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Abstract: In order to study the scale characteristics of heterogeneities in complex media, 
a random medium is constructed using a statistical method and by changing model 
parameters (autocorrelation lengths a and b), the scales of heterogeneous geologic bodies 
in the horizontal and the vertical Cartesian directions may be varied in the medium. The 
autocorrelation lengths a and b represent the mean scale of heterogeneous geologic bodies in 
the horizontal and vertical Cartesian directions in the random medium, respectively. Based 
on this model, the relationship between model autocorrelation lengths and heterogeneous 
geologic body scales is studied by horizontal velocity variation and standard deviation. The 
horizontal velocity variation research shows that velocities are in random perturbation. The 
heterogeneous geologic body scale increases with increasing autocorrelation length. The 
recursion equation for the relationship between autocorrelation lengths and heterogeneous 
geologic body scales is determined from the velocity standard deviation research and the 
actual heterogeneous geologic body scale magnitude can be estimated by the equation.
Keywords: random medium, autocorrelation length, velocity standard deviation, 
heterogeneous geologic body scale

Introduction

Seismic exploration subjects have been complex 
heterogeneous media and seismic wave propagation in 
actual media is affected by geologic heterogeneities, 
especially the heterogeneous geologic body scale. 
According to scattering theory (Wu et al., 1993), during 
seismic wave propagation, when the geologic bodies scale 
can be comparable to the seismic wavelength, the seismic 
wave will be scattered when it encounters geologic bodies. 
The scattering research in some fi elds has made progress 
(Aki, 1969; Aki and Chouet, 1975; Aki and Richards, 

1980; Wu and Aki, 1985; Wu, 1985; Wu, 1989; Zeng et 
al., 1991; Eaton, 1999; Hu et al., 2010; Liu, 2010; Chen, 
2011; Lei et al., 2011). Different scales and constituents 
heterogeneous geologic bodies may produce different 
seismic wave scattering. Consequently, the distribution 
and character of the heterogeneities can be inferred from 
the scattering. Furthermore, heterogeneity is usually 
associated with more geologic structure and oil, gas, and 
ore resources (Wu et al., 1993). Therefore, it is widely and 
practicably valuable to study the scales of heterogeneous 
geologic bodies in complex heterogeneous media. 

For anomalies which can’t be ignored in complex 
heterogeneous media, traditional homogeneous medium 
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or layered homogeneous medium theory has difficulty 
describing them completely. Statistical methods can 
describe medium heterogeneities flexibly, conveniently, 
and completely (Xi and Yao, 2001). Using a statistical 
representation of inhomogeneities, we constructed a model 
consisting of large and small scale inhomogeneities. The 
large scale inhomogeneities were the mean characteristics 
of the earth while the small scale inhomogeneities 
were fluctuations from these mean values (Xi and Yao, 
2005). The 2-D random medium with an isotropic auto-
correlation function has also been used to describe the 
small scale inhomogeneities (Frankel and Clayton, 1984). 
Here the inhomogeneities are isotropic and do not have 
any preferred orientation. Ikelle et al. (1993) proposed 
a random medium with small scale inhomogeneities 
as a random process in space, regarded a complex 
heterogeneous media containing a large number of 
random distributions and small-scale inhomogeneities as 
a random media, and also considered the inhomogeneity 
orientations and constructed a 2-D random medium with 
an ellipsoidal autocorrelation function.

The previous research only constructed random medium 
models for describing complex heterogeneous media, but 
the relationship between autocorrelation lengths of the 
random medium and the heterogeneous geologic body 
scales in the complex medium was not studied. 

In this paper, we construct a random medium model 
and the relationship between model autocorrelation 
lengths and heterogeneous geologic body scales was 
studied by horizontal velocity variation and standard 
deviation based on the random model. The qualitative 
knowledge was obtained from the horizontal velocity 
variation research. The randomly perturbed velocities 
have characteristics of mean and variance and the 
heterogeneous geologic body scale increases with 
increasing autocorrelation length. From the velocity 
standard deviation, we derive the recursion equation 
between autocorrelation length and heterogeneous 
geologic body scale. The actual magnitude of the 
heterogeneous geologic body scales was achieved 
quantitatively by model autocorrelation lengths using 
this equation. It has actual significance for seismic 
exploration in complex areas with heterogeneous media.

Random medium models

Basic concept of a random medium
The random medium model is based on the concept 

that inhomogeneities in a complex heterogeneous medium 

are irregularly distributed small scale anomalies that 
can be described using the statistical method (Korn, 
1993). The random medium model consists of various 
scale inhomogeneities. The large scale inhomogeneities 
represent the mean characteristics of the medium, that 
is, the traditional geologic model. The small scale 
inhomogeneities are fl uctuations from these mean values 
and are usually expressed by a random process in space 
which has zero mean and is second order and steady. 
The small scale fluctuations in space may be described 
by a few statistical property parameters that are spatial 
autocorrelation functions, autocorrelation lengths, mean 
values, and variance (Ikelle et al., 1993; Xi and Yao, 2001).

Taking a two-dimensional (2-D) sound-wave random 
medium as an example, we decompose the velocity v (x, z) 
and density ρ (x, z) in spatial coordinates (x, z) into: 

                0( , ) ( , ),v x z v v x z   (1)

                   0( , ) ( , ),x z x z    (2)

where v0 and ρ0 represent the velocity and density of 
large scale inhomogeneities, which we assume to be 
homogeneous or vary with (x, z) coordinate slowly, and 
δρ and δρ represent the velocity and density of small scale 
inhomogeneities. According to the Birch theory (Birch, 
1961), the relative fluctuation of density and velocity 
are assumed to be linear. Therefore, one fluctuation 
parameter (velocity or density) can be used to describe the 
small scale inhomogeneities in the random medium, for 
example, velocity fl uctuation, which is expressed as 

              1
0 0( , ) / / ,x z v v K    (3)

where σ (x, z) is the relative fl uctuation in space and K is 
the ratio constant with a range of 0.3 to 0.8. Supposing 
σ = σ (x, z) is second order and a steady spatial random 
process with zero-mean and an autocorrelation function 
and variance. From equations (1), (2), and (3) we get:

         0 0( , ) ( , ) (1 )v x z v v x z v , (4)

         0 0( , ) ( , ) (1 )x z x z . (5)

The common autocorrelation functions describing 
random media have Gaussian, exponential, and Von 
Karm types. They have their own characteristics, 
which are suitable for different geological cases. 
The exponential autocorrelation function has the 
characteristics of multiple scales and self-similarity and 
it simulates real media conveniently. In this paper, we 
use the exponential elliptical autocorrelation function to 
describe the random medium. Its expression is:
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2 2

2 2( , ) exp x zx z
a b

,   (6)

where a and b are the autocorrelation lengths in the x 
and z directions, respectively. 

Random medium model algorithm
Based on random process theory, the autocorrelation 

function Fourier transform is expressed as the random 
process power spectrum. The random fluctuations are 
simulated from the power spectrum function based on 
the random process spectrum expansion theory (Xi 
and Yao, 2001). Taking the 2-D random medium for an 
example, the random medium model is generated by 
the chosen autocorrelation function φ (x, z) (Ikelle et 
al., 1993; Zhang and Zeng, 2003; Wu et al., 2008), the 
specifi c modeling steps are: 

First, the power spectrum function of the random 
process is generated. The 2-D Fourier transform is carried 
out to the exponential autocorrelation function as φ (x, z)

   ( )( , ) ( , ) .x z
x zi k x k zk k x z e dxdze i dxdz  (7)

where kx and kz are the wavenumbers corresponding to 
the x and z coordinates, respectively. 

Second, the 2-D random field is generated. The 
discrete random fi eld θ (kx, kz) is generated by the random 
reactor, distributed evenly on the interval [0, 2π]. The 
random reactor is a function or subroutine generating 
random numbers in computer program.

Third, the random spectrum function is generated. 
The random power spectrum is the product of the power 
spectrum and 2-D random field θ (kx, kz) based on the 
random process method. The autocorrelation function 
and random numbers are all continuous. However, the 
computations are performed discretely and, as a result, some 
errors are introduced in the process, resulting in the random 
fl uctuation obtained no longer agrees with the assumptions 
that the random medium is stationary with a constant mean 

value. These errors are weakened by smoothing. Finally, a 
random spectrum function is derived as:

   ( , ) ( , ) exp[ ( , )].x z x z x zk k k k i k k�· exp [i  (8)

Fourth, by 2-D inverse Fourier transform of the random 
spectrum function Ψ (kx, kz), we get the random fl uctuation 
ψ (x, z) as:

 ( )
2( , )

1 ( , ) .
(2 )

x zi k x k z
x z x zx z k k e dk dk ei dkxdkz  (9)

Fifth, the mean value and variance of the random 
fl uctuation are calculated by

    ,( , )x z  and 2 2 .( ( , ) )d x z   (10)

Sixth, the random fl uctuation ψ (x, z) is normalized to 
zero mean and desired variance ε2, by the exponential 
autocorrelation function φ (x, z). The random fl uctuation 
is rewritten as

                  ( , ) ( , ) .x z x z
d
�·[  (11)

The random fluctuation σ (x, z) is substituted into 
equations (4) and (5) and the velocity and density are 
derived, from which the random medium model is built.

Description and building of the random medium 
model

We have built the random media with the exponential 
ellipsoidal autocorrelation function (equation (6)) based 
on the model generating steps. Figure 1 shows the 
models with 500 m in the horizontal direction and 250 m 
in the vertical direction. The four models contain various 
scale inhomogeneities generated by four particular 
autocorrelation lengths pairs (a, b): (1, 1), (5, 5), (1000, 1) 
and (∞, 1) (units are meters). The grid step is 1 m in the 
horizontal and the vertical directions. The mean velocity 
v is 1700 m/s, the mean density ρ  is 2.1 g/cm3 and the 
standard deviation ε is 10 %. The ratio constant K is 0.5. 

(a) Random medium with a = 1 m 
and b = 1 m. 

(b) Random medium with a = 5 m 
and b =5 m. 

(c) Random medium with 
a = 1000 m and b=1 m. 

(d) Random medium with a = ∞ m 
and b = 1 m.

Fig. 1 Random media with an exponential autocorrelation function. 
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From Figure 1 we see that the random medium 
is very similar to core slices. With autocorrelation 
lengths varying, the inhomogeneity scales will change 
in the horizontal and vertical directions. From Figures 
1c and 1d, fixing autocorrelation length b, when the 
autocorrelation length a increases, the model layer 
characteristics becomes distinct. Especially when a 
approaches infinity, a 2-D random medium becomes 
a 1-D random medium. This shows that the 2-D 
random medium can better describe terrestrial thin 
formation heterogeneities. Therefore, model parameter 
autocorrelation lengths a and b can describe the mean 
inhomogeneity scale in random media in both the 
horizontal and vertical directions. A random medium 
model can simulate a realistic subsurface medium. 

The relationship between 
inhomogeneity scales and 

autocorrelation lengths

From Figure 1 we see that with increasing autocorrelation 
lengths, the inhomogeneity scales in models will also 
enlarge and when autocorrelation lengths are very large, 
the model layer characteristic is obvious. However, it 
is only a qualitative knowledge. We will research the 
relationship also from a quantitative angle and show 
how actual heterogeneity scales are derived from model 
autocorrelation lengths. 

We study the relationship using velocity horizontal 
variation and statistical properties. From the exponential 
autocorrelation function in equation (6), we see that 
the horizontal and vertical autocorrelation lengths are 
symmetrical. Hence, only the relationship between the 
horizontal autocorrelation length and the horizontal 
inhomogeneity scale is studied and the result can also 
be adapted to the relationship between the vertical 
autocorrelation length and the vertical inhomogeneity 
scale.

The horizontal velocity variation
The model parameters used in Figure 2 are the same 

as in Figure 1 and the grid step is 1 m in the horizontal 
and vertical directions. Nevertheless, the autocorrelation 
lengths are different. The vertical autocorrelation length 
b is 1 m and the horizontal autocorrelation length has 
four different parameters: 1 m, 10 m, 100 m, and 1000 
m in building four models. The relationship between 
autocorrelation lengths and inhomogeneity scales is 
studied using algorithms from Li (2006), the special 
realization steps are:

First, the velocities in models subtract the background 
velocity 1700.0 m/s and velocity variations δv are 
derived from equation (4). Because δv reflects the 
difference between the velocity at every position and 
the background velocity and also produces the seismic 
response, δv will be used in the following computation.

Second, the chosen threshold velocity vv is 51.0 
m/s and δv is classified. When |δv| < vv, the velocity 
variant in this position is assumed to be zero, hence the 
velocity fl uctuation is small and the seismic response is 
not distinct. When δv < -vv, the velocity variant in this 
position is assumed to be -1 and the velocity is smaller 
than the background velocity, yet the velocity difference 
between them is large and the seismic response can be 
produced. When δv > vv, the velocity variant is assumed 
to be +1 and the velocity is bigger than the background 
velocity, the velocity difference between them is big, and 
the seismic response can also be produced. Through this 
classifi cation scheme, the velocity data body contains -1, 
0, and +1.

Third, scanning the classifi ed data body at every line, 
if adjacent data values are equal, the number or width 
of the equal values will be recorded. The width is the 
number of equal values subtracted by 1 and multiplied 
by the horizontal grid interval. The number and the 
corresponding width of the adjacent equal data are 
calculated on every line and the width is a measure of 
the horizontal inhomogeneity scale. The number of each 
scale is counted and the histogram of the horizontal 

(a) Autocorrelation lengths: a is 
1 m and b is 1 m. 
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(b) Autocorrelation lengths: a is 
10 m and b is 1 m. 

(c) Autocorrelation lengths: a is 
100 m and b is 1 m. 

(d) Autocorrelation lengths: a is 
1000 m and b is 1 m.

Fig. 2 Probability distribution of different horizontal scales. 
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scales is derived, as shown in Figure 2. We see that the 
probability distribution of the horizontal inhomogeneity 
scales  is  the  same as  the  di fferent  hor izontal 
autocorrelation lengths and the number of samples is 
largest when the horizontal scale is 1. With increasing 
horizontal scale, the number of samples decreases, 
showing that the model velocity varies greatly in the 
horizontal direction. However, when the horizontal 
autocorrelation length increases, the number of samples 
will decline significantly with increasing horizontal 
scale. At the same time, as the number of horizontal 
scales increases, the largest horizontal scale also 
increased. This shows that the horizontal inhomogeneity 
scale increases with increasing horizontal autocorrelation 
length.

Therefore, the relationship between autocorrelation 
lengths in random media and inhomogeneity scales 
is studied through the horizontal velocity variation, 
from which we deduce the qualitative knowledge 
that velocities in random medium vary acutely in the 
horizontal direction and horizontal inhomogeneity scale 
increases with increasing horizontal autocorrelation 
length. This conclusion accords with the results from 
Figure 1.

The velocity standard deviation
The model size is 1280 m in the horizontal direction 

and 1280 m in the vertical direction and the grid step is 
5 m both directions. The vertical autocorrelation length 
b is fixed at 10 m and the horizontal autocorrelation 
lengths are 1, 5, 10, 20, 50, 80, 100, 200, 300, 400, 500, 
600, 700, 800, 900, and 1000 m. So there are sixteen 
models. Other parameters are the same as in Figure 1.

The velocity standard deviation describes the degree 
of velocity deviation and the background velocity 
is a mean velocity. When the models are built, the 

velocity standard deviation is normalized to 10 percent. 
Nevertheless, the velocity standard deviations in a small 
area around any position are different and the standard 
deviations are related to the inhomogeneity scales. 
The algorithms (Li, 2006) for studying the relationship 
between autocorrelation length and inhomogeneity scale 
using velocity standard deviation are:

F i r s t ,  fo r  mode ls  wi th  d i ffe ren t  hor izon ta l 
autocorrelation lengths, the total model is divided into 
small time windows with the same length and width. 
The time window length is fi xed at 25 m (5 grid nodes). 
The time window width changes continuously from 
one to 30 grid nodes with an interval of 1 grid spacing. 
Based on the actual model scale, the time window 
width is assumed to be the corresponding horizontal 
inhomogeneity scale.

Second, changing the time window width, the standard 
deviation is calculated in each model. The velocity 
standard deviation of each small time window is first 
computed, then standard deviations of all time windows 
are averaged, and, finally, the standard deviation mean 
is considered as the standard deviation corresponding to 
the time window width.

Figure 3 shows the relationship between the velocity 
standard deviations and the time window widths for 
different horizontal autocorrelation lengths. Owing 
to so many models, only five curves are displayed. 
From Figure 3 we see that the velocity standard 
deviation increases with increasing time window width 
and it illuminates the fluctuation range as velocities 
increase. For the same time window width, the 
velocity standard deviation decreases with increasing 
horizontal autocorrelation length and it shows that the 
velocity fluctuation range gets smaller. For different 
autocorrelation lengths, the velocity standard deviation 
variation is the same as the time window width 

Fig. 3 Relationships of velocity standard deviation 
and time window width.

Fig. 4 Regression curves of velocity standard deviations 
corresponding to different time window widths.
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increases. Therefore, the velocity standard deviations 
curves corresponding to different time window widths 
are derived by polynomial fitting. Figure 4 displays 
only five curves and from the figure we see that the 
velocity standard deviations increased with increasing 
time windows widths, whereas the velocity standard 
deviation tends to stabilize near 170 m/s when the time 
windows widths reach a scale of 120 m. For some 
velocity standard deviations, the time window widths are 
different for different horizontal autocorrelation lengths 
which shows that the corresponding inhomogeneity 
scales are different. Therefore, a fi xed velocity standard 
deviation is intersected with the deviation curves with 
different autocorrelation lengths and the horizontal 
coordinates intersection points corresponds to different 
time window widths. It also corresponds to different 
horizontal inhomogeneity scales. The fixed velocity 
standard deviation is 162.0 m/s in Figure 4. The 
horizontal inhomogeneity scales corresponding to the 
horizontal autocorrelation lengths are extracted, the 
relationship between them is derived and shown as the 
green line in Figure 5. The horizontal autocorrelation 
length and horizontal inhomogeneity scale curve is 
obtained by polynomial regression and is shown as the 
red line in Figure 5. The regression equation is

 
         y = 20.2226 + 0.2514x –  7.1893 × 10-4x2 

                        + 9.4781 × 10-7x3 –  4.0856 × 10-10x4

the regression equation, the actual inhomogeneity scale 
magnitude was obtained quantitatively by the horizontal 
autocorrelation length. However, the method needs 
additional verification that the relationship between 
autocorrelation length and inhomogeneity scale in 
random media is derived by velocity standard deviation.

Conclusions

Random medium models are built based on the 
statistical method in this paper and the model parameter 
autocorrelation lengths a and b describe the mean 
scale of inhomogeneities in horizontal and vertical 
position, respectively. The relationship between 
model autocorrelation length and inhomogeneity 
scale in random media was studied qualitatively and 
quantitatively by horizontal velocity variation and 
standard deviation.

The relationship between autocorrelation length and 
inhomogeneity scale was studied by horizontal velocity 
variation in models. The qualitative knowledge is 
obtained that velocities in random media vary acutely 
and horizontal inhomogeneity scale will increase with 
increasing horizontal autocorrelation length.

The relationship between autocorrelation length and 
inhomogeneity scale is also studied by velocity standard 
deviation. The same conclusion is reached that horizontal 
inhomogeneity scale will increase with increasing 
horizontal autocorrelation length. The recursion 
equation is derived and the actual inhomogeneity scale 
magnitude is obtained quantitatively by the horizontal 
autocorrelation length.
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