method is 
that, for a given frequency, the predictable part of the 
seismic data, which can be thought as signals, can be 
estimated by seismic data convolved in spatial directions 
with a spatial prediction filtering operator which can 
be found by minimizing the prediction error. Soubaras 
(1994) improved the method in estimated noise accuracy 
by projection filtering. It is not difficult to extend the 
method from noise attenuation to signal purity spectrum 
estimation. 

Suppose there are N seismic records Xi ( f ) in the 
frequency domain,

, 1,2, , 1, .i i iX f S f N f i N N  (9)

For a given frequency f0, signal Si ( f0) is laterally 
predictable by

                0 0 0
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output amplitude spectrum.
For noise-free data, broadening the desired output 

wavelet spectrum increases the seismic resolution 
after deconvolution. However, seismic signals are 
much feebler than noise at high frequencies because 
of absorption (Li, et al., 2010b). The amplification of 
high frequency components increase the resolution, 
meanwhile inevitably decreasing the SNR. Therefore, 
how to relatively preserve SNR while increasing 
resolution is an important concern in seismic data 
processing.

The seismic  data  spectra l  d is t r ibut ion af ter 
deconvolution determines the SNR and resolution. 
Therefore, the optimum output spectrum with balanced 
SNR and resolution should be found to improve the 
overall quality of seismic data to the maximum extent. 
The signal purity spectrum representing the signal 
purity at each frequency remains unchanged after 
deconvolution, therefore, it can be used as an optimum 
output spectrum. If the desired output spectrum after 
deconvolution is defi ned by the signal purity spectrum, 

SNR and resolution balance can be achieved.
Figure 3 shows the role of the signal purity spectrum. 

Figure 3a is synthetic seismograms with random noise. 
The wavelet is the Ormsby wavelet, whose spectrum 
is a trapezoid defi ned by the four frequencies 2, 8, 30, 
and 95 Hz. The four frequencies represent the 0% and 
100% points of the low-cut ramp and 100% and 0% 
points of the high-cut ramp. There are nine reflection 
events in the model, with the fourth, fi fth, eighth, and 
ninth are less resolvable. Figure 3b is the average 
signal purity spectrum. The purity above 90 Hz is 
less than 0.2. By defi ning the desired output spectrum 
as a 2, 8, 80, and 100 Hz trapezoid, Figure 3c shows 
the deconvolution result. The resolution is improved 
and the fourth, fifth, eighth, and ninth events are 
resolvable but the SNR is signifi cantly decreased. For 
better preservation of seismic SNR, the desired output 
amplitude spectrum is defined by the signal purity 
spectrum and the deconvolution result is displayed in 
Figure 3d. The SNR is preserved while the resolution is 
enhanced.

(a) Synthetic seismogram with random noise                                          (b) Average signal purity spectrum

   (c) Deconvolution output for a 2-8-80-100 Hz trapezoidal spectrum     (d) Deconvolution output based on the signal purity spectrum
Fig.3 Deconvolution with the signal purity spectrum.
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Effect of white refl ectivity hypothesis 
on the wavelet

Deconvolution methods, such as spike and prediction 
deconvolution, spectrum whitening, and spectral 
modeling, imply the white reflectivity hypothesis. 
Analysis of log data indicates that real refl ectivity is blue 
rather than white, i.e., the low frequency components 
are relatively weaker than high frequency components 
(Walden and Hosken, 1985; Rosa and Ulrycht, 1991). 
The refl ectivity spectrum can be modeled as (Rosa and 
Ulrycht, 1991):

           22sin ,
bi f tf f t e  (13)

where b is a constant larger than zero.
In practice, blue compensation can be represented as 

an ARMA process (Walden, 1988; Zhao and Yu, 1996). 
The Z-transformation of the color compensation operator 
can be expressed as

                          
1 ,
1

zc z
z

 (14)

where θ and φ can be estimated from log data and |θ| < 1, 
|φ| < 1.

The color compensation process can be represented in 
Z-transformation as 

                      
1 ,
1

zy z x z
z

 (15)

where x (z) is the input signal Z-transformation and 
y (z) is the output signal Z-transformation after color 
compensation.

The potential effect of the white refl ectivity hypothesis 
on wavelets after deconvolution will be discussed below.

For a seismic record x (t), its reflectivity ξ (t) is blue 
and its wavelet w (t) is band-limited with a rectangular 
spectrum. Figures 4a, 4b, and 4c are the spectra of the 
refl ectivity, wavelet, and seismic record before spectrum 
whitening. The seismic record spectrum is modulated 
to white after spectrum whitening with the wavelet 
spectrum changed to

                         1 ,w f
f

 (16)

Figures 4d, 4e, and 4f schematically show the spectra 
of the reflectivity, wavelet, and seismic record, after 
spectrum whitening. The wavelet spectrum is modifi ed 
into red, i.e., with strong low frequency amplitude and 
weak high frequency amplitude. As a result the output 
wavelet has less perfect ability to resolve thin strata.

Fig.4 Wavelet amplitude spectra before and after deconvolution in the condition of blue refl ectivity.
 (a) to (c) are the spectra of refl ectivity, wavelet, and seismic record, respectively, before deconvolution and (d) to (f) are the spectra 

of refl ectivity, wavelet, and seismic record after deconvolution.

The effect of the white reflectivity hypothesis on the 
wavelet after spectrum whitening is well displayed using a 
synthetic seismogram in Figure 5. Figure 5a is the synthetic 
seismogram with blue reflectivity. Figure 5b is the result 

of spectrum whitening with the desired output spectrum 
defi ned as trapezoid with 4 to 10 Hz low-cut ramp and 70 to 
80 Hz high-cut ramp. Except for the improved resolution, 
no visual anomaly is found in Figure 5b.

fff

x(f)w(f)( )
(a)                                                   (b)                                                    (c) 

(d)                                                    (e)                                                    (f) 
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Fig.5 Synthetic seismogram with blue refl ectivity before (a) and after (b) spectrum whitening.

displayed in Figures 6a and 6b. As expected, since the 
real reflectivity is blue rather than white, the spectrum 
whitening deconvolution adjusts the seismic data spectrum 
to white at the expense of making the wavelet red.

We extract the wavelet after spectrum whitening with 
the help of one model reflectivity series to investigate 
the influence of the white reflectivity hypothesis on the 
wavelet. The extracted wavelet and its spectrum are 

Fig.6 The extracted wavelet (a) and its spectra (b) from the data after spectrum whitening.

Real data example

We use real seismic data from Dagang Oilfield, 
China, as an example to test the proposed deconvolution 
method. Figure 7a is a seismic section after pre-stack 
time migration, where the red trace is a synthetic 
seismogram at well X1 with a zero-phase wavelet of 
5-10-60-75 Hz trapezoid spectrum. Since the seismic 
data lacks high frequencies, the resolution is not high 
enough to resolve the target details near 2200 ms 
indicated by a blue circle. Figure 7b is the average signal 
purity spectrum. Figure 7c is the result of spectrum 
whitening using the average signal purity spectrum as 
desired output. The resolution is greatly increased while, 
the SNR is decreased but not too much. The strong 
reflection just below 2200 ms is separated into two 
events, one with strong amplitude and the other with 
weak amplitude.

Next, we investigate the reflectivity color spectrum 

calculated from acoustic log data of well X1 to make 
clear whether the seismic data in Figure 7c should 
be color-compensated. Figure 7d is the reflectivity 
amplitude spectrum of well X1. As indicated by the 
black dash curve, the amplitude below 50 Hz increases 
with frequency increasing and the spectrum becomes 
gradually flat above 50 Hz. It is the typical blue 
spectrum characteristic. Therefore, it is necessary to 
compensate the seismic data color after whitening in 
Figure 7c. Figure 7e is the result of color compensation. 
Compared with Figure 7c, the resolution is further 
improved. For the two reflections right below 2200 
ms in Figure 7e, their amplitudes become almost the 
same from one strong and one weak amplitude before 
color compensation. It is more similar to the refl ection 
characteristic of the synthetic seismogram. As a result, 
color compensation not only improves the resolution 
but also makes the reflection characteristics more 
reliable. The latter is more valuable in thin reservoir 
prediction.

Ti
m

e (
m

s)

1300

1400

806 926 1046 1166
CDP    (a)                                                                                                              (b)

Ti
m

e (
m

s)

1300

1400

806 926 1046 1166
CDP

0 20 40
0.00

0.25

0.50

0.75

Am
pl

itu
de

Frequency (Hz)

1.00

60 80 100

-100

0

100

200

Ph
as

e,
de

gr
ee

Time (ms)
0 20 40-20-40

-0.5

0.0

0.5

1.0

Am
pl

itu
de

    (a)                                                                                            (b)



339

Li et al.

(a) Prestack time migration section across well X1, the red trace is a synthetic 
seismogram at well X1

(b) Average signal purity spectrum

(c) Spectrum whitened section based on signal purity spectrum

(d) The amplitude spectrum of the well X1 refl ectivity

(e) The section after color compensation for section (c)
Fig.7 A real data example from Dagang Oilfi eld. 

Conclusions

(1) Although deconvolution decreases the 
SNR of noisy seismic data, it does not change 
the SNR spectrum and signal purity spectrum.

(2) The desired output spectrum after 
deconvolution can be well defi ned on the basis 
of the signal purity spectrum. In this way, SNR 
can be relatively preserved while increasing 
resolution and the optimum balance between 
SNR and resolution can be achieved.

(3) When reflectivity is blue, the spectrum 
whitening deconvolution, based on the white 
reflectivity hypothesis, makes the wavelet 
spectrum red.

(4) Color compensation not only improves 
the resolution of seismic data but also makes the 
refl ection characteristics more reliable. The latter 
is more valuable in thin reservoir prediction 
using the refl ections characteristics.
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