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Abstract: Deconvolution denoising in the f-x domain has some defects when facing 
situations like complicated geology structure, coherent noise of steep dip angles, and uneven 
spatial sampling. To solve these problems, a new fi ltering method is proposed, which uses the 
generalized S transform which has good time-frequency concentration criterion to transform 
seismic data from the time-space to time-frequency-space domain (t-f-x). Then in the t-f-x 
domain apply Empirical Mode Decomposition (EMD) on each frequency slice and clear 
the Intrinsic Mode Functions (IMFs) that noise dominates to suppress coherent and random 
noise. The model study shows that the high frequency component in the fi rst IMF represents 
mainly noise, so clearing the fi rst IMF can suppress noise. The EMD fi ltering method in the 
t-f-x domain after generalized S transform is equivalent to self-adaptive f-k filtering that 
depends on position, frequency, and truncation characteristics of high wave numbers. This 
fi ltering method takes local data time-frequency characteristic into consideration and is easy 
to perform. Compared with AR predictive fi ltering, the component that this method fi lters is 
highly localized and contains relatively fewer low wave numbers and the fi lter result does not 
show over-smoothing effects. Real data processing proves that the EMD fi ltering method in 
the t-f-x domain after generalized S transform can effectively suppress random and coherent 
noise of steep dips.
Keywords: Empirical Mode Decomposition, generalized S transform, coherent noise, 
random noise, noise suppression

Introduction

In seismic data acquisition, interference factors can 
lead to both random and coherent noise. Besides, data 
processing, such as deconvolution and migration, can 
also introduce interference noise. Noises can greatly 
disturb the identification of geological information, so 
denoising is a crucial step in seismic data processing, 
especially crucial to seismic data interpretation and 

analysis (Shen et al., 2010). There are many methods for 
seismic data denoising. For surface waves, Roohollah 
and Siahkoohi (2008) noticed the distribution difference 
between surface waves and effective reflection waves 
in the f-k domain and suggested that S transformation 
and x-f-k transformation can be used to suppress surface 
waves. Taking advantage of the low frequency and 
strong energy characteristics of surface waves, Ba et 
al (2007) designed a zero-crossing filter to suppress 
surface waves through approximation coeffi cients after 
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wavelet decomposition. For random noise suppression, 
spatial predictive filtering in the f-k domain, which 
make use of the predictive signal characteristics in the 
spatial direction, is an effective method (Canales, 1984; 
Galbraith, 1991; Harris, and White, 1997).

When dealing with non-linear and non-stationary 
signals using standard spatial filtering techniques, a 
piecewise stationary and linear assumption is often used 
and short spatial windows are used to fi lter the data. To 
meet special processing demand, fi nding the best window 
size and filter length is the key technique. In ideal 
situations, these parameters depend on the smoothness 
and frequency of the data. Time-frequency analysis 
provides a way to analyze non-stationary data and it also 
can be used to suppress noise. Gabor (1946) introduced 
the short period Fourier transform to improve the Fourier 
transform drawbacks in local time-frequency analysis 
but its time window is constant. To meet the demand that 
higher frequencies need shorter time windows and lower 
frequencies need longer time windows, Morlet (1984) 
introduced wavelets into seismic data analysis. The time 
window in wavelet analysis can vary with scale factor 
and is dependent on time-frequency scale. However, 
wavelets must satisfy wavelet admissible conditions.

To overcome this restriction, Stockwell et al. (1996) 
proposed the S transform that focuses on detailed 
analysis of local time-frequency characteristics. The 
S transform time window length can be automatically 
added with increasing time windows and the time 
window doesn’t need to satisfy the wavelet admissible 
conditions. Besides, the S transform computation is 
directly related to Fourier transform. Huang et al (1998) 
believed that any complicated data can be decomposed 
into limited Intrinsic Mode Functions (IMFs) and 
proposed the Empirical Mode Decomposition (EMD) 
method which focuses on non-linear and non-stationary 
data. The EMD method can effectively analyze irregular 
signals (Hassan, 2005; Battista et al., 2007).

Considering the time-frequency characteristics and 
decomposition methods of seismic data, self-adaptive 
fi lters can be designed to suppress random and coherent 
noise. We propose a new method which uses the 
generalized S transform which has good time-frequency 
criterion to transform seismic data from the time-space 
domain to the time-frequency-space (t-f-x) domain, then, 
in the t-f-x domain apply the EMD method to suppress 
noise. In this paper, we first analyze the generalized S 
transform principle and EMD method, elaborate how 
this method can suppress coherent and random noise, 
and then analyze the advantages and drawbacks of the 
generalized S transform and EMD method through 

model studies. Finally, this method is used in real 
seismic data processing and its effectiveness proved.

Method theory 

Generalized S transform based on time-
frequency concentration criterion

Stockwell et al. (1996) introduced a new kind of 
short-time Fourier transform, called the S transform. The 
S transform is an extension of the wavelet and Gabor 
transforms. The S transform of signal x (t) is defi ned as:

2 2

( , ) ( ) exp exp 2 .
22

f t f
S f x t j ft dt

 (1) 
The S transform window function length can self-

adaptively vary with frequency. The time-frequency 
window function is self-adaptive and does not need to 
satisfy the wavelet admissible conditions and is directly 
related to the DFT. However, the S transform defi nition 
in equation (1) has unnecessary restrictions on window 
function:  Only the Gaussian window function is 
considered;  Can’t adjust time and frequency in the 
window function; and  The window function used 
in equation (1) does not have complex conjugate 
characteristics. To overcome this restriction, using 
the time-frequency concentration criterion suggested 
by Jones and Parks (1990), we rewrite the definition 
equation as:

2 2( )( , ) ( )exp exp 2 ( 0) .
22

p pf t fS f x t j ft dt p

 (2)
Equation (2) is the generalized S transform. Parameter 

p is used for adjusting the wavelet variation trend with 
frequency scale based on the frequency distribution 
characteristics of the non-stationary signal. It can speed 
up or slow down the variation speed of time window 
length with signal frequency and also can diversify the 
wavelet amplitude for best analyzing a specific signal. 
The parameter is not fi xed and is relevant to frequency. 
Determination of this parameter requires the time-
frequency concentration criterion suggested by Jones and 
Parks (1990). Performing the inverse Fourier transform 
on equation (2), we have:

     ( ) ( , ) exp 2 .x t S f d j ft df  (3)
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Equation (3) shows that a lossless inverse S transform 
can be realized by inverse Fourier transform. What’s 
more important, equation (3) correlates the S transform 
directly with the Fourier transform, which provides 
a rapid way to implement S transform and inverse S 
transform using FFT and improve computation speed.

Empirical mode decomposition (EMD)
EMD decomposes data into a series of signals called 

intrinsic mode functions (IMFs). Different IMFs 
represent information of different frequency or wave 
number. An IMF must satisfy two conditions: (1) the 
number of poles and zeros must be equal or differ 
by no more than one and (2) at any local point, the 
maximum envelope and minimum envelope have a 
zero average. These two conditions prevent frequency 
dispersion caused by waveform asymmetry and ensure 
each IMF has one local frequency. Fourier transforms 
decompose data into harmonic waves of a single 
frequency and constant amplitude, while IMFs are 
frequency modulation (FM) or amplitude modulation 
(AM) signals and can capture non-stationary and non-
linear data variations. IMFs are computed by iteration. 
The local maximums and minimums envelope are used 
in data decomposition. Once the extreme values are 
determined, we do a cubic spline interpolation on the 
local maximums and get the upper envelope and then 
do cubic spline interpolation on the local minimums and 
get the lower envelop. In each data sequence sample 
point, we compute the average of the upper and lower 
envelopes and subtract it from the initial data. We then 
do this interpolation method on the remaining data 
iteratively. When the envelop average of each sample 
point approaches zero to within a tolerance value, the 
iteration process is stopped and the signal yield is called 
the first IMF (IMF1). We then subtract IMF1 from 
the original signal to get a new signal and we get the 
next IMF from this new signal using the same process. 
Decomposition continues until the last IMF becomes 
constant or very close to zero. 

EMD becomes a signal analysis tool for its special 
characteristic. It can completely decompose data and 
losslessly reconstruct data through summation of all 
IMFs. Since the cross correlation function of different 
IMFs is very close to zero, the EMD process is close 
to orthogonal. What’s more important, many important 
characteristics of EMD are different from Fourier, 
wavelet, and S transforms. EMD does not need to 
provide basis functions, while other decomposition 
methods need to provide a basis function (such as sine 
function, cosine function, mother wavelet, and so on). 

EMD adopts cubic spline interpolation and does not 
require a constant sample rate, while Fourier, wavelet, 
and S transforms need a constant sample rate to 
effectively decompose signal (Bekara, and van der Baan, 
2007; Flandrin et al., 2005; Bekara and van der Baan, 
2009; Rilling, and Flandrin, 2009).

Denoising principle and realization steps
Ideally, seismic sections can be created by convolving 

a seismic wavelet and the reflection coefficient series. 
The sedimentary effect is laterally the same over a 
particular range, so in sedimentary strata, the wave 
impedance has good comparability in the lateral 
direction and so does the refl ection coeffi cient. When no 
noise is present, the seismic amplitudes show constant or 
slowly characteristics in the lateral direction and show 
low wave numbers in the wave number domain. When 
steep dip coherent noise, such as diffraction waves from 
fault break points, exist in the seismic section in the 
time direction, it shows the same or a close frequency 
band with the refl ection waves so it’s hard to eliminate 
coherent noise in the frequency domain. In the lateral 
direction, coherent noise causes drastic lateral amplitude 
changes and shows high wave number characteristics in 
the wave number domain. Random noise shows a white 
spectrum in both frequency and wave number domains. 
So for most seismic data, steep dip angle coherent noise 
and random noise have a large contribution to high wave 
number energy (Bekara, and van der Baan, 2007). 

Based on the characteristics, suppressing high wave 
number energy can suppress steep dip angle coherent 
noise and random noise in seismic data. The coherent 
and random noise disturbances occur at different 
frequencies in seismic data. Therefore, it’s necessary 
to perform noise suppression on different frequency 
components. Based on the characteristics of this method 
and the noise distribution, we first divide seismic data 
into volumes of equal frequency bands, transform the 
seismic volumes from the t-x domain into the t-f-x 
domain, apply EMD in the x direction, eliminate the 
IMFs that represent high wave number energy, and then 
the S/N ratio can be improved.  The fi rst IMF represents 
the signal component with the highest wavenumbers and 
as the IMFs order increases, the wavenumbers that the 
IMF represents decreases, and the effective information 
increases. So in most situations, eliminating IMF1 
(or other IMFs, depending on the data characteristics) 
can suppress noise. Considering that the generalized S 
transform can represent the local characteristics of non-
stationary signals, its computation uses the FFT, so the 
frequency sample interval is inversely proportional to the 
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number of sample points chosen to do the S transform. 
In other words, this means that the more sample points, 
the more data volumes of the same frequency band, and 
this obviously increases computation time and storage 
memory. In addition, the EMD method needs to find 
local maximums and minimums and needs to compute 
cubic spline interpolations, so longer data sequences 
result in lower computation efficiency. To handle a 
complete seismic section, we suggest these process steps 
that resemble f-x deconvolution to perform seismic data 
noise suppression in the t-f-x domain:

First: choose window lengths for the time direction (T) 
and space direction (X) and transform the seismic data 
into equal frequency bands in the time-frequency-offset 
(t-f-x) domain using the generalized S transform.

Second: apply EMD along the x direction on each 
equal frequency band.

(1) Separate the real and imaginary parts of the data 
generated in the t-f-x domain from the fi rst step.

(2) Apply EMD on the real part, compute each IMF 
component, and then subtract the IMF components   
dominated by noise, and store the real part data after 
noise suppression.

(3) Apply EMD on the imaginary part, compute each 
IMF component, and then subtract the IMF components 
dominated by noise, and store the imaginary part data 
after noise suppression.

(4) Construct a complex signal after noise suppression 
in the t-f-x domain from the real and imaginary parts 
after denoising. 

Third: perform an inverse S transform on the complex 
signal in the t-f-x domain and transform it to the t-x 
domain to complete the seismic data denoising in the 
given time-space window.

Fourth: Choose another time-space window and 

repeat the procedure until the entire seismic section is 
processed.

Though these steps, random and coherent noise in 
seismic data can be suppressed using the mixed time-
frequency method. The process steps show that the 
key point of this method is to eliminate noise in the 
x direction and preserve the high and low frequency 
components of the seismic data in the time direction 
and this can largely preserve the vertical seismic data 
resolution.

Result analysis

First, we analyze the advantage of time-frequency 
decomposition using the generalized S transform based 
on the mixed time-frequency method. To evaluate the 
method effectiveness, we designed a signal shown in 
Figure 1a. The signal is constructed from two linear 
FM signals that cross each other and two short cosine 
signals (one with higher frequency and the other with 
lower). The S transform time-frequency and generalized 
S transform sections are shown in Figures 1b and 1c. 
The S transform spectrum shows the four components 
clearly but at the crossover frequency there are overlaps 
and the resolution is not good enough. The generalized 
S transform based on time-frequency concentration 
(Figure 1c) has better performance. Its time-frequency 
decomposition not only shows the four signals in the test 
signal but also preserves the time axis correspondence 
between wave peak and energy peak. The result shows 
that this method has good time-frequency concentration 
ability and can divide data into different frequency slices 
for data processing.
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                      (a) Test signal                                 (b)Time-frequency spectrum of the S transform (c) Time-frequency spectrum of the generalized S 
transform based on time-frequency concentration

Fig. 1 Test signal and its time-frequency spectra. 

Next we apply the EMD method on the signal shown 
in Figure 2a, Figures 2b to 2j are the EMD results and 
represent IMF1 to IMF9, respectively. The initial data 
in Figure 2a is non-stationary. In the IMFs computed by 
iteration, IMF1 changes fastest and IMF9 changes slowest. 

IMF1 contains the high wave number information, while 
IMF9 represents the data variation trend. The IMF2 and 
IMF3 waveforms show that, although they overlap in 
wave number, they are separated in spatial location. So 
the EMD method is different from a band pass fi lter.
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Fig. 2 The IMFs after the EMD process.

The main  d i fference  be tween EMD and f -x 
deconvolution is that f-x deconvolution needs a constant 
filter length for all frequencies, while EMD can self-
adaptively decompose the data based on the data 
smoothness. For different frequencies or wave numbers, 
the EMD method provides different filtering choices. 
Note that in most situations, merely eliminating IMF1 
can achieve the denoising goal (later the model analysis 
and application example can prove its effectiveness). For 
example, the IMF1 (Figure 2b) computed by applying 
EMD on the signal in Figure 2a shows a rapid vibrating 
characteristic, which is the characteristic of noise. In 
IMF2, although it’s still vibrating fast, it contains a 
lower wave number component that represents effective 
information (for example, the signal at about 2000 m). 

From the processing steps we see that the noise 
suppression procedure is accomplished by applying 
EMD in the x direction in t-f-x domain and this will 
indirectly change the frequency distribution in the 
time direction. For random noise suppression, an auto-
regression fi lter in the f-x domain is a good tool, so we 
apply an auto-regression fi lter and an EMD fi lter on the 
signal shown in Figure 3a to test the effectiveness and 
advantage of the EMD denoising method. Figure 3a is 
the real part of a 35 Hz signal sequence computed using 
the generalized S transform and it is fi xed in time t in 
the f-x domain (the horizontal and vertical coordinates 
in Figure 3 are the same as in Figure 4). Figure 3 shows 
the comparison of the filtering results using second-
order and tenth-order auto-regression linear predictive 
fi lters with the EMD fi ltering result that just eliminated 
IMF1.
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          (a)Signal after the 2nd-order AR model fi ltering.                           (b) The noise suppressed by the 2nd-order AR model.
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          (c) Signal after 10th-order AR model fi ltering.                           (d) The noise suppressed by the 10th-order AR model.
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                   (e) Signal after EMD fi ltering.                                              (f) The noise suppressed by the EMD method.
Fig. 3 Comparison of fi ltering results by the EMD and AR model prediction fi ltering methods.
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The lower order predictive filter will filter data 
more smoothly and can only recover the main spatial 
changes (Figure 3a). From the difference fi gure (Figure 
3b) and Figure 4, we see that the fi ltered noise in the 
wave number map is very clear and it contains low 
wave number components (from about 2000 m). As 
the filter order increases, this filter can handle rapid 
changing signals more accurately (Figure 3c) and 
better predict the lower wave number component trend. 
As the filter order increases, the data variation can 
be better predicted but the ability to filter noise will 
decrease. Figure 3e shows the signal after applying 
EMD and eliminating IMF1 on the initial data. From 
this figure we see that the filter result captured the 
initial data low wave number components. To compare 
the fi ltered noise difference between the EMD method 
and AR prediction fi lter, we plot the IMF1 component 
in Figure 3f. The AR prediction filter result is not as 
smooth as the EMD fi lter result and the reason is that 
the AR model is fit in a short window and then uses 
the fi t coeffi cients to predict at least one sample point 
ahead. The comparison of AR prediction filtering 
results (Figures 3b and 3d) and the EMD filtering 
result (Figure 3f) and Figure 4 shows that the EMD 
method fi ltered component based on the t-f-x domain is 
highly localized and contains relatively small low wave 
numbers and the filter result does not show an over-
smoothed characteristic. The similar results can also be 
verifi ed on the imaginary part.
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Fig. 4 Comparison of wave numbers of the fi ltered noise by the 
EMD and AR model prediction fi ltering methods.

Following is an analysis of effectiveness and performance 
for seismic noise suppression in the mixed domain. We 
fi rst analyze the suppression effect on coherent noise. We 
used wave equation forward modeling to compute the 
wave field shown in Figure 5a. In this model, there are 
diffracted waves and primaries. We consider diffracted 
wave as coherent noise. Figure 5b is the section after 
coherent noise suppression using the method mentioned in 
this paper. Comparing Figures 5b and 5a, Figure 5b shows 
that the diffracted waves were suppressed to some extent 
and effective signal was well preserved. Figure 5c is the 
difference between the original section and the denoised 
section. This figure shows that the higher dip angles has 
been better suppressed. This means the method is better for 
removing coherent noise generated by higher dip angles 
than lower dip angle (yellow arrows).

                                (a) Model section.                                             (b) Section after denoising.                                 (c) The difference between (a) and (b).
Fig. 5 Coherent noise suppression analysis.

                                (a) Model section.                                             (b) Section after denoising.                                 (c) The difference between (a) and (b).
Fig. 6 Coherent noise and random noise suppression analysis (added 15% Gaussian random noise to the initial data).
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To analyze the random noise suppression of this method, 
we add 15% Gaussian random noise to the model data 
shown in Figure 5a. After applying the EMD method in 
the t-f-x domain using the generalized S transform and 
eliminating IMF1, the noise suppression section is shown 
in Figure 6b and the difference section is shown in Figure 
6c. These two fi gures show that this method can effectively 
suppress coherent and random noise at the same time.

Figure 7 is the model data in Figure 5a plus 30% 

Gaussian noise. The Gaussian noise energy is stronger 
than the diffracted waves and the diffracted waves show 
random noise characteristics (red arrows). We apply the 
EMD denoising method and the results are shown in 
Figure 7b. The reflection events continuity in Figure 7b 
is improved over Figure 7a (see the red arrows) and the 
section quality is enhanced. The result in Figure 7b shows 
that, even with strong random noise, this method is still 
effective in suppressing noise.

                              (a) Model section.                                             (b) Section after denoising.                             (c) The difference between (a) and (b).
Fig.7 Coherent noise and random noise suppression effect analysis (added 30% Gaussian random noise to the initial data).

Applications

To verify the practicality of this method, it was 
applied to marine seismic data from the Jinzhou area. 
Figure 8 shows a stacked seismic profile with uneven 
trace interval. This data shows strong acquisition 
footprints and random and coherent noise. The coherent 
noise is caused by errors in migration velocity and the 
profi le shows residual arcs. The random noise blurs the 
reflection events. In the t-f-x domain generated by the 
generalized S transform, we eliminate each IMF1 in 
every equal frequency band data volume after EMD and 

generate the noise suppressed (Figure 8b) and difference 
profiles (Figure 8c). The coherent noise indicated by 
red arrows in Figure 8a is suppressed, the random noise 
is also suppressed, and the reflection event continuity 
is enhanced. The difference section (Figure 8c) shows 
the EMD filtering method can not only suppress back- 
ground noise but also has low amplitude distortion. 
What’s more important, this method can effectively 
suppress coherent noise and falsely crossing events, and 
has some effect on suppressing acquisition footprints. 
The noise energy distribution in the difference section 
shows that for coherent noise caused by steep dips, the 
higher dips are better suppressed.

                 (a) Initial seismic section.                            (b) Section after noise suppression.                   (c) The difference between (a) and (b).
Fig. 8 Denoising analysis on marine data from the Jinzhou area.

To test the universality of this method, it was also 
applied to Sichuan land seismic data. The original 
data is shown in Figure 9a. There are many random 

noises in the seismic data, the event continuity is 
poor, and the fault boundaries are blurred, which 
adds much difficulty to horizon tracing and fault 
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interpretation. The denoising result from this method 
by only removing IMF1 to suppress noise is shown in 
Figure 9b. Compared with Figure 9a, the wave group 

relation is clearer and the refl ection event continuity is 
enhanced, which improves horizon tracing ability for 
interpretation (blue arrows). 

                  (a) Initial seismic section.                            (b) Section after noise suppression.                   (c) The difference between (a) and (b).
Fig. 9 Denoising analysis on land data from Sichuan.

The EMD noise suppression method was applied on 
two seismic data sets acquired in different environments 
and the results show that this method can be a good 
choice for suppressing random and coherent noise. The 
EMD in the t-f-x domain generated by the generalized S 
transform works as a fi lter that self-adaptively fi lters out 
high wave number components in the x direction. 

The cutting wave number can be self-adaptively 
determined from the data and changed as a function of 
frequency. This method does not require convolution, so 
the sample interval between seismic traces does not need 
to be equal. This method has low amplitude distortion 
and can suppress major background noise. However, 
not all wave energy from steep dip angles is unwanted 
and the removal of IMF1 may remove some reflection 
energy that we wanted (for example, red arrows at 1.6 
s in Figure 8c and 3.1 s in Figure 9c pointed out strong 
energy that contains refl ection energy from the steep dip 
angle interface), so applying this method may reduce 
some portion of the refl ection wave energy and this still 
needs improvement. The high wave number component 
is related to random noise and coherent noise from steep 
dips, but in other wave number components there are 
also some interference and noise. So we suggest using 
the signal difference sections to estimate if useful signals 
are over-suppressed or to determine which IMFs should 
be removed to improve data quality. 

Conclusions

The real data study shows that in the t-f-x domain 
generated by the generalized S transform, applying 

the EMD method on each equal frequency band data 
volume can self-adaptively determine the cutting wave 
number of data and suppress random and steep dip angle 
coherent noise. Comparing with traditional denoising 
tools, the proposed method applies the generalized S 
transform in the time direction to analyze the time-
frequency distribution at each time and does not need 
the piecewise stationary assumption. So this method 
can deal with problems like complicated structure and 
coherent noise pollution. What’s more important, this 
EMD method can be applied on irregularly sampled data. 
In most situations, denoising only needs to remove the 
IMF1 component, does not need to consider parameter 
adjustment, and can also adjust the denoising scheme 
freely. However, care must be taken because this method 
is affected by extreme value picking accuracy and the 
terminal process method.
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