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Abstract: In this paper, a methodology for Leaf Area Index (LAI) estimating was proposed by assimilating remote sensed data into crop 

model based on temporal and spatial knowledge. Firstly, sensitive parameters of crop model were calibrated by Shuffled Complex Evo-

lution method developed at the University of Arizona (SCE-UA) optimization method based on phenological information, which is 

called temporal knowledge. The calibrated crop model will be used as the forecast operator. Then, the Taylor′s mean value theorem was 

applied to extracting spatial information from the Moderate Resolution Imaging Spectroradiometer (MODIS) multi-scale data, which 

was used to calibrate the LAI inversion results by A two-layer Canopy Reflectance Model (ACRM) model. The calibrated LAI result 

was used as the observation operator. Finally, an Ensemble Kalman Filter (EnKF) was used to assimilate MODIS data into crop model. 

The results showed that the method could significantly improve the estimation accuracy of LAI and the simulated curves of LAI more 

conform to the crop growth situation closely comparing with MODIS LAI products. The root mean square error (RMSE) of LAI calcu-

lated by assimilation is 0.9185 which is reduced by 58.7% compared with that by simulation (0.3795), and before and after assimilation 

the mean error is reduced by 92.6% which is from 0.3563 to 0.0265. All these experiments indicated that the methodology proposed in 

this paper is reasonable and accurate for estimating crop LAI. 
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1  Introduction 

Leaf Area Index (LAI), defined as half the total devel-
oped area of leaves per unit ground horizontal surface 
area, is a key parameter for characterizing the structure 
and the functioning of vegetation. Affected by temporal 
and spatial discontinuity, the traditional point measure-
ments can just provide LAI distribution in a limited area. 

Remote sensing technology with the features of real- 
time dynamic and wide range monitoring can frequently 
provide the surface information, which is an important 
way to estimate regional scale LAI. Due to the restric-
tions of satellite operating cycle, remote sensing inver-
sion results are temporal discontinuity. Process model 
can simulate continuous and long time series LAI data. 
However, influenced by parameterization, atmospheric 
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driving conditions and initial model state, there is a cer-
tain bias during model simulating process, which will 
brings much error in the LAI estimation. LAI estimation 
by remote sensing technology or by process model 
simulation, each have its own advantages and disadvan-
tages (Dorigo et al., 2007; Wang et al., 2010; Yannick et 
al., 2012). How to use multi-source data or multi- 
methods to achieve higher estimation accuracy of LAI is 
a focus in current research. 

Data assimilation is the process by which multi- 
source information, such as remotely sensed data, field 
data, are incorporated into a process model to improve 
the model simulation results. Data assimilation makes 
full use of the model simulation and remote sensing ob-
servation to realize advantageous complementarities. In 
recent years, data assimilation technology is well ap-
plied in the research of atmosphere, ocean, etc., and also 
attracted the attention of scholars in land surface re-
search. Wang et al. (2010) used a crop model to extract 
the relationship of LAI with the crop growing, which is 
applied into LAI calculation based on remote sensing 
inversion model. Hazarika et al. (2005) coupled LAI 
retrieval form remote sensed data into a simulation 
model of the carbon cycle in land ecosystems (Sim- 
CYCLE) to accurately monitor the changes of global net 
primary productivity (NPP). Doraiswamy et al. (2003) 
built a Look-Up-Table (LUT) to calibrate the model 
parameters by minimizing the LAI value simulated by 
crop growth model and LAI value inversed by the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) 
data, and then they could use MODIS data (250 m) to 
calculate LAI value accurately. In many researches of 
data assimilation, the application of prior knowledge 
had attracted the attentions of scholars (Wang et al., 
2010; Xiao et al., 2011; Yannick et al., 2012). The prior 
knowledge here means the field data, spatial information 
and temporal information. In the study of coupling crop 
growth model with radiative transfer model, spectral 
library data (http://spl.bnu.edu.cn/index. asp) used as 
prior information was introduced into the cost function 
to achieve the optimal extraction of LAI (Wang et al., 
2010). In the research of real-time retrieval of LAI from 
MODIS time series data, Xiao et al. (2011) extracted 
temporal knowledge from MODIS LAI products to con-
struct a dynamic model for providing short-range fore-
cast of LAI, then, they used Ensemble Kalman Filter 
(EnKF) techniques to update LAI when there is a new 
observation. 

The studies mentioned above have considered the ap- 
plication of prior knowledge, such as field data, tempo- 
ral information, but still less to consider the influence of 
surface spatial heterogeneity during data assimilation 
and the introduction of spatial knowledge into regional 
assimilation process (Tian et al., 2002; Zhu et al., 2010). 
For example, crop model is an one-dimensional model 
and its simulation values are ′point′ scale, while remote 
sensing observation are two-dimensional data and its 
observed values are ′plane′ scale (or ′pixel′ scale). So 
there is no match on spatial scale between process 
model simulation and remote sensing observations. At 
the same time, phenology information, taken as a char- 
acterization of crop growth process, is an important 
temporal prior knowledge to be used for estimating crop 
LAI. If phenology information is introduced into the 
crop model simulation to optimize the model sensitive 
parameters, accuracy of real-time simulation can be ef-
fectively improved. 

In order to make full use of multiple remote sensing 
information and fully consider the scale effect of as-
similating remote sensing data into crop model, an as-
similation scheme based on temporal and spatial know-
ledge is proposed in this paper. The assimilation scheme 
is implemented in two directions (Fig. 1). One is the 
temporal direction, in which the parameters of crop 
model are calibrated, the other one is the spatial direc-
tion, in which the spatial information extracted from 
different resolution data is taken into account during 
assimilation. 

Based on the parameter ′LAI′, the crop growth model 
World Food Studies (WOFOST) (Boogaard et al., 1998) 

and the reflectance model A two-layer Canopy Reflec-
tance Model (ACRM) (Kuusk, 2001) are combined in 
this assimilation scheme by using the EnKF (Evensen, 
1994) and the Shuffled Complex Evolution method de-
veloped at the University of Arizona (SCE-UA) method 
(Duan et al., 1993). The MOD09A1 is used as observa-
tion data, then the spatial knowledge is extracted on the 
basis of its own multi-scale feature, and the spatial 
knowledge will be introduced into the assimilation 
process to adjust the mismatch between point data from 
WOFOST model simulation and pixel data from ACRM 
model inversion. The MOD09Q1 is used for calculating 
the Normalized Difference Vegetation Index (NDVI) 
data, which will be applied to extracting the phenology 
information, and then the phenology information is used 
as prior temporal knowledge to establish a cost function 
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Fig. 1  Flowchart of assimilating MODIS data into WOFOST model based on prior knowledge. MODIS is Moderate Resolution Imag-
ing Spectroradiometer; ACRM is a two-layer Canopy Reflectance Model; LAI is Leaf Area Index; EnKF is Ensemble Kalman Filter; 
WOFOST is crop growth model, WOrld FOod Studies; SCE-UA is Shuffled Complex Evolution method developed at University of 
Arizona; AG is a symmetric Gaussian function; NDVI is Normalized Difference Vegetation Index 
 

with the fertility parameters of WOFOST model. Based 
on the cost function, the sensitive parameters will be 
calibrated by using SCE-UA optimization algorithm. At 
last, calibrated WOFOST model is used as forecast op-
erator and ACRM inversion results is used as observa-
tion operator. Meanwhile, the EnKF algorithm embed-
ded with spatial knowledge is used to update the crop 
LAI values.  

2  Data and Methods 

2.1  Study area 
The Heihe River Basin is the second largest inland river 
basin in Northwest China, with a drainage area about 
128 700 km2. Affected by the high-latitude westerlies 
circulation and the polar cold-air mass, the average an-
nual precipitation is scarce, about 108 mm, the annual 
average temperature is of 6℃ and the elevation of the 
Heihe River Basin varies between 1000–2000 m. The 
study area is mainly concentrated in the Yingke Oasis in 
the middle reaches of the middle Heihe River, with an 
area about 200 km2. The area, located at 8 km south of 
Zhangye City in Gansu Province, is a typical farmland 
ecosystem region, and the main crops are maize and 
spring wheat. There are two automatic meteorological 
stations established for long-period observation, re-
cording air temperature, wind speed, relative humidity, 
precipitation and other atmospheric forcing data. From 
April to July in 2008, the Heihe remote sensing experi-
ment measured part vegetation leaves, canopy and soil 

parameters and so on. The locations of field data are 
shown in Fig. 2. The assimilation approach was tested at 
point ′p′ and the crop type is maize.  

2.2  Data and processing 
MODIS products of MOD09A1 and MOD09Q1 were 
used as the remote sensing data in this paper (Table 1). 
MOD09A1 contains the first seven bands which are 
more sensitive to the land vegetation and its spatial reso-
lution is 500 m. NDVI time series data is calculated by 
MOD09Q1. MOD09Q1 has a characteristic of relatively 
high time resolution and lower impact of cloud and its 
spatial resolution is 250 m. The ground observation data 
were obtained from the ′Watershed Airborne Telemetry 
Experiment Research of Chinese Academic of Science 
Action Plan for West Development Program′. Among 
them, The LAI collection method is as follows. Lengths 
and widths of sample leaves were measured manually 
and by LAI-2000 and LAI-3000 instruments. Correction 
factors for each crop were calculated by comparing the 
manual measured value and that from the instrument 
(after conversion). Crop LAIs were obtained through 
multiplication of crop leaf length and width by the cor-
rection factors. The sample size in Yingke Oasis is either 
180 m × 180 m or 240 m × 240 m and the resolution of 
MODIS is low, so during the results analysis, the valida-
tion data are set by the average of field point data within 
a MODIS pixel (250 m). Two automatic meteorological 
stations (Yingke and Huazhaizi) are established for 
measuring and recording temperature, precipitation and 
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Fig. 2  Sketch map of Heihe River Basin, classification map of measurement location, and crop types 

 
Table 1  Overview of remote sensed data 

Product DOY Spatial resolution (m) 

MOD09A1 
129, 137, 153, 161, 185, 

201, 225, 241 
500 

MOD09Q1 1–366 250 

Note: DOY is day of year 

 
other meteorological data. All the data are resampled 
into 250 m, corresponding to WOFOST model simula-
tion scale. 

2.3  Methods 

2.3.1  Crop growth model 

WOFOST model is a tool for quantitative analysis of the 
crop growth and its time step is ′day′. In this model, the 
radiation, temperature and crop characteristic parame-
ters are used for simulating crop dry matter accumula-
tion status from emergence to maturity (Xie et al., 2006). 
The model uses crop organs growth rate such as roots, 
stems, leaves and ears and their appearance order to 
identify the crop growth period, the whole growth pe-
riod can be divided into three developmental stages, 
planting-emergence, emergence-flowering and flower-
ing-mature. In WOFOST model, the dry matter is ac-
cumulated based on canopy CO2 assimilation rate, 
which is calculated by the incident radiation and crop 
leaf area. One part of carbohydrates is used to maintain  
respiration of crop living tissue, the other part is used 

for forming roots, stems, leaves and other organs of crop. 
The part which is assigned to leaves will determine the 
growth of leaf area and light interception (Ba, 2005). 
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where Drdj is the development rate at djth development 
stage; Tedi is the effective temperature at dith day of year; 
TSUMdj is the effective temperature needed at djth de-
velopment stage; ΔW is the dry matter growth rate; Ce is 
assimilate conversion factor; k is the conversion coeffi-
cient between CO2 and CH2O; Ad is the daily gross as-
similation rate; Rm, T is the maintenance respiration rate 
at actual temperature (T); D is the length of day; Ah, –1, 
Ah, 0, and Ah, 1 are instantaneous assimilation rate in three 
Gaussian integral points; A–1, A0, and A1 are gross as-
similation rate in three Gaussian integral point; Ah is 
instantaneous assimilation rate at time h; AL is the gross 
assimilation rate; Am is the maximum gross assimilation 
rate; I is the adsorbed radiation by leaf layer L; ε is the 
initial light use efficiency of individual leaves; LAI is 
Leaf Area Index. 

The model contains a lot of parameters about crop 
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genetic characteristics and crop varieties, such as de-
velopment parameters (temperature needed for different 
developmental stages, photoperiod influence factor, etc.), 
growth parameters (maximum photosynthetic rate, spe-
cific leaf area, dry matter partition coefficient, etc.), soil 
parameters. Parts of those parameters can be set by 
some literature such as Boogaard et al. (1998), Wu et al. 
(2003), Wang Tao et al. (2010), and experimental data 
observed from the Heihe River Basin. However, due to 
too many parameters and limited field data, some pa-
rameters are difficult to be set. And different parameters 
have different effects on the simulation of LAI, for some 
very sensitive parameters, unreasonable values will 
cause the simulation result deviate, inaccurate, or even 
wrong. Therefore, the model parameters must be ad-
justed to respond to the combined effect of simulation 
environment and crop varieties. Uncertainty and Sensi-
tivity Matrix (USM) (Li et al., 1997) is introduced to 
evaluate the sensitivity of model parameters by using 
the value of the parameter increased or decreased by 
15% while the other parameters values are fixed on their 
expectations to calculate difference of simulated maxi-
mum and minimum LAI values. 

, 
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, 

| |
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  (4) 

where DOY is the day of year; para is WOFOST model 
parameters; LAIDOY, para × (1 + 15%) means LAI value that 
calculated when the value of parameter para increased 
by 15% and other parameters are fixed on their expecta-
tions; LAIDOY, para × (1 – 15%) means LAI value that calcu-
lated when the value of parameter para decreased by 
15% and other parameters are fixed on their expecta-
tions; LAIDOY, para means LAI value that calculated when 
all the parameters are fixed on their expectations. 

The experiment result from test site shows that LAI is 
sensitive to the effective temperature TSUM1, TSUM2, 
the specific leaf area SLATB, the initial dry weight 
TDWI, the maximum photosynthetic rate AMAXTB 
and the assimilates conversion efficiency CVL, all of 
those parameters will be optimized during the assimila-
tion process. 

2.3.2  Reflectance model 

The turbid medium, Markov chain canopy reflectance 

model (a two-layer canopy reflectance model) (Kuusk, 
2001) incorporates Markov properties of stand geometry, 
making it applicable to plant canopies largely composed 
of vertical elements such as maize. The ACRM model 
contains the PROSPECT leaf optical model (Jac-
quemoud and Baret, 1990), simulating the reflectance 
and transmittance from 400 nm to 2500 nm of a leaf, 
through the relationship function of leaf structure pa-
rameters and biochemical parameters. The model has a 
high computational efficiency and can explain the spe-
cular reflection of a leaf surface. The calculation of mul-
tiple scattering in the model is the same as in the Scat-
tering by Arbitrarily Inclined Leaves (SAIL) model 
(Verhoef, 1984). The ACRM model is a one-dimen-
sional, bidirectional turbid medium radiative transfer 
model that has been modified to take into account the 
′hot spot′ and ′leaf mirror reflection′ effects of plant 
canopy reflectance (Kuusk, 1985). Use of a turbid me-
dium defines the canopy as a horizontally homogenous 
and semi-infinite layer, consisting of small vegetation 
elements that act as absorbing and scattering particles of 
given geometry and density. Giving canopy structure 
and environmental parameters, the model can calculate 
canopy reflectance for any sun altitude and observation 
direction. The Price model (Price, 1990) is incorporated 
in the ACRM to calculate soil reflectance. The soil re-
flectance spectra in the model are approximated as a 
function of four basis vectors, where the first two vec-
tors explain 94.2% of spectral variability in soil reflec-
tance.  

In order to avoid the situation that remote sensing 
observation bands is too few to cause inversion error, 
the MOD09A1 product is chosen as the remote sensing 
data. The product contains the first seven bands of 
MODIS, which are more sensitive to the land vegetation, 
and its spatial resolution is 500 m. 

2.3.3  Phenology information 

The crop model is a one-dimensional simulation model 
by which the different crops growth situation is simu-
lated. The crop model simulation result is ′point′ scale. 
Yingke Oasis has a large area of planting area, however, 
for pixel of MOD09A1 data with a resolution of 500 m, 
there may exist maize and wheat simultaneously. There-
fore, considering that the growth change situation of 
maize and wheat is different, in the framework of as-
similating MODIS data into crop model based on tem-
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poral-spatial knowledge, the MODIS product MOD09Q1 
is used for optimizing crop model sensitive parameters.  

In order to reduce the impact of noise on phenologi-
cal information extraction, a Asymmetric Gaussian 
function (AG filtering) of Timesat 3.0 is used to smooth 
NDVI time series data. The AG fitting is a process from 
local fitting to overall fitting, which uses segmented 
Gaussian function to simulate the process of vegetation 
growth, and finally connect each Gaussian fitting curve 
to achieve the time series reconstruction (Per and Ek-
lundhc, 2004). First, local fitting functions are taken to 
describe NDVI data between maxima and minima, then, 
the local functions are merged to a global function to 
follow the change of NDVI time series during crop 
growth. 

The mutation of NDVI value is a significant change 
signal of vegetation photosynthesis, indicating the great 
change of surface vegetation growth status, which is the 
key point for extracting phenological parameters. In this 
study, an improved two-side Logistic model (Zhang et 
al., 2003) is chosen to simulate the seasonal variation 
curves (y(t)) of crop NDVI, and the key phenological 
phases are confirmed by calculating the curvature 
change of the simulation curve. 
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where y(t) is the NDVI value at time t; a1, a2, a3 are the 
fitting coefficients; a4 is the initial NDVI background 
value; dc is the arc differential, namely curvature change 
situation; ds is the unit arc length of logistic curve. The 
phenological parameters extracted in this study include 
those at the emergence stage (during which the crop is 
beginning to grow), the anthesis stage (during which 
NDVI achieves maximum and sustains) and mature 
stage (during which NDVI beginning to attenuate). 

2.3.4  Parameters optimization based on SCE-UA 

Shuffled Complex Evolution method developed at the 
University of Arizona (SCE-UA) (Duan et al., 1993) is a 
global optimization algorithm, proposed by Dr. Duan in 
1992, and can solve the parameters optimization prob-
lem of nonlinear, multi-extreme, no specific function 
expression, interval constraint, and so on. SCE-UA has  

the advantages of deterministic search, random search 
and biological competition evolution and introduces the 
population concepts. Compared with genetic algorithm 
and other optimization algorithms, SCE-UA method 
shows better on convergence speed and computational 
efficiency, and has better stability (Song et al., 2009). 
The specific process and application of SCE-UA algo-
rithm please refer to the findings of Duan et al. (1993; 
1994). 

SCE-UA in this paper is used for optimizing the sen-
sitive parameters of WOFOST model (TSUM1, TSUM2, 
SLATB, TDWI, AMAXTB and CVL). Based on prior 
knowledge (phenological information), the cost function 
(F) is established as follows: 
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where DVS is model growth stage code; cal
DVSDAY is the 

DOY calculated by WOFOST model; cal
DVSLAI is the 

corresponding LAI at growth stage, which are calculated 

by crop model; 
pri

DVSDAY and pri
DVSLAI are the prior DOY 

and the corresponding prior LAI. Limited by the field 
data, the prior LAI data are taken from the spectral li-
brary (http://spl.bnu.edu.cn/index.asp) statistical values 
during crop emergence, anthesis and mature stages. 

2.3.5  Spatial knowledge 

In this paper, spatial knowledge is defined as surface 
spatial heterogeneity information, describing the scale 
bias of different-resolution remote sensing data, ex-
pressed by the parameter ′err′. 

WOFOST is a one-dimensional model and its simula-
tion results are ′point scale′, however, the remote sens-
ing inversion results are ′pixel scale′, being considered 
as ′plane scale′ in this paper. Mismatch of ′point scale′ 
and ′plane scale′ affects the remote sensed data assimi-
lated into WOFOST model. To improve the assimilation 
accuracy, err is participated into the assimilation test to 
reduce the influence of different spatial scales. 

Based on higher-resolution image, err defined as the 
bias for the LAI retrieved from up-scaling images, is 
shown as follows. 

err = LAIp–LAImean  (8) 
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where LAIp is the LAI retrieved from lower-resolution 
images; LAImean is the average of LAI retrieved from 
higher-resolution images (which are taken as relative 
truth); and err is the difference of LAIp and LAImean. 

The purpose here is to obtain scale information of 
different-resolution remote sensing data, so the semi- 
empirical conversion formula between LAI and NDVI is 
established as follows (Baret and Guyot, 1991; Gar-
rigues et al., 2006). 
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where the extinction coefficient kNDVI and NDVI∞ are 
calculated by the SAIL model, and kNDVI is close to 0.5 
(Zhang et al., 1999); NDVI∞ is often close to the pure 
vegetation NDVI when the leaf angle distribution is 
spherical; NDVIs is the NDVI of bare soil; b1, b2, and b3 
are constants. The equation will be applied to higher- 
resolution remote sensing images.  

Ignoring the non-linear formula of NDVI, 
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where NDVIi is the NDVI value of the ith pixel; n is the 
total number of pixel. 

Then, the Taylor Mean Value Theorem is applied to 
designing the polynomial expansion of ′LAImean′ around 
(NDVIi = NDVImean). 
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Finally, err equation is shown as below, with more 
details available in Zhu et al. (2010; 2012).  
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where NDVImean, σNDVI are the mean value and variance 
of NDVI in higher-resolution image, respectively.  

2.3.6  EnKF assimilation process based on spatial 
knowledge 

Ensemble Kalman Filter, combining ensemble predic-
tion and Kalman Filter (KF), is a four-dimensional as-
similation method by using Monte Carlo short-term en-
semble forecasting methods to estimate the prediction 
error covariance (Evensen, 1994). The basic idea of 
EnKF is that the covariance of state variables and ob-
served variables is calculated by the results of ensemble 
forecast, then, analysis ensemble is updated by the co-
variance and observational data, making the prediction 
continue to move forward. The EnKF algorithm, over-
coming the shortages of KF algorithm and not limiting 
to linear model and observation operator, has been 
widely used to assimilate remote sensing data into land 
surface models.  

In the study, observation data are MOD09A1 with a 
resolution of 500 m, while the MOD09Q1 is used during 
the crop model optimization process and its resolution is 
250 m. Therefore, the spatial knowledge extracted by 
Taylor series expansion is introduced into the EnKF 
assimilation algorithm. The operation process is as fol-
lows. 

(1) LAI t, j is the WOFOST model state variable of 
sub-pixel j at time t; j (1, 2, …, l) is the sub-pixel of 
MOD09A1, that is the pixel of MOD09Q1. Monte Carlo 
method is used to generate ensemble members i at time t, 
and the number of ensemble members is n (n = 50 in 
this paper).  

,  ,  1,  ,  1 2,  ,  2 ,  ,  ( ,  ,  ...,  )i t j t t n t lLAI LAI LAI LAI   (14) 

Ignoring the flag of j, then, the ensemble members 
are: 
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, 1, 2, , ( ,  ,..., )i t t t ln tLAI LAI LAI LAI   (15) 

where LAIi, t, j is the ensemble members at time t of 
sub-pixel j; j is sub pixel of pixel J; LAIi, t is new en-
semble members at time t of pixel J; ln is the new num-
ber of ensemble members.  

(2) Model moves forward and continues to forecast, 

predictive value , 1
f

i tLAI   of time t + 1 is given as: 

, ,   1 ( )f a
i t ii tLAI WOFOST LAI      (16) 

where , 
a
i tLAI is the analytical value of the random state 

variable i at time t; (0, )i N Q  ; Q is model error. 

(3) Correcting the space heterogeneity effect and 
giving observation noise to generate observation en-
semble, the sample size is m (m = ln). 

, e c cLAI LAI err    (17) 

, , 
,   1   1

, , , 
1,   1 2,   1 ,   1( ,  ,  ...,  )

e c e c
i t t i

e c e c e c
t t m t

LAI LAI v

LAI LAI LAI

 

  

 


  (18) 

where LAIc is the ACRM inversed value and corrected 
by Equation (8); LAIe, c is the result corrected by err, 

, 
  1

e c
tLAI  are the observation data; (0, )iv N R , R is the 

observation error. 
(4) Calculating Kalman gain matrix K at time t + 1: 

1
  1   1  1   1( )f T f T

t tt tK P H HP H R 
      (19) 

' '
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  (21) 

where   1
f

tLAI  , '
  1
f

tLAI   are the mean and deviation 

matrix of the predicted value of the state variables at 
time t + 1; H (*) is the observation operator; Pf is the 
covariance matrix of forecast error at according time. 

(5) Calculating the average value of the state vari-
ables at time t + 1 and the background error covariance 

matrix 1, 
a

t jP  of sub pixel j: 

, 
,   1   1 ,   1,   1
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(
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  1

1 n
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t j i t j

i

LAI LAI
n 



    (26) 

where  1
a
tLAI   is the average value of ,   1

a
i tLAI   (i = 

1, 2, …, m), which is considered as the optimal estima-
tion by EnKF (Burgers and Concha, 1998). 

(6) t = t + 1, return to step (2), Loop calculating until 
the end. 

3  Results and Analyses  

The assimilation method mentioned above is firstly ap-
plied in point assimilation test of pixel P (38.86°N, 
100.43°E) which is shown in Fig. 2. The results calcu-
lated by original simulation, adjusted simulation, origi-
nal assimilation and assimilation based on temporal- 
spatial knowledge are compared for analyzing the 
methods proposed in this paper. In addition, the assimi-
lation method based on prior knowledge is applied in 
whole study area, and then the estimation results up- 
scaling for comparative analysis with MODIS LAI pro-
duct, further evaluating the effectiveness of the method.  

MOD09A1 on 129, 137, 153, 161, 185, 201, 225 and 
241 day of year (DOY) in 2008 were used in the as-
similation experiment, basically covering the growth 
period of maize and wheat (maize is sowed in April or 
May and matured in September or October; spring 
wheat is sowed in March or April and matured in July or 
August). The observation dates of different regions are 
not the same due to that the MOD09 product data is 
8-day synthesis (Sun et al., 2009), so the middle date is 
chosen as the image observation date in this study. Due 
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to lacking of observation data during crop growth later 
stage, the ground truth data including spectral library 
data (http://spl.bnu.edu.cn/index.asp) are used together 
for analyzing the assimilation results. The verification 
results are shown in Fig. 3. 

 

 
 
Fig. 3  Assimilation results compared with field data, spectral 
library data and WOFOST model simulation data 

 
In Fig. 3, assimilation results refer to the result of 

LAI which is calculated by assimilating remote sensing 
data into WOFOST model, and simulation results refer 
to the result of LAI simulated by WOFOST model. As 
seen from the Fig. 3, although the crop emergence date 
and initial LAI are reasonable, due to the absence of 
remote sensing observations, the simulation curve 
started to deviate from the true growth situation and was 
faster into stable period. Meanwhile, without optimiza-
tion of model sensitive parameters, the lower tempera-
ture and specific leaf area coefficient make the simula-
tion of growing period to be shorter and the maximum 
LAI to be lower than normal. However, the assimilation 
results are based on remote sensing observations, 
whether it is single assimilation or temporal-spatial 
knowledge-based assimilation, the calculated LAI value 
is closer to the ground truth value. The root mean square 
error (RMSE) and average error (AE) of LAI estimated 
by knowledge-based assimilation method are 0.3795 
and 0.0265, while those simulated by model are 0.9185 
and 0.3563. It indicates that model parameters opti-
mized by phenology information make the WOFOST 
model localizable and simulation results are closer to the 
growth trend of study area. At the same time, by inte-
grating spatial knowledge into the assimilation process, 
the LAI value is corrected to be more reasonable and 
closer to the ground truth data and spectral library data 

during the early growth stage. During the early growth 
stage (DOY: 161–201), the crop grows rapidly and 
makes the surface vegetation cover change dramatically 
leading to high spatial heterogeneity. 

The LAI images calculated by assimilation method 
based on the whole study area are up-scaling to 1 km 
and compared with MODIS LAI products (Fig. 4). It 
can be seen from comparison in Fig. 4, spring wheat and 
maize LAI changes more in line with the seasonal 
changes in crop growing period. Around early June (Fig. 
4c, 4d), the spring wheat LAI should generally reach 
peak value. The spring wheat LAI assimilation value is 
between 3.5 and 4.5, closing to the field data value of 
3.81 (the field data collection time is from 164 to 166); 
while MODIS LAI value is generally lower than 2.0. 
More detail comparative analysis between assimilation 
LAI (Fig. 4d) and MODIS LAI (Fig. 4d′) based on the 
wheat measurement data on 164–166 is shown in Fig. 5. 
The measurement point distribution is shown in Fig. 2. 
The statistical result points out that RMSE of verifica-
tion results was reduced from 1.9257 to 0.4409, and the 
average value of assimilation LAI is 3.87, which is 
50.26% higher than that of MODIS LAI and more con-
form to ground situation.  

Analysis from spectral library data and field data, 
during early to mid-May (Fig. 4a), the wheat LAI should 
be greater than 1.0 but MODIS LAI value did not 
reached up to it, while assimilation results vary between 
1.0 and 3.0. It means that the assimilation results are 
more in line with the crop growth characteristics in the 
study area. MODIS LAI value is generally low, espe-
cially in maize LAI. During maize flowering period, the 
LAI reaches the maximum, and then it decreases slowly 
and keeps at a high level until the end of mature period. 
Statistics from the ground truth data, maize LAI at this 
period should be about 5.0 (the measure time is 184–191, 
lacking of late measured data), and the spectral library 
prior statistics is between 5.46 and 5.70. Seen from the 
assimilation results, LAI value in this period is between 
5.0–6.0 (Fig. 4f, 4g, 4h), similar to that from the ground 
measurement and spectral library, reasonably indicating 
the LAI changes in maize growing period. While maxi-
mum LAIs of MODIS product mainly concentrate in the 
2.5–4.0 and then descend to 1.0–2.0, deviating from a 
reasonable trend. As a whole, LAI calculated by knowl-
edge-based assimilation method is more reasonable than 
MODIS LAI and more consistent with the field data. 
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Fig. 4  Assimilation results (a–h) based on temporal-spatial knowledge comparing with MODIS LAI product (a′–h′) on day of year 129, 
137, 153, 161, 185, 201, 225, 241, respectively 

 

 
 

Fig. 5  Comparison between assimilated LAI and MODIS LAI 

on day of year from 164 to 166 

4  Discussion 

Traditional LAI inversion researches tend to focus on 
algorithms. In consciousness to the importance of prior 
knowledge and the synergism advantage of multiple 
remote sensing data, scholars paid less attention to ex-
cavate and utilize prior knowledge to improve the accu-
racy estimation of LAI.  

In this study, based on the assimilation technology, 
we combined the time-series remote sensing observa-
tions and crop growth model, so that the extracted LAI 
not only considers the remote sensing information but 
also depends on the simulation information from crop 
growth model. The research tried to excavate and use 
the prior knowledge in two aspects. During the crop 
model assimilating MODIS data, the process would be 

affected by scale restriction between ′point-plane′. We 
use the multi-resolution characteristic of MODIS data to 
extract the spatial information between different resolu-
tion data as prior knowledge which expanding the con-
notation of prior knowledge. As seen from Equation (9), 
the inversion result of low resolution data was adjusted 
by the NDVI variance of higher resolution data and 
second order of relationship function. Through such 
processing, low resolution data inversion result used as 
observation operator reduced the surface heterogeneity 
influence and improve the accuracy of observation in-
formation. During the assimilation process, the higher 
resolution of ′point′ model simulating scale was com-
bined with the low resolution of ′plane′ inversion results, 
realizing the union of information between ′point′ and 
′plane′. During the process of crop model optimization, 
the phenological information extracted from MOD09Q1 
was used as temporal information, participating in the 
optimization by cost function Equation (7), improving 
the simulation accuracy. 

The experimental results showed that, in point test, 
the assimilation results based on temporal and spatial 
knowledge were more reasonable than direct simulation 
results. The RMSE was reduced by 58.7% and average 
error reduced by 92.6%. It indicated that the model 
simulation curve would show larger bias by unreason-
able parameters. At the same time, the crop model pa-
rameters are selectively optimized by SCE-UA, im-
proving ′localization′ efficiency of model. After the ad-
justment, the simulated maximum LAI and crop grow-
ing circle were more suitable for the study area. In addi-
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tion, the estimated LAI by assimilating remote sensing 
data into adjusted crop model was more accuracy and 
the RMSE reduced from 0.6770 to 0.3795. It showed 
that the assimilation method based on prior knowledge 
could obviously improve the estimation accuracy of 
crop LAI. Further comparing with the MODIS LAI, it 
can also be found that the changing curve of assimilated 
LAI is more conformed to the crop growth condition. 
This indicated that, in addition to the remote sensed ob-
servation information, the assimilated LAI also contains 
the simulation information of crop growth model. 

5  Conclusions  

In this paper, a methodology of assimilating MODIS 
product with WOFOST crop growth model based on 
temporal and spatial knowledge was proposed to esti-
mate LAI in two directions. The assimilation method is 
tested in Yingke Oasis in Gansu Province, a typical 
ecological area. 

The experimental results showed that: 1) during the 
parameters optimization process, the cost function used 
for SCE-UA was established based on phenology in-
formation which improved the accuracy of the crop 
model simulation. 2) Spatial knowledge involved in the 
assimilation process, improved the match between the 
simulation model with coarse resolution remote sensing 
data, and reduced the effect of spatial heterogeneity in 
the assimilation process. 3) More than one direction of 
the remote sensing observations was selected to partici-
pate in assimilation and further improved estimation 
accuracy of the crop LAI. 

In this study, spatial knowledge was involved in the 
assimilation process, but we only focus on the spatial 
heterogeneity within the coarse resolution pixel, and in 
the future we will consider the spatial information be-
tween pixel and its adjacent pixels. In addition, the re-
search program is an assimilation process based on the 
combination of ′point simulation′ and ′plane inversion′. 
By considering of the temporal resolution, we use the 
MOD09 to calculate the phenology parameters, so that 
the spatial resolution of remote sensing data involved in 
the assimilation process is a little larger. In future re-
search, the 16-day composite product will be taken into 
account, so that we can use higher resolution remote 
sensing data to participate in assimilation, such as Hy-
perion, TM/ETM+, and ASTER. 
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