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Abstract: In elastic wave forward modeling, absorbing boundary conditions (ABC) are used 
to mitigate undesired refl ections from the model truncation boundaries. The perfectly matched 
layer (PML) has proved to be the best available ABC. However, the traditional splitting PML 
(SPML) ABC has some serious disadvantages: for example, global SPML ABCs require 
much more computing memory, although the implementation is easy. The implementation 
of local SPML ABCs also has some diffi culties, since edges and corners must be considered. 
The traditional non-splitting perfectly matched layer (NPML) ABC has complex computation 
because of the convolution. In this paper, based on non-splitting perfectly matched layer 
(NPML) ABCs combined with the complex frequency-shifted stretching function (CFS), we 
introduce a novel numerical implementation method for PML absorbing boundary conditions 
with simple calculation equations, small memory requirement, and easy programming. 
Keywords: PML, absorbing boundary condition, non-splitting, forward modeling

Introduction

In finite-difference time-domain modeling, the 
perfectly matched layer (PML) absorbing boundary 
condition (ABC) has proven to be the most robust and 
efficient for Maxwell’s electromagnetic and elastic 
waves (Berenger, 1994). The elastic wave equation for 
PML media has become the conventional wave equation. 
In this media, the wave phase does not change but the 
amplitude changes due to exponential decay during wave 
propagation. For the perfectly matched layer having 
the same elastic parameters and different attenuation 
coefficients, the impedances are perfectly matched. 
Theoretically, there is no boundary reflection and the 
reflections are mainly caused by numerical dispersion. 
Chew and Weedon (1994) formulated the PML ABC 

by applying a complex stretch coordinate. Rappapport 
(1995) proved that the PML is equivalent to anisotropic 
media in the absorption area. Many examples (Chew and 
Weedon, 1994; Chen et al., 1997) demonstrated that the 
absorption of the PML absorbing boundary condition is 
much better than exponential attenuation ABCs (Marfurt, 
1984; Shin, 1995), Mur ABCs (Liao et al., 1984), and 
Higdon ABCs (Higdon, 1991). Chen et al. (1997) and 
Wang and Oristaglio (2000) successfully applied PML 
ABCs to solve the electromagnetic wave equation. In 
recent years, the PML was widely applied in acoustic 
and elastic wave finite-difference forward modeling 
(Rappapport, 1995; Chew and Liu, 1996; Hastings et al., 
1996; Komatitsch and Tromp, 1999; Collino and Tsogka, 
2001; Festa and Nielsen, 2003;  Basu and Chopra, 2004; 
Cohen and Fauqueux, 2005; Festa and Vilotte, 2005; 
Appelö and Kreiss, 2006; Ma and Liu, 2006). Teixeira 
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and Chew (1999) extended PML ABCs to cylindrical 
and spherical coordinates. Song et al. (2005) applied 
NPML ABCs to elastic wave numerical modeling in 
poroelastic media. 

At present, the PML realization has a variety of 
forms, of which the main ones are splitting and non-
splitting PMLs. The two different implementation 
methods have the same absorption effect for artificial 
boundary reflections. The SPML is implemented by 
splitting the  original fi eld components and its equation 
is very simple. The SPML also can be divided into 
global and local SPML. For the global SPML, we can 
use the same PML wave equations in both the modeling 
and attenuation areas. The algorithm is easy to realize, 
although the introduction of auxiliary variables requires 
large memory However, it is only applicable to 2-D 
forward modeling and not to the 3-D case. For the local 
PML, in the modeling area we use conventional wave 
equations and in the attenuation area we use PML wave 
equations, thus saving a lot of memory However, it is 
diffi cult to program due to the many different boundaries 
and corners. The NPML has an advantage because it 
does not need to split the fi eld components in the PML 
region. The convolution PML (CPML) needs to do many 
convolution operations in the time domain. In the past, 
the NPML algorithm was considered to be complex, 
with a large amount of computations, and not superior to 
the local SPML. So, until recently, the SPML was used 
in most wavefi eld forward modeling methods. 

However, conventional PML ABCs cause large errors 
at boundary conditions near the wave source due to 
rapidly changing incidence angles and to using only 
one attenuation parameter. In addition, it doesn’t absorb 
reflections from low-frequency boundaries as well as 
evanescent waves very well. Kuzuoglu and Mittra (1996) 
presented a complex frequency shifted (CFS) PML 
ABC to absorb evanescent waves and long time-varying 
signals by enlarging the real axis of the conventional 
complex stretching coordinate system and simply 
shifting the zero position of the virtual axis into the 
negative imaginary half. The PML ABC equations also 
can be applied to electromagnetic waves propagating 
in dispersive, lossy, inhomogeneous, anisotropic, and 
nonlinear media. Drossaert and Giannopoulos (2007) 
made a realization of the CFS in CPML by recursive 
integration. They used a recursive convolution operation 
to greatly reduce the time and memory. Compared with 
conventional stretch functions, the CFS stretch function 
has much more fl exibility for modeling attenuation and 
absorption in PML media. 

In this paper, we introduce a novel implementation 
of the CFS-PML. The NPML calculation in the time 

domain is decomposed into normal and attenuation terms 
using auxiliary variables, thus avoiding convolution 
operators. The implementation of the new method is 
described in detail and the parameters are discussed. 
Finally, numerical tests validate the effectiveness of the 
new method.

Theory

Wave equations for PML media
In the complex stretch coordinates,  the two-

dimensional, elastic, fi rst-order, stress-velocity difference 
wave equations are expressed as (Tsili and Tang, 2003; 
Drossaert and Giannopoulos, 2007): 
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where 222 ),2( ssp , ρ is the density, υp is the 
primary wave velocity, and υs is the shear wave velocity. 
Vx and Vz are the horizontal and vertical particle velocity 
vectors; Txx, Tzz, Txz are the horizontal normal stress, 
vertical normal stress, and shear stress, respectively. 

The frequency stretch coordinate (Tsili and Tang, 
2003）is defi ned as 
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The stretch function (Tsili and Tang, 2003; Drossaert 
and Giannopoulos, 2007) is defi ned as

                    1 ,( , , ).p
ps p x y z

i
 (3)

Differentiating equation (2), we have
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Substituting equations (3) and (4) into equation (1), 
the traditional PML equations can be derived in the 
Cartesian coordinate system. 

Complex frequency stretch function
The modified complex frequency stretch function 
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(CFS) is defi ned as (Kuzuoglu and Mittra, 1996):

            ( ) ,  ( , , ),p
p p

p

s p x y z
i

 (5)

where κ and α are two additional attenuation parameters 
introduced into the stretch function. The parameter κ 
mainly affects the absorption of evanescent waves. The 
α parameter has an impact on the absorption of the low 
frequency component. Compared to the stretch function 
of equation (3), equation (5) magnifies the real axis 
of the coordinate system by κ and eliminates the low-
frequency singularity by an α frequency shift of the 
virtual axis. Converting back into the time domain for 
both sides of equation (5), we get 
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SPML absorbing boundary condition
The intention of SPML is to split the particle velocity 

and stress components in the coordinate direction. 
Taking the Tzz component in the third equation of 
equation (1) as an example, we get 
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where Txx=Txxx+Txxz. sx and sz are defi ned by equation (3). 
The SPML wave equation is equivalent to the traditional 
equation when the absorption factor is zero.

NPML absorbing boundary condition
Substituting equation (6) into the third equation of 

equation (1), we get the equation in the time domain, i.e., 
the traditional expression of NPML equations:
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where ⊙×  denotes convolution.

The CFS-PML implementation
To easily implement the CFS-PML ABC in the time 

domain, we present a new method based on the NSPML 
wave equation. First, the reciprocal of the CFS function 
in equation (5) is decomposed:
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Then we substitute equation (9) into the third equation 
of Equation (1)
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If equation (10) is transformed into the time domain 
directly, we will attain equation (8). However, this 
equation involves a convolution operation, resulting in 
additional computations and memory storage. To avoid 
this, some auxiliary variables are introduced in the 
frequency domain, resulting in equation (11): 
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Rearranging equation (11), we get 
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Comparing equations (11) and (12), if equation (11) is 
transformed into the time domain, the right-hand term is 
a convolution operation. If equation (12) is transformed 
into the time domain, the first left-hand term is also a 
convolution operator and is the time first-order partial 
derivative operator, whose calculation is easy. 

Meanwhile, after introducing auxiliary variables, 
equation (10) becomes

1 1( 2 ) ( 2 ) .x z
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x z
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 (13)
To avoid effects from the CFS-PML attenuation 

parameter κ during implementation of conventional 
wave equation, we rewrite equation (13) as: 
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Assisted by the introduction of auxiliary variables, 
the PML wave equation in the frequency domain can be 
divided into two parts: normal terms (the fi rst term of the 
right side) and attenuated terms (the second term). If the 
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attenuated term is zero, the CFS-PML wave equations 
reduce to the normal wave equation because it is the sum 
of the relationship between them, Thus, equation (14) can 
be consider as an expansion of the elastic wave equations. 
Below is the complete set of 2D CFS-PML wave equations:
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where Ωxx, Ωxz, Ωzx, Ωzz and ψxx, ψxz, ψzx, ψzz are the introduced 
auxiliary variables. By transforming equation (12) into the 
time domain and comparing other fi eld components, we get 
the corresponding auxiliary control equations, 
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We put these eight auxiliary equations together but 
these equations are actually independent of each other. 
The auxiliary variables involved in each equation are 
independent, with each equation related to one spatial 

direction, such as the z and x directions. So, we can 
implement the eight equations in x and z coordinates. 
The right sides of the equations are partial derivatives 
in the original field terms. There are eighteen different 
spatial partial derivatives in the 3D case:

   , , , , , , , , and  

and , , , , , , ,  and , 

so eighteen auxiliary variables Ωij, ψij, i, j∈{x,y,z} and 
eighteen auxiliary equations have been introduced. 

This tells us that each spatial partial derivative is related 
to only one auxiliary variable. All auxiliary equations 
have the same expression of non-homogeneous fi rst-order 
partial differentials and the CFS-PML implementation is 
easily extended to other complex media.  

Discrete numerical solution
The SPML equations or the CFS-PML auxiliary 

variable differential equations can both be described as:

                              f f
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where β ≥ 0 and its corresponding analytic solution is

                        
11 tef . (18)

Equation (18) also can written in discrete form as
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Taking equation (16-a) as an example, we can easily 
write its discrete numerical expression to solve for 
auxiliary variables: 
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This expression and the discrete numerical expression 
in Komatitsch and Martin (2007) is similar in form. The 
difference is that Komatitsch and Martin (2007) used a 
convolution operator with a recursion integral and the 
corresponding formula derivation is complex, whereas 
we combined convolution with the analytical solution of 
non-homogeneous fi rst-order differential equations and 
the differential equations of the auxiliary variables are 
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derived to get the numerical solution of the equation.
Other auxiliary variables corresponding to the 

differential equations have the same form of expression 
and their numerical solution follows the same formula, 
as well as their discrete solutions. Taking the third 
equation in equation (1) as an example, we can derive 
the discrete numerical solution of Txx and its auxiliary 
variables ψxx and ψzz as
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and (p = x,z). The difference operator ,  can be 
computed using the implicit high-order fi nite difference, 
implicit difference, and pseudo-spectral methods. 
From equation (21), it can be seen that our CFS-PML 
numerical implementation scheme is much simpler. 

The CFS parameters
In theory, there will be no reflection and attenuation 

when waves propagate in the PML medium with the same 
elastic parameters (ρ, λ, μ) and the different attenuation 
parameters (κ, σ, α). The conventional wave equation 
is a special case of the PML wave equation when 
κ =1, σ = 0, α = 0. However, the finite-difference discrete 
numerical method can cause numerical reflections at 
different PML interfaces. To reduce the unexpected 
reflections, we can try to make these PML attenuation 
parameters change smoothly. Collino and Tsogka (2001) 
use the polynomial function to set the CFS parameter σ:

,max 3 ln( )
2p
v R
d

),,(,)( max zyxp
d
ll

m
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where l (0 ≤ l ≤ d) is the distance from the PML outside 
boundary to the PML inside boundary, d is the thickness 
of the PML area, m is the order of the polynomial (equal 
to 1 or 3), R is the theoretical reflection coefficient 
(in the range of 0.001 - 0.00001, and v is the P-wave 

velocity in the PML area. The other two attenuation 
parameters are set as 
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p p
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The two equations (24) and (25) are common 
equations, which can also be described using other 
continuous-change functions.

PML algorithm analysis and model test

Severa l  convent ional  PML ABC algor i thms 
are compared in Table 1 with the improved PML 
ABC algorithm in this paper and the SPML ABC 
implementations are generally divided into global and 
local schemes. In the global SPML scheme, all areas are 
regarded as perfectly matched layers, simple to realize 
but the number of split variables is three or four times 
greater than original variables. So the method needs a 
large memory for computing the split variables. In the 
two dimension elastic wave equation case, there are fi ve 
original variables but the number of variables increases to 
15 using the global SPML scheme. In the 3-D case, there 
are nine original variables, which increase to 33 using the 
global SPML scheme. The increased auxiliary variables 
will be used for calculations over the entire area. In the 
local SPML scheme, the PML wave equation is only used 
in the boundary area. However, in this scheme, the faces, 
edges, and corners of the calculated area boundary must 
be considered separately, For example, in the 3-D case, 
there are twenty-four auxiliary variables for each of the 
total twenty-six areas: six faces, twelve edges, and eight 
corners for a total of 624 variables to be computed. The 
programming realization becomes very complex. 

The NPML implementation directly calculates the 
convolution operation, also a very large number of 
calculations. The number of auxiliary variables in the 2D 
and 3D cases are eight and eighteen, respectively. These 
auxiliary variables are only used in the PML boundary 
region, so calculations and updating is not necessary 
for the complex face, edge, and corner regions. For the 
3-D case, compared to the traditional PML boundary 
conditions, the realization of the NPML absorbing 
boundary conditions can achieve a more fl exible design 
of the attenuation parameters, the calculation equations 
are simple, programming is easy, and memory use is 
small. Especially, for ABCs for 3-D wave equations, our 
implementation scheme has large advantages. 
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Table 1 Comparing several types of PML schemes

Type
2D 3D

local
SPML

global
SPML

conventional
NPML

improved
NPML

local
SPML

full
SPML

conventional
NPML

improved
NPML

Original variables 5 10 5 5 9 24 9 9
Auxiliary variables 10 0 16 8 24 0 36 18

Absorbing 
boundary

faces 0 0 0 0 6 0 6 6
edges 4 0 4 4 12 0 0 0

corners 4 0 0 0 8 0 0 0
Programming complex simple complex simple complex simple complex simple

CFS No No Yes Yes No No Yes Yes

In order to test our improved NPML ABC absorption 
and attenuation properties, we design a 2D numerical 
model. This model has two layers, with a model mesh 
size of 400 × 80 with a spatial interval in both horizontal 
and vertical directions of 7.5 m. The total number of 
samples is 1900 with a time interval of 0.6 ms. In the 
fi rst layer, the P-wave velocity is 2500 m/s, the S-wave 
velocity is 1440 m/s, the density is 2000 kg/m3, and the 
layer thickness is 450 m. In the second layer, the P-wave 
velocity is 3600 m/s, the S-wave velocity is 2080 m/s, 
the density is 2300 kg/m3, and the layer thickness is 

150 m. We select a 25 Hz Ricker wavelet as the source, 
located at 750 m by 82.5 m. Each of the four boundaries 
has ten PML layers with layer thicknesses of 75 m 
and there is only one mesh interval from the source 
location to the PML inside boundary. To realize the 
spatial derivatives, we use high-order fi nite differences 
with a half finite difference operator using ten nodes, 
i.e., the spatial first-order partial derivative calculation 
involves the values of twenty grid nodes around it and 
the resulting precision is close to the pseudo-spectral 
method. 

(a) Normal stretched function     (b) CFS stretched function
Fig. 1 Horizontal particle velocity records with NPML ABC.
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(a) Normal stretched function     (b) CFS stretched function
Fig. 2 Vertical particle velocity records with NPML ABC.
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The seismic records were simulated using both the 
CFS stretched function and the normal stretched function 
for comparison. For the normal stretched function, the 
parameters are set as: κ=2, σ =1100, and α = 150. For 
the CFS stretched function, the parameters are set as k = 
1, σ =1500, and α = 0. The simulated horizontal particle 
velocity seismic records are shown in Figure 1 and the 
vertical particle velocity records are shown in Figure 2. 
From these two figures we can see the direct P-wave, 
the direct S wave, the P-wave reflection, the S-wave 
reflection, converted-waves, and refracted waves but 
boundary refl ections are not observed. The source depth 
of these records is same. From the left panels of Figures 
1 and 2 we see that some low-frequency interference 

associated with the direct arrivals which is not observed 
in the right panels.

Figures 3 and 4 show the 150th trace of the horizontal 
and vertical component records from Figures 1 and 2. 
The solid line is the CFS stretched function and the 
dotted line is the normal stretched function. From the left 
panels of the Figures 3 and 4, it appears that the records 
obtained using the two methods agree well. However, 
when the amplitude of the trace was enlarged 1000 times 
(right panels), the amplifi ed traces don’t agree with each 
other, as shown by the arrows. Though the interference 
effects are small for the records, we can still eliminate 
these small interferences by designing reasonable CFS 
parameters.

   (a) Original trace                                                                   (b) Amplifi ed trace
Fig. 3 Comparison of the 150th trace from Figures 1a and 1b. The solid line is the CFS stretched function and the dotted line is 

the normal stretched function.

   (a) Original trace                                                                   (b) Amplifi ed trace
Fig. 4 Comparing the 150th trace from Figures 2a and 2b. The solid line is the CFS stretched function and the dotted line is the 

normal stretched function.
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Figure 5 shows snapshots of wavefields using the 
CFS PML (upper panel) and the normal PML (lower 
panel). In order to clearly observe the refl ection energy, 
the wavefi elds are amplifi ed by 600 times. Because the 
source is very near the PML inner boundary, the wave 
propagates almost horizontally, i.e., the incident angle 
is close to 90° at the PML area away from the seismic 
source. From comparing the wavefield snapshots in 
the Figure 5, we see that the greater the incident angle, 
the poorer the ABCs absorbing property. However, the 
improved CFS-PML ABCs still has good absorption 
even when the incidence angle is larger than 90 degrees.

Conclusions

In this paper, we presented a new implementation 
of the CFS-PML absorbing boundary conditions, 
which is an extension of the traditional NPML ABC 
implementation. Based on the CFS stretched function, 
we can decompose the elastic wave equation for PML 
media into normal and attenuated terms by introducing 
intermediate auxiliary variables. The normal term 
calculation is over the entire section, including the PML 
boundary region, but the attenuated term calculation 
is only performed in the PML region. As a result, the 
calculating equations of the attenuation term are simple 
non-homogeneous differential equations, not integral 
equations, and it is easy to deduce the corresponding 
numerical formula. This method does not involve the 
convolution operation. The CFS stretched function does 
not increase the numerical realization diffi culty and the 
attenuation parameter design is more fl exible.

The test results show that the proposed NPML 
absorbing boundary condition has a better absorption 
effect. If the new method can be applied to the other 
wave equation types, we only need to add an attenuation 
term for the spatial derivative term and the resulting 
equation is a simple differential equation. Our method is 

based on the fi rst-order partial differential wave equation, 
applying it to the second-order partial differential wave 
equation needs further study.
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